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Proteins comprising the core of the eukaryotic cellular machinery are often highly conserved, presumably due
to selective constraints maintaining important structural features. We have developed statistical procedures to
decompose these constraints into distinct categories and to pinpoint critical structural features within each
category. When applied to P-loop GTPases, this revealed within Rab, Rho, Ras, and Ran a canonical network of
molecular interactions centered on bound nucleotide. This network presumably performs a crucial structural
and/or mechanistic role considering that it has persisted for more than a billion years after the divergence of
these families. We call these ‘FY-pivot’ GTPases after their most distinguishing feature, a phenylalanine or
tyrosine that functions as a pivot within this network. Specific families deviate somewhat from canonical features
in interesting ways, presumably reflecting their functional specialization during evolution. We illustrate this here
for Ran GTPases, within which two highly conserved histidines, His30 and His139, strikingly diverge from their
canonical counterparts. These, along with other residues specifically conserved in Ran, such as Tyr98, Lys99,
and Phe138, appear to work in conjunction with FY-pivot canonical residues to facilitate alternative
conformations in which these histidines are strategically positioned to couple Ran’s basic patch and C-terminal
switch to nucleotide exchange and effector binding. Other core components of the cellular machinery are
likewise amenable to this approach, which we term Contrast Hierarchical Alignment and Interaction Network
(CHAIN) analysis.

[Supplemental material is available online at www.genome.org.]

Certain proteins constitute the core of the cellular machinery
inasmuch as they mediate essential processes, such as DNA
replication and repair, transcription, translation, transport,
and basic metabolism. In eukaryotes, such ‘core proteins’ also
include the motor proteins kinesin and myosin, structural
proteins, such as histones, actin, and tubulin, and regulatory
and signaling factors, such as certain protein kinases and Ras-
like GTPases. Because of their critical cellular roles, these pro-
teins are conserved across major eukaryotic taxa and, in some
cases, across all divisions of life.

Our knowledge of the structure, function, and mecha-
nism of some core proteins seems quite extensive. Consider,
for example, signaling P-loop GTPases related to Ran, a com-
ponent of the nuclear transport machinery examined here
in detail. There are currently dozens of structures of these
GTPases (Vetter and Wittinghofer 2001), either alone or in
complex with various regulators and effectors, and thousands
of related sequences available. Moreover, published experi-
mental studies on these proteins number in the tens of thou-
sands. Our knowledge of certain other eukaryotic core pro-
teins is similarly extensive.

Nevertheless, there is reason to believe that we may have
barely scratched the surface in understanding these proteins.

In particular, strong functional constraints must be preserv-
ing the high degree of sequence conservation seen across ma-
jor taxonomic categories for many core protein families and
subfamilies. This is seen, for instance, in the Ran alignment of
Figure 1A. Although some of these conserved residues are in-
volved in substrate binding and catalysis, many others have
no known function—yet their persistence over 1–2 billion
years of evolution implies that they are functionally quite
important. Indeed, when even minor side-chain modifica-
tions, such as attachment or removal of an �OH or �CH3
group, are consistently eliminated by natural selection, such
residues are likely to establish critical interactions similar to
those established by key catalytic residues. If so, then the pat-
terns of conservation present in these and related proteins
may contain implicit information regarding important but
unknown structural mechanisms.

To access this information, we devised a statistically
based approach called CHAIN (Contrast Hierarchical Align-
ment and Interaction Network) analysis, which decomposes
the sequence constraints associated with conserved patterns
in a multiple alignment into distinct categories, while pin-
pointing critical features within each category (as, e.g., in
Fig.1B–D). These categories presumably correspond to a series
of evolutionary adaptations leading to functional specializa-
tion and divergence of related sequences into superfamilies,
superfamilies into families, and so forth (Fig. 2A). We applied
this approach to various protein families within the large and

3Corresponding author.
E-MAIL neuwald@cshl.org; FAX: 516-367-8461.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.862303.

