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Transcriptome analysis allowed the identification of new long noncoding RNAs differentially expressed during murine myoblast
differentiation. These transcripts were classified on the basis of their expression under proliferating versus differentiated condi-
tions, muscle-restricted activation, and subcellular localization. Several species displayed preferential expression in dystrophic
(mdx) versus wild-type muscles, indicating their possible link with regenerative processes. One of the identified transcripts, lnc-
31, even if originating from the same nuclear precursor of miR-31, is produced by a pathway mutually exclusive. We show that
lnc-31 and its human homologue hsa-lnc-31 are expressed in proliferating myoblasts, where they counteract differentiation. In
line with this, both species are more abundant in mdx muscles and in human Duchenne muscular dystrophy (DMD) myoblasts,
than in their normal counterparts. Altogether, these data suggest a crucial role for lnc-31 in controlling the differentiation com-
mitment of precursor myoblasts and indicate that its function is maintained in evolution despite the poor sequence conservation
with the human counterpart.

Earlier investigations of the muscle development of vertebrates
led to the discovery of transcription factors (MYOD1, MYF5,

and MYOG) and chromatin modifiers as key regulators of muscle
specification (1–4). Advancement in the field was stimulated by
the identification of regulatory small noncoding RNAs (sncRNAs)
and long noncoding RNAs (lncRNAs) as critical orchestrators of
muscle specification (5, 6). Among sncRNAs, the characterization
of miR-1/miR-206 and miR-133 microRNA (miRNA) families in
both muscle physiology and diseases was of primary interest (7–
10). Besides characterizing miRNAs, a number of studies also fo-
cused on the participation of lncRNAs in muscular circuitries (11–
13). lncRNAs represent a class of transcripts longer than 200
nucleotides with little or no protein-coding capacity. They regu-
late gene expression through the formation of different ribonucle-
oprotein complexes and exert functions in a variety of cellular
pathways (5, 14). linc-MD1 was the first example of a cytoplasmic
lncRNA guiding the timing of mouse muscle differentiation in
vitro (11). During differentiation of myoblasts, linc-MD1 acts as a
sponge for miR-133 and miR-135, thereby derepressing their
myogenic targets, Maml1 and Mef2c. Notably, the levels of human
linc-MD1 expression are low in myoblasts of patients affected by
Duchenne muscular dystrophy (DMD) (15), while proper differ-
entiation was rescued by exogenous administration of linc-MD1
(11). More recently, other muscle-specific lncRNAs, containing
short interspersed elements (SINEs) and regulating gene expres-
sion by driving Staufen1 (STAU1)-mediated mRNA decay, were
also linked to myogenesis (13). However, the number of lncRNAs
identified as myogenic regulators so far is still exiguous and the
identification of new species is required to define the role of these
transcripts in muscle specification.

In this study, we characterized novel lncRNA species, including
previously unannotated transcripts, which undergo modulated
expression during in vitro murine myoblast differentiation. Paral-
lel tissue-specific analysis identified a subgroup of lncRNAs pref-
erentially expressed in mature or in regenerating fibers. Specific
binding of key myogenic transcription factors on the putative pro-

moter regions of those species upregulated during differentiation
was then identified.

The resulting characterization of lnc-31 was particularly inter-
esting due to its genomic overlapping with the miR-31 coding
region. Previously linked to neoplastic development and tumor
metastasis (16), miR-31 was shown to maintain satellite cell repli-
cation through the posttranscriptional control of MYF5 (17) and
to repress late myogenic markers, including dystrophin (7). Here
we explain that, in muscle cells, miR-31 originates from a primary
transcript specifically expressed under proliferating conditions
that can be converted into miR-31 or into the mature polyadenyl-
ated lnc-31 species. By modulating the levels of lnc-31, we demon-
strated a relevant role for this molecule in controlling the mainte-
nance of myoblast proliferation both in murine and human
myoblasts.

