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Arabidopsis thaliana is an important model species for
studies of plant gene functions. Research on Arabidopsis
has resulted in the generation of high-quality genome se-
quences, annotations and related post-genomic studies. The
amount of annotation, such as gene-coding regions and
structures, is steadily growing in the field of plant research.
In contrast to the genomics resource of animals and micro-
organisms, there are still some difficulties with characteriza-
tion of some gene functions in plant genomics studies. The
acquisition of information on protein structure can help
elucidate the corresponding gene function because proteins
encoded in the genome possess highly specific structures
and functions. In this study, we calculated multiple physico-
chemical and secondary structural parameters of protein
sequences, including length, hydrophobicity, the amount
of secondary structure, the number of intrinsically dis-
ordered regions (IDRs) and the predicted presence of trans-
membrane helices and signal peptides, using a total of
208,333 protein sequences from the genomes of six repre-
sentative plant species, Arabidopsis thaliana, Glycine max
(soybean), Populus trichocarpa (poplar), Oryza sativa
(rice), Physcomitrella patens (moss) and Cyanidioschyzon
merolae (alga). Using the PASS tool and the Rosetta Stone
method, we annotated the presence of novel functional re-
gions in 1,732 protein sequences that included unannotated
sequences from the Arabidopsis and rice proteomes. These
results were organized into the Plant Protein Annotation
Suite database (Plant-PrAS), which can be freely accessed
online at http://plant-pras.riken.jp/.

Keywords: Database � Gene function � Physicochemical
property � Plant protein � Protein property.

Abbreviations: IDR, intrinsically disordered region; GRAVY,
grand average of hydrophobicity; MSU Rice, Michigan State
University Rice Genome Annotation Project; Plant-PrAS,
Plant Protein Annotation Suite database; RAP-DB, the Rice
Annotation Project database; TAIR, The Arabidopsis
Information Resource.

Introduction

The flowering plant Arabidopsis has a small genome and a short
life cycle. Therefore, it is considered an important model plant.

After the whole-genome sequence of Arabidopsis was pub-
lished in 2000 (Arabidopsis Genome Initiative 2000), the infor-
mation related to Arabidopsis research was organized into The
Arabidopsis Information Resource (TAIR; http://arabidopsis.
org/), comprising various types of data such as DNA and seed
stocks, literature citations, gene functions and protein struc-
tures (Lamesch et al. 2012). Nevertheless, one-third of all the
proteins of Arabidopsis still lack functional annotations in
terms of biological roles (Kourmpetis et al. 2011, Li et al.
2012) in spite of the extensive experimental and computational
studies undertaken by many researchers. Similarly, the whole-
genome sequencing of rice, one of the most important model
crop plants, was recently completed (International Rice
Genome Sequencing Project 2005, Yu et al. 2002).
Subsequently, all the functional annotations for proteins and
non-coding RNAs (ncRNAs) were manually curated (Rice
Annotation Project 2007). The genome and the functional
gene annotations of rice have been updated in the Michigan
State University Rice Genome Annotation Project database
(MSU Rice; http://rice.plantbiology.msu.edu/) (Kawahara et al.
2013) and in the Rice Annotation Project database (RAP-DB;
http://rapdb.dna.affrc.go.jp/) (Sakai et al. 2013). Those annota-
tions, however, also include information on genes with insuffi-
cient experimental evidence. Thus, Arabidopsis thaliana and
rice, two well-studied plant species, still harbor unannotated
genes.