Methods

13:673–692 ©2003 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/03 $5.00; www.genome.org Genome Research 673
www.genome.org



Fi
g
u
re

1
(C
on
tin
ue
d
on

ne
xt

pa
ge
)



Fi
g
u
re

1
Ra
n
fa
m
ily

al
ig
nm

en
ts
ge
ne
ra
te
d
by

C
H
A
IN

an
al
ys
is
pr
oc
ed
ur
es
.(

A)
C
on
ve
nt
io
na
lm

ul
tip
le
al
ig
nm

en
t.
Th
e

le
ft

m
os

t
co
lu
m
n
sp
ec
ifi
es

ea
ch

se
qu
en
ce
’s
ph
yl
um

;t
he
se

ar
e
co
lo
re
d
by

m
aj
or

eu
ka
ry
ot
ic
ta
xa

as
fo
llo
w
s:
m
et
az
oa
ns
,
re
d;

fu
ng
i,
da
rk
ye
llo
w
;
pl
an
ts
,
gr
ee
n;

pr
ot
oz
oa
ns
,
cy
an
.
Th
e

to
p
se
qu
en
ce

is
th
e
qu
er
y.
Th
e
N
C
BI
se
qu
en
ce

id
en
tif
ie
rs
ar
e:
54
53
55
5,

17
55
39
76
,
31
13
90
5,

63
23
32
4,

11
06
74
97
,
17
10
00
7,

13
81
22
90
,
48
81
27
1,

58
57
82
,
11
72
84
0,

15
69
17
64
,
60
69
85
,
85
93
48
7,

14
08
93
87
,
58
57
80
,
an
d
14
58
10
93
.
(B
–D

)
C
on
tr
as
t
hi
er
ar
ch
ic
al
al
ig
nm

en
t.
C
H
A
IN

an
al
ys
is
ap
pl
ie
s
th
re
e
di
ffe
re
nt

se
qu
en
ce

hi
gh
lig
ht
in
g

sc
he
m
es
to

th
e
Ra
n
fa
m
ily

al
ig
nm

en
t
in

A
to

re
ve
al
th
e
se
le
ct
iv
e
co
ns
tr
ai
nt
s
m
os
t
ch
ar
ac
te
ris
tic

of
ea
ch

of
th
re
e
hi
er
ar
ch
ic
al
ca
te
go
rie
s,
w
hi
ch

he
re
co
rr
es
po
nd

to
P-
lo
op

G
TP
as
es
in

B;
FY
-p
iv
ot

G
TP
as
es
in

C
;a
nd

th
e

Ra
n
fa
m
ily

in
D
.O

rg
an
is
m
de
sc
rip
tio
ns

(le
ft

m
os

t
co
lu
m
n)

ar
e
co
lo
re
d
by

ca
te
go
ry
as
sp
ec
ifi
ed

in
Fi
gu
re
2;
se
qu
en
ce
s
ob
ta
in
ed

fr
om

ES
Ts

ar
e
in
di
ca
te
d.
N
ot
e
th
at
fo
r
th
e

Ba
si

di
om

yc
ot

a
pr
ot
ei
n,
w
hi
ch

w
as
pr
ed
ic
te
d

fr
om

an
ES
T,
th
e
re
pl
ac
em

en
t
of
hi
st
id
in
e
(H
)
at
po
si
tio
n
30

by
as
pa
rt
at
e
(D
)
is
lik
el
y
du
e
to
a
se
qu
en
ci
ng

er
ro
r.
C
he
m
ic
al
ly
si
m
ila
r
hi
gh
lig
ht
ed

re
si
du
es
ar
e
co
lo
re
d
si
m
ila
rly
. H

is
to
gr
am

s
ab
ov
e
th
e
al
ig
nm

en
ts
di
sp
la
y

th
e
re
la
tiv
e
st
re
ng
th
of
th
e
in
fe
rr
ed

se
le
ct
iv
e
co
ns
tr
ai
nt
ac
tin
g
at
ea
ch

po
si
tio
n
w
ith
in
th
at
ca
te
go
ry
(q
ua
si
-lo
ga
rit
hm

ic
sc
al
in
g
is
us
ed
;s
ee

M
et
ho
ds
).
Th
is
an
d
ot
he
ra
sp
ec
ts
of
th
is
re
pr
es
en
ta
tio
na
ls
ch
em