MATERIALS AND METHODS
Cell culture conditions and treatments. C2C12 cells were cultured as pre-
viously described (7). For differentiation, cells maintained under conflu-
ent conditions were switched to a low serum concentration (0.5% fetal
bovine serum [FBS]). Human myoblasts (WT-9808 and DMD-9981 from
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Telethon Neuromuscular Biobank) were cultured and induced to differ-
entiate as previously described (18). Small interfering RNA (siRNA) mol-
ecules (Qiagen) against lnc-31 exon2 (DNA target sequence: 5=-TCACGT
TGTTGAAGAGTTGAA-3=) were transfected using HiPerfect (Qiagen)
according to manufacturer’s specifications. siRNA molecules against hu-
man lnc-31 (a gift from Anders Lund) were transfected into human pro-
liferating myoblasts using Lipofectamine 2000 (Life Technologies) ac-
cording to the manufacturer’s specifications.

mRNA library generation and RNA-seq. Transcriptome sequencing
(RNA-seq) libraries were prepared from 200 ng of total RNA using a
TruSeq stranded mRNA Sample Prep kit (Illumina) and following man-
ufacturer’s instructions. DNA libraries were quantified with Kapa reagent
(Kapa SYBR Fast universal quantitative PCR [qPCR] kit; Illumina) and
inspected for quality using a 2100 Bioanalyzer (Agilent). Multiplexed li-
braries (10 pM) were sequenced on a Genome Analyzer IIx (GAIIx) sys-
tem (Illumina Inc.) as paired-end (2 � 86) base reads at about 50 million
mapped reads per sample.

RNA-seq data analysis. Paired-end (86-bp) reads were aligned to the
mouse reference genome assembly (mm9) using Tophat (19) with default
options and assembled into transcripts with Cufflinks (20, 21). Cuffmerge
with default options was used to merge all the assembled transcriptomes.
The aligned reads and the assembled transcriptomes were used as input
for Cuffdiff2 (22) to determine the expression levels in fragments per
kilobase per million (FPKM). FPKM values of the newly identified ln-
cRNAs are reported in Table S1 in the supplemental material. Cells at all
the differentiation stages (differentiating myoblasts on day 1 [DM1],
DM3, and DM5) were compared with undifferentiated cells (i.e., growing
myoblasts [GM]). We considered all transcripts with a FPKM value of
�0.1 to represent expressed transcripts (23, 24). In each pairwise com-
parison, we calculated the fold change for transcripts expressed in each
of the two samples and selected those with a fold change value greater than
1. The resulting list was used to compute a threshold value corresponding
to the third quartile of the data. Transcripts with fold change values above
the threshold were ordered according to the corresponding fold change
value. Transcripts not expressed (or with an FPKM value lower than 0.1)
in one of the samples and with a FPKM value greater than 1 in the other
were ordered according to the FPKM value for the latter sample. The same
procedure was used to select the genes for functional classification.

Animal procedures. The animals were treated according to the guide-
lines of good laboratory practice (GLP) with respect to housing, nutrition,
and care. Two-month-old wild-type (WT) and dystrophic (mdx) animals
(C57black6) were sacrificed, and tissues from different body districts were
homogenized into powder under liquid nitrogen by mortar and pestle.

RNA analyses. Total RNA was prepared with an RNeasy Plus minikit
(Qiagen); 0.5 to 1.0 �g of total RNA was subjected to reverse transcription
(RT) with either SuperScript III reverse transcriptase (Life Technologies)
or miScript reverse transcription (Qiagen) according to the manufactur-
er’s instructions. Semiquantitative PCR was then performed using MyTaq
(Bioline) enzyme. All quantitative RT-PCRs (qRT-PCRs) were performed
in triplicate using a SYBR green PCR kit (Qiagen). Cytoplasmic, nucleo-
plasmic, and chromatin fractionation was carried out as described in ref-
erence 25, and lncRNAs were analyzed in GM or DM (day 2), depending
on their timing of expression. Northern blot analysis for miR-31 was per-
formed as described in reference 7 using a miR-31 locked nucleic acid
(LNA) probe. For primer specifications, refer to Table S1 in the supple-
mental material.