In order to improve functional annotation of genes in plants,
various initiatives have been undertaken, such as inclusion of an
experimental method that uses cross-species expressed se-
quence tag (EST) information (Chen et al. 2007), integration
of plant genomic information (Asamizu et al. 2014), integration
of Arabidopsis transcriptomic information (Obayashi et al.
2014), utilization of transcriptomic and metabolic profiles
among plant tissues (Sakurai et al. 2013), integrative analysis
of plant hormone accumulation and gene expression among
rice tissues (Kudo et al. 2013), inclusion of the phenotypic in-
formation on mutant Arabidopsis lines (Sakurai et al. 2011,
Myouga et al. 2013, Akiyama et al. 2014), inclusion of experi-
mental and computational methods using gene expression data
and experimentally derived (or predicted) protein–protein
interactions (Kourmpetis et al. 2011), and inclusion of similarity
clustering among protein sequences in the SALAD database
(http://salad.dna.affrc.go.jp/salad/) (Mihara et al. 2010).
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To improve the annotations further, we attempted to utilize
the proteome information. In this study, we adopted a new
method, which we use to study predicted secondary structures
and functions of proteins to make plant gene annotations
easier to understand. Because proteins possess specific struc-
tures and functions, obtaining this information helps us to elu-
cidate the corresponding gene functions. Here, we report
analyses of multiple physicochemical and secondary structural
parameters of whole-protein sequences obtained from repre-
sentative data sets of six plant species, A. thaliana, Glycine max
(soybean), Populus trichocarpa (poplar), Oryza sativa (rice),
Physcomitrella patens (moss) and Cyanidioschyzon merolae
(alga). The genome sequences of these six species have been
completely determined previously. We propose new annota-
tions for the predicted functional regions corresponding to the
unannotated genes of Arabidopsis and rice. We also developed
the Plant-PrAS (Plant Protein Annotation Suite) database,
which includes the annotations generated in this study.

Results and Discussion

Protein sequence sets

We prepared non-redundant sequence sets from the whole-
protein sequences, using the procedure that was described in
our previous study (Kurotani et al. 2014). Protein sequences
with length ranging from 50 to 2,000 amino acid residues
were extracted from the databases for analysis in this study.
Redundant data in these protein sequences were removed
using the OrthoMCL software (Chen et al. 2006). The final fil-
tered proteomes contained 26,326, 34,972, 35,791, 40,087,
35,908, 30,654 and 4,595 non-redundant protein sequences cor-
responding to Arabidopsis, soybean, poplar, MSU Rice, RAP-DB
(rice), moss and algae, respectively. In addition, 20,572 and 6,216
non-redundant protein sequences of the mouse and yeast, re-
spectively, were also prepared as a reference (mammals and
fungi).

Secondary structural properties of proteins

Transmembrane helices, domain linkers and signal
peptides. We calculated the number of transmembrane heli-
ces, domain linkers and signal peptides in the protein sequences
using the TMHMM (Krogh et al. 2001), DROP (Ebina et al. 2011)
and SignalP (Petersen et al. 2011) software packages. For ex-
ample, transmembrane helices in proteins play an important
role in the transport of various substances across biological
membranes, and signal peptides are present either in secreted
proteins or in transmembrane proteins. Predicting the numbers
of transmembrane helices, domain linkers and signal peptides
in a protein sequence does not lead to the prediction of protein
function directly but does elucidate the corresponding intra-
molecular interactions. The results obtained using the above-
mentioned analytical tools suggested that P. patens and C.
merolae possess a smaller number of transmembrane helices,
domain linkers and signal peptides than do the other plant
species examined (Supplementary Table S1). We can specu-
late that the physiology of higher order plants (vascular plants)

involves a variety of functions that require the presence of a
greater number of transmembrane helices, domain linkers and
signal peptides compared with lower order plants.