e
ar
e
ex
pl
ai
ne
d

in
Fi
gu
re

2.
D
ot
s
be
lo
w
th
e
hi
st
og
ra
m
s
(a
nd

di
re
ct
ly
ab
ov
e
th
e
al
ig
nm

en
ts
)
in
di
ca
te

th
os
e
re
si
du
es

sp
ec
ifi
ca
lly

as
si
gn
ed

to
ea
ch

ca
te
go
ry
.
G
ra
y
do
ts
in

B
an
d

C
in
di
ca
te

po
si
tio
ns

fo
r
w
hi
ch

Ra
n
de
vi
at
es

fr
om

th
e

ca
no
ni
ca
lr
es
id
ue
s
fo
r
th
at
ca
te
go
ry
.N

ot
e
th
at
th
e
co
nv
en
tio
na
la
lig
nm

en
t
in

A
he
lp
s
id
en
tif
y
re
si
du
es
as
so
ci
at
ed

w
ith

in
te
rm

ed
ia
te
ca
te
go
rie
s,
w
hi
ch

co
rr
es
po
nd

to
co
ns
er
ve
d
po
si
tio
ns

in
Ra
n
th
at
ar
e
in
co
ns
is
te
nt
ly

co
ns
er
ve
d
w
ith
in
th
e
th
re
e
ca
te
go
rie
s
of
th
is
hi
er
ar
ch
y.
A
fe
w
re
si
du
e
po
si
tio
ns

(s
uc
h
as

T4
2R

a
n
)
ar
e
m
is
cl
as
si
fie
d
in
th
is
an
al
ys
is
du
e
to

al
ig
nm

en
t
er
ro
rs
;t
he
se

w
er
e
de
te
ct
ed

an
d
ad
dr
es
se
d
in
ou
r
an
al
ys
is
th
ro
ug
h

st
ru
ct
ur
al
st
ud
ie
s
an
d
C
H
A
IN

an
al
ys
is
of

re
la
te
d
G
TP
as
es
.



diverse class of P-loop GTPases (Hall 2000; Leipe et al. 2002).
This revealed that the Ras, Rab, Rho, and Ran families share
sequence constraints (Fig. 3B) corresponding to a network of
generally conserved structural interactions (displayed in Fig. 4

and described below). Furthermore, detailed analysis of Ran
GTPases, within the context of these canonical features, leads
to striking observations relevant to Ran’s C-terminal, basic
patch, and nucleotide exchange mechanisms.