Western blot analyses. Total protein extract was obtained as previously
described (26). Immunoblots were incubated with the following primary an-
tibodies: anti-MYH6 (anti-MF-20), anti-muscle creatine kinase (sc-15161;
Santa Cruz Biotechnology, Inc., Santa Cruz, CA), antimyogenin (sc-12732;
Santa Cruz), anti-MYOD1 (Dako, Glostrup, Denmark), and anti-GAPDH
(anti-glyceraldehyde-3-phosphate dehydrogenase) (6C5 [sc-32233]; Santa
Cruz). ImmunoPureGoat anti-rabbit or anti-mouse IgG–peroxidase (Pierce,
Rockford, IL) (conjugated) was used as a secondary antibody.

BrdU assay. Proliferating C2C12 and human myoblasts were labeled
with bromodeoxyuridine (BrdU) labeling reagent (5-bromo-2=-deoxy-
uridine labeling and detection kit; Roche) for 3 h. Cells were fixed in an
ice-cold solution (7 volumes of 100% ethanol and 3 volumes of 50 mM
glycine, pH 2) for 20 min at �20°C and washed three times with phos-
phate-buffered saline (PBS). Fixed cells were incubated for 1 h at 37°C
with anti-BrdU antibody. Cells were stained with a secondary antibody
and then labeled with DAPI (4=,6-diamidino-2-phenylindole). Samples
were imaged using an Axio Observer A1 (Zeiss) microscope.

Accession number. Deep-sequencing data have been submitted to the
European Nucleotide Archive (ENA) (http://www.ebi.ac.uk/ena/data
/view/PRJEB6112) under accession number PRJEB6112.

RESULTS AND DISCUSSION
Profiling and functional classification of differentially ex-
pressed genes. Transcriptome analysis was performed with RNA
from murine C2C12 myoblasts induced to differentiate in vitro.
Proper differentiation timing was monitored by the microscopic
observation of fiber formation (see Fig. S1A in the supplemental
material) and by observation of the expression of known myo-
genic markers (27, 28) as MYOD1, MYOG, MEF2C, MYH6, and
CKM (Fig. 1A).

Poly(A)-positive [poly(A)�] RNA from proliferating (GM)
and differentiating (DM1, DM3, and DM5) myoblasts was sub-
jected to RNA-seq analysis. Confidence in the sequencing experi-
ment was instilled by corresponding FPKM values of Myod1,
Myog, Mef2c, Myh6, and Ckm transcripts (see Fig. S1B in the sup-
plemental material) and by the appearance of their respective pro-
teins throughout the time course of C2C12 differentiation.
(Fig. 1A).

The reconstructed transcriptome consisted of 72,326 ex-
pressed RNAs corresponding to 22,115 unique gene loci. About
68% of them were annotated in the Ensembl reference transcrip-
tome (Fig. 1C), 23% corresponded to new isoforms of known
transcripts, and 1% matched with antisense transcripts or exhib-
ited a partial overlap to known genes. The remaining 7% were
novel species not corresponding to any of the Ensembl reference
transcripts. The gene ontology (GO) analysis was performed on a
subset of protein-coding genes (see Fig. S1D in the supplemental
material) using FIDEA (29). In line with the expected acquisition
of a muscle signature, the GO diagram corresponding to DM con-
ditions reveals an overrepresentation of myogenic transcripts,
among them those controlling muscle system process, muscle
contraction, and muscle structure development.

RNA sequencing data were then specifically inspected for
lncRNAs differentially expressed during C2C12 muscle differenti-
ation. We focused on multiexonic transcripts more than 200 nu-
cleotides long and discarded those overlapping known mRNA ex-
ons in the same strand. Among the top ranked, a subset of 30
lncRNAs (see Table S1 in the supplemental material) was selected
on the basis of their expression levels, with an FPKM value of �1
in at least one of the differentiation time points. Of these species,
70% had FPKM values of �5, with some reaching FPKM values
between 20 and 50; 18 lncRNAs were identified as new species, not
previously annotated in the available databases. Therefore, we ob-
tained a list of selected lncRNAs which were produced at mean-
ingful levels and modulated during differentiation.