Intrinsically disordered regions (IDRs) and post-translational
modifications. Recently, it was reported that the number of
IDRs in proteins is higher among the monocots compared with
other types of plants (Kurotani et al. 2014). In our processed
data sets, the IDR content of the monocot rice calculated using
the RONN software (Yang et al. 2005) was higher than that of
the other five plant species, in agreement with our recent study
(Kurotani et al. 2014). Moreover, in angiosperms, the proteins
showing high IDR content generally show higher reactivity in
these regions (e.g. post-translational modifications such as
phosphorylation and O-glycosylation) (Iakoucheva et al. 2004,
Gao and Xu 2012, Yao et al. 2012). The IDRs are considered
vulnerable to an attack by a reactive molecule owing to their
high flexibility and easy accessibility. The frequencies of N-gly-
cosylation sites in Arabidopsis, soybean and poplar (all dicots)
were higher than those in the monocot rice (Supplementary
Table S1). On the other hand, the frequency of O-glycosylation
in the monocot rice was higher than that in the dicot species
(Supplementary Table S1). The reason is that O-glycosylation
occurs preferably in IDRs as a non-conservation property
involved in functional diversity and structural stability
(Nishikawa et al. 2010), whereas N-glycosylation does not
strongly correlate with IDR content; this is because N-glycosyla-
tion is known to occur co-translationally before a protein is fully
folded (Petrescu et al. 2004, Kurotani et al. 2014). Moreover, a
higher IDR content results in unstable protein structures and
problems with crystallization (Oldfield et al. 2013). Accordingly,
we observed that rice proteins, as a whole, tend to show higher
susceptibility to phosphorylation and O-glycosylation but fail to
crystallize during three-dimensional structural analysis owing to
the presence of a greater number of IDRs compared with
Arabidopsis, soybean and poplar.

Functional regions. In order to obtain useful information on
the functional regions in the protein sequence data sets, Plant-
PrAS prepares the results by means of the PASS tool, which
identifies highly conserved sequence regions using existing pro-
tein sequence sets (Kuroda et al. 2000), and by means of the
Rosetta Stone method, which identifies the regions likely to be
involved in protein–protein interactions, using a comparative
genomic approach (Enright et al. 1999, Marcotte 1999). ‘Rosetta
Stone composites’ are paired regions in a protein sequence, and
‘Rosetta Stone components’ are the elements of the Rosetta
Stone composites (Enright et al. 1999). Plant-PrAS provides the
results on both the Rosetta Stone composites and components
to help find functional regions. As a result of the calculations on
the six plants species, we obtained 32,158 protein sequence hits
with the PASS tool, 19,627 with the Rosetta stone composites
and 13,428 with the Rosetta Stone components (Supplemen-
tary Table S2). In addition, Plant-PrAS can combine and
provide the results of the PASS and Rosetta Stone
methods to improve the reliability of the functional region
annotations. Finally, we identified functional regions in 52,049
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non-overlapping protein sequence hits by means of PASS and
Rosetta Stone composites/components from the six plant
species.

Detection of novel functional regions in the unannotated protein
sequences of Arabidopsis and rice. We extracted the unanno-
tated protein sequences of Arabidopsis and rice from the an-
notation information file, which contained 5,180 sequences for
Arabidopsis, 15,322 for MSU Rice and 14,716 for RAP-DB (see
the Materials and Methods and Supplementary Table S3).
Subsequently, we identified candidate protein sequences,
including the novel functional regions in the unannotated se-
quences in Arabidopsis and rice, by using PASS and Rosetta
Stone composite/component methods and the Pfam database
(Finn et al. 2014). As a result, we assigned 2,470 proteins to
Pfam. For those proteins not assigned to Pfam, we found novel
functional regions in 523 proteins (PASS), in 1,008 proteins
(Rosetta Stone composites) and in 700 proteins (Rosetta
Stone components; Table 1). Finally, we annotated 1,732
non-overlapping proteins from the unannotated sequences in
Arabidopsis and rice using the methods for detection of func-
tional regions. With regard to the above analyses using the PASS
tool and the Rosetta Stone methods, we applied this tool and
the methods to UniProt-plant (UniProt Consortium 2014),
which is a collection of plant protein sequences that includes
abundant as well as unknown functional protein sequences.
The above results have the possibility that novel functional
regions are identified on the information on unannotated pro-
teins from this study.