Figure 2 CHAIN analysis representational schemes. The examples shown in A–D correspond to the hierarchical alignment in Figure 1. (A) Venn
diagram representing hierarchical relationships between aligned sequence sets. The dotted oval corresponds to a hypothetical intermediate
category consisting of conserved residues in Ran that fall outside the categories of this particular hierarchy. (B) Notation used within hierarchical
alignments. Position 139 of Ran is shown. The main and superfamily sets, which contain too many sequences to display directly, are represented
in the alignment as position-specific conserved patterns. (The total number of sequences for these two categories is shown in parentheses.) The
corresponding residue frequencies (‘res_freq’) are given in integer tenths below conserved residues. For example, a ‘5’ in integer tenths indicates
that the corresponding residue directly above it occurs in 50%–60% of the (weighted) sequences. Insertion and deletion frequencies are similarly
given in integer tenths (black; range 10%–100%) or hundredths (gray; range 1%–9%) as indicated. Ran family aligned residues are displayed
directly. Histogram bar heights are approximately logarithmically proportional to the measure of selective constraint (see Methods), as defined by
the following urn model. (C) Urn model for measuring the selective constraint acting on a specific position. The residues observed in the main set
at this position are modeled as distinctly colored balls in an urn. Some of the colors are similar (representing biochemically similar amino acids).
The selective constraint is then defined as the difficulty of drawing by chance at least as many of the same- or similarly-colored balls from the urn
as are observed in the subalignments (in this case, alanine for the FY-pivot superfamily or histidine for the Ran family). Note that our analysis of
the Ran family uses the main set as the ‘superalignment’ urn (see Methods); alternatively, the FY-pivot GTPases may also be used as the
superalignment urn, though the sparser data set would yield less accurate background frequency estimates. Note that the alignments in Figures
1A and 1B measure sequence constraints using a standard background model (see Methods). (D) Color scheme used for residue side-chains in
Figures 4–9. (E) Color scheme for structural regions described in the text and figures. The structure of Sec4p (pdb code: 1G17) is shown in complex
with a GTP analog (cyan) and magnesium (dark green).
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RESULTS AND DISCUSSION

Identification of a Distinct Class of P-loop GTPases
Our analysis of P-loop GTPases involved the construction of
contrast hierarchical alignments (described in Methods) for
about 35 distinct families and subfamilies, many of which
correspond to core components of the translational and eu-
karyotic signaling machinery (Leipe et al. 2002). Among the
various categories of GTPases analyzed in this way, we focus
here on one category primarily consisting of the Ras (Bar-Sagi

and Hall 2000; Crespo and Leon 2000), Rho (Bar-Sagi and Hall
2000; Symons and Settleman 2000), Rab (Pfeffer 2001; Sten-
mark and Olkkonen 2001; Tuvim et al. 2001), and Ran (Clarke
and Zhang 2001; Moore 2001) families, but also including a
few less characterized GTPases, such as Pike (Ye et al. 2000).
For these GTPases, we examined corresponding molecular in-
teraction networks (see Methods) within currently available
structures, of which there are around 70. This revealed that
the canonical residues distinguishing these from other GTPases
(Fig. 3B) correspond to a network of structural interac-

Figure 4 Sec4p as a structural prototype of FY-pivot GTPases. The structure of Sec4p is shown in complex with GDP (pdb code: 1G16). The
corresponding hierarchical alignment is given in Figure 3. Hydrogen bonds are depicted as dotted lines, and aromatic-aromatic and van der Waals
interactions as dot clouds. Dotted lines into clouds depict CH-� or NH-� interactions (Weiss et al. 2001). Color scheme: GDP (cyan); main-chain
traces and residue designations (colored by regions as indicated in Fig. 2E); residue side-chains and canonical glycine main-chains (color scheme
of Fig. 2D); oxygen, nitrogen, and hydrogen atoms establishing hydrogen bonds (red, blue, and white, respectively); hydrogen bonding carbons
(colored as their corresponding side-chains). Figures were generated using RasMol (Sayle and Milner-White 1995). (A) Canonical interactions
between the LV.D and NK.D regions. These include a perpendicular aromatic-aromatic interaction (F108-Y100), four CH-� interactions (F108-
Y100, G132-Y100, V142-F108, and I102-R140), and main-chain hydrogen bonds to two side-chains (T107 and R140). Y100 is the FY-pivot residue.
The inset highlights interactions between the LV.D and P-loop regions. (B) Canonical interactions within and between the NK.D and SA regions.
These include packing of a phenylalanine or tyrosine (F158) against two small residues (G147 and A151) in the helix following the NK.D loop, a
salt bridge (R140 and E160), and several main-chain hydrogen bonds. Residues within the LV.D region are shown for comparison with A. (C)
Canonical interactions between the SA and Switch I regions. Note that, unlike Ran (Figs. 7D, 8), there are no major structural differences between
the GDP and GTP-forms of Sec4p in these regions. Also shown is a previously noted (Hall 2000) canonical aromatic-aromatic interaction between
a phenylalanine (F45) and bound guanine. Residues homologous to R39 (mainly arginine, glutamine, or serine), though inconsistently conserved
at the sequence level, conserve hydrogen bonding interactions with the SA region.
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tions within and between six regions surrounding the nucleo-
tide-binding site (Fig. 2E). These regions include the classical
P loop, Switch I, and Switch II regions and three others, which
we term the ‘LV.D,’ ‘NK.D,’ and ‘SA’ regions after their char-
acteristic motifs (Fig. 3A; Valencia et al. 1991; Wittinghofer
1999; Hall 2000; Vetter andWittinghofer 2001). We call these
proteins the ‘FY-pivot’ GTPases after their most distinguishing
feature, a phenylalanine or tyrosine that resembles a pivot
near the center of this network (see below).