Sequencing data were confirmed by semiquantitative RT-PCR
(sqRT-PCR) followed by sequencing of the amplified products: all
of the selected lncRNAs were produced from the correct genomic
locus. Twenty-three of such candidates were upregulated during
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the switch from GM to DM (Fig. 1B), while seven were specifically
downregulated during differentiation (Fig. 1C). Notably, among
the upregulated species, we found linc-MD1 (Fig. 1B, upper
panel), previously shown to be an abundant species that plays a
relevant role in muscle differentiation. (11, 30).

To further analyze the noncoding features of these transcripts,
we used a combination of three in silico approaches, Coding Po-
tential Calculator (CPC) (31), PORTRAIT (32), and CPAT (33)
(see Fig. S1E in the supplemental material). Our pipeline was first
validated by inclusion of noncoding (linc-MD1, Hotair, Malat1,
H19, and Xist) and coding (myoglobin, alpha hemoglobin, Gapdh,
and Acta2) transcripts (see Fig. S1E and Table S2). When these
criteria were applied to the newly identified transcripts (repre-
sented by gray dots in Fig. S1E), all of them lacked coding potential
with the exception of four lncRNAs (lnc-058, lnc-165, lnc-214, and
lnc-776) whose values occupied an intermediate area of the scatter
plot. Therefore, while the majority of the identified lncRNAs ap-
pear as bona fide noncoding RNAs, the possibility cannot be ex-
cluded a priori that small open reading frames are translated into
short peptides, as recently shown (34).

Analysis of muscle-specific expression. The tissue specificity
of the identified lncRNAs was analyzed in different mouse body
districts: skeletal muscles (gastrocnemius and tibialis) and heart
and nonmuscle tissues (brain, cerebellum, and lung). Moreover,
the corresponding tissues were also analyzed in the isogenic mdx
mouse, the elective model system for muscular dystrophy (35, 36).
The use of wild-type and mdx tissues provides a powerful system
for comparisons of the levels of expression in mature versus re-
generating fibers, which are rich in activated myoblasts. Tissues
were withdrawn from 2-month-old mdx animals, in which a
marked degeneration of muscle fibers, accompanied by intense
regeneration and an increase in the number of newly differentiat-

ing myofibers, is known to occur (37). RT-PCR analysis indicated
a group of at least seven species with very specific muscle-re-
stricted expression (Fig. 2, class a). Interestingly, lnc-405 displayed
a muscle-specific splicing isoform. A subgroup of lncRNAs (i.e.,
lnc-049, lnc-996, and lnc-149) showed predominant expression in
dystrophic muscles. Finally, lnc-267 and lnc-994 exhibited similar
expression levels in mdx and WT mature fibers. Among the other
species analyzed, the expression of lnc-182, lnc-613, and lnc-776
was interestingly enriched in heart tissue (Fig. 2, class b). Of note,
the expression of these lncRNAs was not detected in blood (see
Fig. S2 in the supplemental material). Furthermore, lnc-058, lnc-
254, and, to a minor extent, lnc-023 displayed enriched expression
in neuronal tissues, with lnc-058 being upregulated in the mdx
brain. All the remaining transcripts (Fig. 2, classes c and d) showed
more ubiquitous expression which in some cases was higher in
dystrophic tissues.