The search interface of Plant-PrAS

We developed a publicly accessible web-based database, Plant-
PrAS (http://plant-pras.riken.jp/), which currently stores
208,333 protein sequence records derived from genome-wide
analysis of six major plant species (A. thaliana, soybean, poplar,
rice, P. patens and C. merolae) and 26,788 protein sequence
records derived from the two reference species (the mouse
and yeast). Each protein sequence is annotated with informa-
tion on the calculated protein properties and classified physi-
cochemical properties [length, percentage of charged amino
acids, percentage of non-polar amino acids, percentage of
acidic amino acids, percentage of basic amino acids, percentage

low complexity, the grand average of hydrophobicity (GRAVY)
and the pI], and protein secondary structural properties
[percentage solvent accessibility, percentage of b-sheets, per-
centage of IDRs, and the presence of a signal peptide(s), trans-
membrane helices, S–S bonds and domain linkers]; functional
annotations against the eukaryotic orthologous groups (KOG)
of Clusters of Orthologous Groups of proteins (COGs) (Tatusov
et al. 2000, Tatusov et al. 2003), Protein Data Bank (PDB)
(Berman et al. 2000, Berman et al. 2013), UniProt-SwissProt
and UniProt-plant; functional regions detected using the
PASS tool and Rosetta Stone methods; and other properties
such as protein solubility, subcellular localization, the number
of N/O-glycosylation sites and the number of ubiquitination
sites. Plant-PrAS offers powerful search features and statistical
information on various calculations. An entire data set can be
downloaded as a file. The database has three types of search
functions: ‘Property Search’, ‘Keyword Search’ and ‘ID Search’.

Property Search. Plant-PrAS allows users easily to combine
search results using a Property Search, designed for obtaining
abundant proteomic information all at once. The Property
Search can extract data from multiple species in our data set
and from multiple protein sequence properties such as length,
percentage of charged amino acids and GRAVY; from protein
structural properties such as S–S bonds, transmembrane helices
and percentage IDRs; from protein annotation data such as the
information on Pfam, UniProt and the Enzyme Commission
(EC) number; from protein modification/localization data
such as O/N-glycosylation and subcellular localization; and
from functionally conserved regions and interaction regions
(Fig. 1A). On this page, for instance, a user can select an anno-
tated or unannotated sequence from Arabidopsis and rice.
Combined selection of the unannotated sequences and the
calculation tools is available, helping to find a novel annotation
corresponding to the unannotated sequences. For example,
when a user performs a search by checking the options ‘unan-
notated sequences’, ‘Rosetta Stone composite hit UniProt-
plant’ and ‘Pfam not-hit/unknown’ for Arabidopsis, MSU Rice
and RAP-DB, the results show the presence of 421, 280 and 307
candidate protein sequences, respectively, including those cor-
responding to a novel functional region (Table 1). On the
Results page of the ‘Property Search’, users can browse through

Table 1 Detection of novel functional regions in the unannotated protein sequences of Arabidopsis and rice by means
of Plant-PrAS (Plant Protein Annotation Suite database)

Plant species Unannotated sequences Pfam(+)a Pfam(–)

PASS(+)b Rosetta Stone

Composite(+)c Component(+)d

Arabidopsis 5,180 312 111 421 63

MSU Rice 15,322 640 111 280 225

RAP-DB (rice) 14,716 1,518 301 307 412

Total 35,218 2,470 523 1,008 700
a The number of protein hits in the Pfam database.
b The number of proteins whose functional regions were detected by PASS but not by Pfam [Pfam(–)].
c The number of proteins whose functional regions were detected as Rosetta Stone composites with Pfam(–).
d The number of proteins whose functional regions were detected as Rosetta Stone components with Pfam(–).
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the protein features by the averages of the extracted sequence
properties in the statistics table (Fig. 2A). The search results can
also be downloaded as a text file. Plant-PrAS houses informa-
tion on charged amino acids, IDRs and solvent accessibility.
Thus, the Property Search feature can be utilized for plant
proteomic analyses.