CHAIN analysis of these GTPases is robust. Using various
FY-pivot GTPases as the query, we consistently find this net-
work—though the characteristic residues highlighted within
distinct hierarchical alignments can vary somewhat, mainly
due to occasional misaligned regions. Close examination of
these alignments and of the corresponding structures, how-
ever, readily allowed us to detect and account for these dis-
crepancies. The canonical FY-pivot features found in this way
are best seen in the hierarchical alignment of Figure 3, which
was created using yeast Sec4p as the query and a structural
alignment of FY-pivot GTPases as the ‘query family’ (see
Methods).

We chose Sec4p as the query for this alignment because
it retains all or nearly all of the most characteristic FY-pivot
canonical features (as defined by the alignment in Fig. 3B)
whereas members of other families sometimes diverge from
these features in various ways. Divergent residues are often
invariant within the family in which they occur, suggesting
that they perform a family-specific function (this phenom-
enon is explored further for Ran below). Assuming that the
most recent common ancestor of these GTPases possessed all
of the canonical features, it would thus have more closely
resembled Sec4p than these other GTPases and may therefore
have functioned in vesicle transport prior to its duplication
and divergence into these various families. A high degree of
divergence is found in Pike GTPases, which nevertheless re-

tain many of the canonical FY-pivot features. Notably, our
analysis clearly places the Ras-like GTPases Arf and Sar outside
of this class.

FY-pivot GTPases function as binary molecular switches
that amplify and relay signals controlling various cellular
pathways (for review, see Hall 2000; Takai et al. 2001). They
are associated with regulators that modulate their on/off sta-
tus and with effectors that mediate their downstream effects
when in the ‘on’ or GTP-bound state (Hall 2000). Regulators
include guanine nucleotide exchange factors (GEFs), which
turn the switch on by exchanging bound GDP with GTP, and
GTPase-activating proteins (GAPs), which turn the switch off
by stimulating GTP hydrolysis. Effectors for Ran include Ran
binding proteins (RanBPs; Dingwall et al. 1995) and nuclear
transport receptors belonging to the importin-� family (Strom
and Weis 2001).

FY-Pivot Canonical Features
Figure 4 portrays the Rab-family GTPase Sec4p as a structural
prototype of FY-pivot GTPases with an emphasis on canonical
features relevant to our analysis of Ran below. It displays these
features from three perspectives (Fig. 4A–C) that are also used
for subsequent figures (Figs. 5–7, respectively) in order to fa-
cilitate comparison between families. For nearly all of these
canonical residues, no functional roles have previously been
proposed.