The RNA-seq output was then examined to locate transcrip-
tion start sites (TSSs) and in turn to analyze lncRNA putative
regulatory elements (Table 1). Chromatin immunoprecipitation
sequencing (ChIP-seq) data sets, available from the Mouse
ENCODE Project, were inspected in proliferating and differenti-
ated C2C12 cells. Orthogonal analyses allowed us to position lncRNA
putative promoter regions, marked by the presence of H3K4me3
(H3 trimethyl K4), and to highlight the transcriptional activity of
each locus by means of analysis of other chromatin marks (as
RNA-polymerase II [RNA-Pol II] or H3K27m3 enrichment).
ChIP-seq data analysis was particularly interesting in examina-
tions of the binding of key myogenic transcription factors nearby
the newly identified loci (http://www.ncbi.nlm.nih.gov/geo/query
/acc.cgi?acc�GSE36024). We reasoned that engagement of mus-
cle-type-specific transcriptional machineries was predictable for
transcripts involved in the myogenic program (2, 4).
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FIG 1 Muscle-specific poly(A)� RNA-seq profiling. (A) Western blot analysis of MYOD1, MYOG, MEF2C, MYH6, and CKM protein expression in myoblasts
grown under proliferation (GM) and differentiation (DM; 1, 3, and 5 days of differentiation [diff]) conditions. GAPDH levels were used as a control. (B and C)
Validation of lncRNA expression by semiquantitative RT-PCR (sqRT-PCR) performed on total RNA extracted from GM or from myoblasts differentiated for 3
days (DM). lncRNA transcripts were grouped into upregulated (B) and downregulated (C) categories. �, RT minus control reactions. Gapdh mRNA was used
as control. “a” and “b” indicate lnc-312, lnc-456, and lnc-686 splicing isoforms. PCR amplifications were performed on biological replicates, and the results of a
representative experiment are shown.
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Notably, all the upregulated species providing muscle-specific
expression resulted in engagement of MYOD1 and MYOG tran-
scription factors on regions spanning kb �5 to �1 from the pu-
tative TSS, with MYOD1 being already associated at the onset of
differentiation (Table 1). MYOD1 association with target genes
under proliferating (GM) conditions is a known phenomenon in
myogenesis: this factor is expressed in myoblasts well before acti-
vation of its target genes and binds promoters prior to transcrip-
tional activation. It can either act as a transcriptional repressor
in partnership with histone deacetylase 1 or activate transcrip-
tion upon its own acetylation (38). At variance with the group

of upregulated lncRNAs, transcripts downregulated upon dif-
ferentiation (Fig. 1C) showed poor expression in muscle tissues
and lacked binding of myogenic factors to TSS upstream re-
gions (Table 1). We found two exceptions: lnc-793, which
showed a MYOD1 interaction under GM conditions, and the
neural enriched lnc-254, which displayed a MYOG binding site
close to its TSS (Table 1). Several lncRNAs belonging to classes
b and c also showed MYOD1 and MYOG interaction on their
upstream regions, indicating that, even if they are ubiquitously
expressed, their activation in muscle cells might rely on these
two factors.
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FIG 2 Tissue specificity of lncRNAs in WT and mdx mice. sqRT-PCRs were performed on total RNA from WT and dystrophic (mdx) mouse tissue samples: brain
(BRA), cerebellum (CRB), gastrocnemius (GAS), heart (HEA), lung (LUN), and tibialis (TIB). lncRNAs were grouped into several classes (a to d) according to
their tissue specificity: class a, upregulated and muscle-restricted lncRNAs; class b, upregulated and heart-specific lncRNAs; class c, upregulated and ubiquitously
expressed lncRNAs; and class d, downregulated and ubiquitously expressed lncRNAs. Gapdh mRNA levels were used as a control. Analysis was performed on
samples from two different individuals, and results from a representative experiment are shown.
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Among lncRNAs expressed in proliferating myoblasts, an in-
teresting candidate was lnc-31, since it harbors precursor se-
quences for miR-31, a relevant miRNA known to play a crucial
role in muscle regeneration (7, 17) and to be associated to many
processes linked to cell proliferation (16). Moreover, aberrant
high levels of miR-31, found in both human and murine dystro-
phic myoblasts, contribute to the pathology by compromising the
normal progression of satellite cell activation to enter the differ-
entiation program.