Keyword Search. This option can be used to find protein se-
quences in our data sets, by using any keywords containing
three characters corresponding to the protein descriptions
from Pfam, PDB, KOG and UniProt (Fig. 1B). This feature

allows the user to select the AND/OR function during a mul-
tiple keyword search. The extracted records are listed on the
results page with short descriptions (Fig. 2B). The user can click
on an ‘ID’ to obtain detailed information on a protein.

ID Search. Plant-PrAS allows a user to extract general IDs
supported by the public databases pertaining to our data
sets, by using the ID Search function (Fig. 1C). The extracted
records are listed on the Results page with short descriptions
(Fig. 2B). The user can click on an ‘ID’ to obtain detailed infor-
mation on a protein.

Fig. 1 Search interfaces of Plant-PrAS. A user can search for multiple protein sequence properties on the ‘Property Search’ page (A). The user can
also search for objective records using the ‘Keyword Search’ function (B). ‘ID Search’ makes it possible to search for objective records by IDs from
public databases (C).
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Fig. 2 Examples of search results in Plant-PrAS. (A) The results of Property Search. (B) The results of Keyword or ID Search.
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Annotation details of proteins in Plant-PrAS. The Annotation
Details page of Plant-PrAS displays basic information on each
protein, such as protein sequence and similar proteins in the
same species and among other species (Fig. 3A). Similarly, the
page contains information on physical and sequence properties
(Fig. 3B), structural properties (Fig. 3C), detected functional
regions (Fig. 3D), functional annotation (Fig. 3E) and modifi-
cations and subcellular localization (Fig. 3F). To facilitate evalu-
ation of various protein properties, the page shows the
summary with average, median and percentile values in relation
to proteins from the same species as a background distribution
(Fig. 3G).

Exploration of the properties of unannotated proteins. We
wanted to determine whether a data set obtained using
Plant-PrAS provides new insights into the functions of

unannotated proteins. Here, we present an example of deduc-
tion of such a function.

Generally, the propensity for solubility or cell-free synthesis
of a protein in Escherichia coli can be predicted by analyzing
various properties of the protein sequence (Luan et al. 2004,
Tartaglia et al. 2009, Kurotani et al. 2010, Agostini et al. 2012).
The results produced by the protein solubility tool showed that
the percentage of soluble proteins was higher among the unan-
notated proteins than among the annotated proteins (P< 0.05
in the t-test of differences between the annotated and unan-
notated proteins; Table 2). This result shows that unannotated
proteins may contribute to the success of protein solubilization
experiments. Moreover, the functional regions extracted using
the Rosetta Stone method have the potential to interact with
each partner region. Therefore, functional region candidates of
this property identified by Plant-PrAS may aid in the discovery

Fig. 3 Typical examples of the annotation details of proteins in Plant-PrAS. (A) Basic information on a protein in Plant-PrAS. (B) Physical and
sequence properties. (C) Structural properties. (D) The detected functional regions. (E) Functional annotation. (F) Modifications and subcellular
localization. (G) Summary with average, median and percentile values in relation to proteins from the same species (as a background
distribution).
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of novel annotated proteins that contain the novel functional
regions.

Materials and Methods

Protein sequence resources

We analyzed the whole-protein sequences derived from the genome sequences

of six major model plant species, namely Brassicaceae (Arabidopsis)

(Arabidopsis Genome Initiative 2000), Fabaceae (soybean) (Schmutz et al.

2010), Salicaceae (poplar) (Tuskan et al. 2006), Poaceae (rice) (Yu et al. 2002,

International Rice Genome Sequencing Project 2005), Funariaceae (P. patens)

(Rensing et al. 2008) and (C. merolae) (Matsuzaki et al. 2004). The Arabidopsis

proteomic sequence set was retrieved from TAIR (Lamesch et al. 2012). The rice

sequences were retrieved from RAP-DB (Sakai et al. 2013) and from the MSU

Rice Genome Annotation Project website (Ouyang et al. 2007, Kawahara et al.