Figure 4A represents the canonical interactions between
the LV.D region and the NK.D and P-loop regions. These in-
teractions are well conserved within the Ras, Rho, and Ran
families (Fig. 5). Near the center of these interactions is the
most distinctive feature—the phenylalanine or tyrosine
(Y100Sec4 in Fig. 4A) immediately preceding the aspartate
(D101Sec4) of the ‘LV.D’ motif (Fig. 3A). We refer to this resi-
due as the FY-pivot because, within distinct structures and

Figure 5 Canonical interactions between the LV.D and NK.D regions within the Ras, Rho, and Ran families. The perspective is as shown in Figure
4A. Representations and coloring are as described in Figure 4. (A) Human Ras-GTP (pdb code: 1QRA). Note that a canonical tryptophan (W114Sec4)
that typically forms CH-� and NH-� hydrogen bonds with P-loop main-chain atoms is displaced by a tyrosine (Y96Ras; or, within other Ras proteins,
a phenylalanine), suggesting that this residue performs a Ras-specific function. (B) The Rho family human Rac1 GTPase in complex with a GTP
analog (pdb code: 1MH1). (C) Canine Ran-GDP (pdb code: 1BYU).

CHAIN Analysis of Ran GTPase
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conformational states, it consistently maintains two CH-� hy-
drogen bonds with neighboring canonical residues through
rotation or pivoting of its aromatic ring. The formation of
these CH-� bonds involves interaction of the � electron
clouds on either side of the FY-pivot aromatic ring with two
hydrogens: A C� hydrogen donated by a canonical phenylala-
nine or tyrosine residue (F108Sec4), which also forms a per-
pendicular aromatic-aromatic interaction with the FY-pivot,
and a C� hydrogen donated by a canonical glycine residue
(G132Sec4).

This glycine’s and the FY-pivot’s main-chains together
form a parallel � sheet (not shown), within which the glycine
occurs at a non-hydrogen bonded position. This type of CH-�
interaction is predicted to stabilize the �-stranded conforma-
tion of glycine (Merkel and Regan 1998)—an otherwise in-
trinsically destabilizing residue in � sheets. Because this gly-
cine immediately precedes the NK.D motif, its �-stranded
conformation may be important for proper positioning of
motif residues when they are bound to guanine and to the
main-chain of the P loop, which, in turn, directly binds
nucleotide phosphates. Conversely, disruption of this CH-�
interaction may destabilize nucleotide binding.

Two other FY-pivot canonical residues (W114Sec4 and
D28Sec4; Fig. 4A inset) indirectly link the LV.D region to the
GTP- or GDP-bound state of the protein via hydrogen bonds
to P-loop residues, the main-chain oxygens of which hydro-
gen bond to the P-loop lysine directly interacting with GTP or
GDP. Below we explore how these interactions may facilitate
Ran nucleotide exchange.

Figure 4B represents the canonical interactions between
the SA and NK.D regions. One of these consists of a salt bridge
between an arginine (R140Sec4) and a glutamate (E160Sec4)
that is well conserved in FY-pivot GTPases (Fig. 6)—though
sequence variability often obscures the canonical arginine
within multiple sequence alignments (Fig. 3B). Another ca-
nonical interaction involves two small residues (G147Sec4,
A151Sec4) that facilitate packing of the helix following the
NK.D motif against a canonical phenylalanine or tyrosine
(F158Sec4). Although these small residues are well conserved
within the Rab, Ras, and Rho families (Figs. 4B and 6A,B), Ran
strikingly diverges from these canonical residues (I136Ran and
H139Ran in Fig. 6C) in a manner that presumably reflects its
specific function, as we discuss further below.

Figure 4C represents three canonical interactions associ-
ated with the Switch I and SA regions: (1) an interaction be-
tween two aromatic side-chains (F40Sec4 and F173Sec4), (2) a
hydrogen bond between the backbone of the SA loop and a
weakly conserved residue (R39Sec4p) near the Switch I region,
and (3) a (well known) coordination between a phenylalanine
(F45Sec4) and bound guanine. Given their locations, these in-
teractions may help coordinate the binding or release of gua-
nine nucleotide with conformational changes in the Switch I
region.