Subcellular localization of the newly identified lncRNAs.
lncRNAs were subsequently analyzed for nucleic-cytoplasmic
compartmentalization by subcellular fractionation of C2C12 cells

(Fig. 3; see also Fig. S3 in the supplemental material). Figure 3A shows
the nucleus/cytoplasm relative abundances of lncRNAs analyzed de-
pending on their expression category (GM or DM) (Fig. 1A and B).
Since nuclear/cytoplasmic partitioning remains more difficult to ob-
tain in terminally differentiated cells, C2C12 cells were collected at day
2 of differentiation for the DM condition. Despite the correct local-
ization of control RNAs testifying to the proper fractionation proce-
dures (Fig. 3B), almost 12% of the species showed a bipartite distri-
bution between the two compartments. This feature, already
observed in other cases (39, 40), can account for low rates of chroma-
tin release and cytoplasmic export for species acting in the cytoplasm;
alternatively, for transcripts playing their role in the nucleus, cyto-

TABLE 1 MYOD1 and MYOG binding sites on lncRNA putative promotersa

Promoter and category

MYOD1 sites in:

MYOG sites in DMbGM DM

SIZE_PEAK DIST_TSS SIZE_PEAK DIST_TSS SIZE_PEAK DIST_TSS

Upregulated
Class a

lnc-267 713 299 1,455 25
511 �364 434 �2,111
623 �2,913 617 �2,910

lnc-994 615 �4,863 514 �4,956
lnc-049 353 15 506 32
lnc-996 936 159 1,078 148 887 200
lnc-149 572 11 649 53 460 47

390 �591 438 �587 329 �623
522 �2,441 702 �2,411 545 �2,408
769 �4,150 849 �4,165 922 �4,209

lnc-962 236 �3,984 295 �939
lnc-405 524 �6,365 595 �6,486

801 �4,503 793 �4,489
345 �2,028 304 �2,070
1,840 �762 1,778 �738
677 1,166 700 1,169

Class b
lnc-776 385 �2,882 442 �2,916

658 �20 395 �126
lnc-613 659 226 719 238

Class c
lnc-312 890 12 1,086 �89 1,061 �66
lnc-165 364 �1,419 502 �1,461

409 111 431 100
338 �573

lnc-389 564 �154 526 �77 563 �136
lnc-861 444 84 399 50

269 �357 323 �360
lnc-509 472 �1,320
lnc-460 363 �99
lnc-082 385 718

552 �93 637 �149 528 �69
lnc-058 309 �917

Downregulated: class d
lnc-793 880 1,370
lnc-254 218 �158

a Shown are the lncRNA species for which the occurrence of MYOD1 and MYOG binding peaks was identified by ChIP. ChIP-seq data sets from the Mouse ENCODE Project (http:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE36024) were inspected in proliferating and differentiated cells. The base pair length (SIZE_PEAK) and distance (DIST_TSS)
values of the ChIP-seq peaks from the predicted TSS are indicated. lncRNAs were grouped into upregulated and downregulated categories and further subcategorized (classes a to
d) according to tissue expression: class a, upregulated and muscle-restricted lncRNAs; class b, upregulated and heart-specific lncRNAs; class c, upregulated and ubiquitously ex-
pressed lncRNAs; class d, downregulated and ubiquitously expressed lncRNAs. See also the text for details.
b No sites were noted in GM.
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plasmic localization can be due to the requirement of RNP assembly
in this compartment. A third possibility of dual functions in the two
compartments cannot be excluded.

lnc-31 is a novel lncRNA associated with myogenesis. Among
the selected lncRNAs, we found a few species overlapping with
miRNA genomic loci: pre-miR125b-1 was found in the lnc-254
unique intron, pre-let7c2 and pre-let7b were found in the last exon
of lnc-023, and pre-miR-31 was found in the third exon of lnc-31.
Since miR-31 was previously shown to play an important role in
muscle regeneration and to be deregulated in myopathies (7, 17,
41), lnc-31 was selected for further studies. Moreover, a transcript
overlapping miR-31 also originates from the syntenic human
HG31 genomic region at chromosome 9p21.3 (42); however, in
contrast with mouse (43), whereas miR-31 maps inside the third
exon of lnc-31 (Fig. 4A), human miR-31 originates from the first
intron of the HG31 primary transcript (see Fig. S4A in the supple-
mental material). Analysis of the murine lnc-31 transcript indi-
cated that its expression was high in proliferating C2C12 cells and
was strongly downregulated upon differentiation, paralleling the lnc-
31P decrease (Fig. 4B). Notably, miR-31 also appears to be downregu-
lated during differentiation, even though to a lesser extent than lnc-
31, likely due to the intrinsic higher stability of miRNAs. Interestingly,
in mdx muscles, where more proliferating myoblasts are present due
to the intense regenerative process, lnc-31 accumulates at high levels
(Fig. 2). Analogous to the murine transcript, hsa-lnc-31 RNA is also