2013). Cyanidioschyzon merolae sequences were retrieved from the C. merolae

Genome Project website. The other plant sequences were retrieved from

Phytozome (Goodstein et al. 2012). In addition, mouse (Mouse Genome

Sequencing Consortium 2002) and yeast (Mewes et al. 2002) sequences were

retrieved from the National Center for Biotechnology Information (NCBI)

(ftp://ftp.ncbi.nih.gov/genomes/M_musculus/protein/) and from Munich

Information Center for Protein Sequences (MIPS) (ftp://ftpmips.gsf.de/fungi/

yeast/), respectively. They were used as reference proteome sets. Subsequently,

we prepared non-redundant proteome sequence sets of the target organisms

using the OrthoMCL software (Chen et al. 2006) with the runtime options

pi_cutoff = 90, pmatch_cutoff = 90 and pv_cutoff = 1e-30.

Analysis of a protein sequence

Physicochemical properties. The percentage of polar, charged, acidic

and basic amino acids as well as the isoelectric point were calculated using the

ProteoMix software (Chikayama et al. 2004). The GRAVY index was calculated

using the GRAVY algorithm (Kyte and Doolittle 1982).

Secondary structural properties. For prediction of these properties,

we used the following software tools: SignalP (Petersen et al. 2011) to detect the

presence of signal peptides, TMHMM (Krogh et al. 2001) to identify transmem-

brane helix domains, DROP (Ebina et al. 2011) to find interdomain linkers,

DIpro (Cheng et al. 2006) to find S–S bonds, SSpro (Cheng et al. 2005) to

identify secondary structures, ACCpro (Cheng et al. 2005) to analyze solvent

accessibility and RONN (Yang et al. 2005) to find IDRs.

Functional and structural annotations. We used all the protein se-

quences for searches in KOG (Tatusov et al. 2000, Tatusov et al. 2003) and in

UniProt-SwissProt/UniProt-plant (UniProt Consortium 2014) using BLASTP

with the runtime options ‘cutoff E-value’ 1e-10 or 1e-5, respectively.

Similarly, we used all protein sequences for searches in the PDB (Berman

et al. 2000, Berman et al. 2013) using BLASTP with >50% identity. The Pfam

annotations (Finn et al. 2014) and the EC number (Bairoch 2000) were obtained

using the InterProScan software (Hunter et al. 2012).

Other properties. To analyze other properties, we used the following

software packages: SOLpro (Magnan et al. 2009) for protein solubility,

TargetP (Emanuelsson et al. 2000) and WoLF PSORT (Horton et al. 2007) for

subcellular localization, NetNglyc (R. Gupta et al. unpublished) for N-glycosyla-

tion, the Gomond’s algorithm (Gomord et al. 2010) for O-glycosylation, and

UbPred (Radivojac et al. 2010) for ubiquitination.

Detection of the functional regions. This procedure was performed on

protein sequences by means of the proteome sequence set of the UniProt-plant

database and the PASS tool (Kuroda et al. 2000), with the runtime options

‘cutoff E-value’�1e-7 and ‘cutoff homolog’�100, and the Rosetta Stone method

(Enright et al. 1999, Marcotte 1999), with the cutoff E-value �1e-5, identities

�35%, component length�50 amino acids and a component range from 10 to

30 amino acids, with runtime options similar to those described previously

(Uversky 2002, Chia and Kolatkar 2004, Enault et al. 2005, Wallner and

Elofsson 2005, Nayeem et al. 2006).

Extraction of the unannotated sequences in Arabidopsis and
rice. The unannotated sequences of Arabidopsis and rice (MSU Rice and

RAP-DB) were extracted from whole-protein sequences using the description

terms shown in Supplementary Table S3.

Availability and implementation of the system

Plant-PrAS was implemented in a web application framework, MENTA, with

MySQL as a database engine, and was tested in the following web browsers:

Internet Explorer 11, Chrome 36 and Firefox 31.

Supplementary data

Supplementary data are available at PCP online.
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