abundant in proliferating human myoblasts and is downregulated
upon differentiation (see Fig. S4B). In contrast, in human Duchenne
(DMD) myoblasts, characterized by a delay in the differentiation pro-
gram (18, 26, 44), lnc-31 downregulation is less pronounced (see Fig.
S4B). Taken together, these data establish a clear connection between
lnc-31 expression and myoblast proliferation, on one side, and lnc-31
downregulation and differentiation, on the other.

Amplification with primers recognizing exonic or intronic
sequences indicated that, while the primary transcript (lnc-
31P) is exclusively nuclear, the mature lnc-31 has a cytoplasmic
localization (Fig. 4C). Treatment with siRNAs against exonic
sequences resulted in efficient downregulation of mature
lnc-31 without affecting the levels of the precursor form (lnc-
31P) or those of miR-31 (Fig. 4D). Therefore, the RNA inter-
ference (RNAi) treatment allows the specific downregulation
of the cytoplasmic lnc-31 form and further corroborates the
hypothesis that the cytoplasmic transcript escaped Drosha
cleavage in the nucleus through a pathway independent of
miR-31 biogenesis. This case represents another example, sim-
ilar to the case of linc-MD1, where two different mature mole-
cules (a miRNA and a lncRNA) are independently produced
from the same primary transcript (30).

The physiological downregulation of lnc-31 during differenti-
ation prompted us to analyze whether lnc-31 controlled cell pro-
liferation. BrdU incorporation was assessed upon RNAi treatment
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of C2C12 cells maintained in growth medium. Compared to the
results seen with cells transfected with scramble siRNAs, a 50%
reduction in BrdU incorporation was observed when lnc-31 levels
were reduced to a residual 40% (Fig. 4E). In line with these results,
the expression levels of cyclin D1 (Ccnd1), cyclin E (Ccne1), and
Cdc25a cell cycle genes (45, 46) resulted in downregulation (Fig.
4F). Moreover, lnc-31 depletion led to an increase of myogenin
expression in proliferating myoblasts (Fig. 4G), which is consis-
tent with a role of lnc-31 in sustaining cell proliferation and in
counteracting differentiation.

In order to strengthen these results, we applied RNAi against
the human lnc-31 counterpart (hsa-lnc-31) to human primary
proliferating myoblasts. Quite interestingly, this experiment pro-
vided results very similar to those in mouse. In particular, the
downregulation of hsa-lnc-31 (see Fig. S4C in the supplemental
material) resulted in a 35% reduction of BrdU incorporation (see
Fig. S4D and E), paralleling the decrease in the expression levels of
cyclin D1 (Ccnd1), cyclin E (Ccne1), and Cdc25a cell cycle genes
(see Fig. S4F). Finally, in agreement with the mouse results, the
levels of myogenin that resulted increased (see Fig. S4G), indicat-
ing an overall effect of hsa-lnc-31 in sustaining cell proliferation
and counteracting differentiation.

Analysis of the expression levels of lnc-31 in mdx animals,
where intense regeneration occurs through myoblast activation
(37), and in human DMD myoblasts, which have a delayed differ-
entiation phenotype (18, 26, 44), further supports the notion that
lnc-31 inversely correlates with the ability of myogenic cells to
progress into the differentiation program.

Taken together, these data show that lnc-31 is able, indepen-
dently from miR-31, to control the differentiation commitment of
precursor myoblasts and indicate that its function is conserved in
evolution despite the poor sequence conservation seen with the
human counterpart.
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