Figure 7 shows the Figure 4C canonical interactions
within other FY-pivot GTPases. In about 12% of these
GTPases, a leucine residue (e.g., L23Ras in Fig. 7A) replaces the
canonical Switch I aromatic residue (F40Sec4). This common

Figure 6 Canonical interactions between the NK.D and SA regions
within the Ras, Rho, and Ran families. The perspective is as shown in
Figure 4B. Representations and coloring are as described in Figure 4.
(A) Human Ras-GTP (pdb code: 1QRA). (B) The Rho family human
Rac1 in complex with a GTP analog (pdb code: 1MH1). (C) Canine
Ran-GDP (pdb code: 1BYU).
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deviation may be viewed as a reversion back to a noncanoni-
cal state, as roughly a third of all P-loop GTPases contain
leucine at this position. In Ran, however, this canonical resi-
due is replaced by a histidine (H30Ran in Fig. 7D). CHAIN
analysis clearly reveals that this histidine, although aromatic,
is a highly unusual replacement at this position (as indicated
by the histogram in Fig. 1D). Indeed, among all P-loop
GTPases, histidine appears to be tolerated in Ran alone: Only
three out of over 5000 P-loop GTPases outside of the Ran
family contained histidine at this position, and these may be
due to single base sequencing errors. The possible role of this
histidine is discussed below.

Ran GTPases
Ran controls mitotic spindle assembly and nuclear envelope
formation and directs nuclear transport of proteins bound to
importin-� via the adaptor protein importin-�, which recog-
nizes classical nuclear localization signals (Clarke and Zhang
2001; Moore 2001). When a complex of importin-�/� and
cargo protein enters the nucleus, binding of Ran-GTP to im-
portin-� induces release of the cargo. Levels of Ran-GTP are

elevated in the nucleus due to chromatin-bound RCC1, the
Ran nucleotide exchange factor. When the Ran-GTP-
importin-� complex exits the nucleus, importin-� is released
via interaction of Ran with RanBP and Ran-GAP, which to-
gether activate GTP hydrolysis to generate Ran-GDP. Ran-
GDP is recycled back into the nucleus via a nuclear transport
factor.

Ran differs from other Ras-like GTPases in that it has a
long C-terminal extension consisting of a linker, an �-helix,
and an acidic tail (DEDDDL). The acidic tail stabilizes Ran’s
GDP-bound state and mediates interactions with RCC1, Ran-
GAP, and RanBP (Richards et al. 1995). In Ran-GDP, this C-
terminal extension packs up against the GTPase domain such
that the acidic tail is located near a basic patch region
(139HRKK142) of Ran. In other Ran complexes this C-terminal
extension often undergoes a dramatic conformational change
or ‘C-terminal switch.’

Ran’s Basic Patch and C-Terminal Switch
Our analysis points to H30Ran and H139 Ran as the two resi-
dues that most distinguish the Ran family from other P-loop

Figure 7 Canonical interactions between the SA and Switch I regions within the Ras, Rho, and Ran families. Perspective is as shown in Figure 4C.
Representations and coloring are as described in Figure 4. (A) Human Ras-GTP (pdb code: 1QRA). Note that at position 23 the canonical Phe or
Tyr is replaced by Leu, which is highly conserved in the Ras subfamily. (B) The Ras family Rap2a GTPase from human in complex with GTP (pdb
code: 2RAP). In the Rap2 subfamily, the canonical residue occurs at position 23. (C) The Rho family Rac1 GTPase from human (pdb code: 1MH1).
(D) Human Ran in complex with importin-� and a GTP analog (pdb code: 1IBR). Note that H30 of Ran is noncanonical and that the canonical
hydrogen bond between the previous residue and the SA region involves a N154 side-chain atom rather than a main-chain atom. These deviant
features appear to be important to Ran’s C-terminal switching mechanism (see Fig. 8).
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GTPases (see Fig. 1D) and links these residues to Ran’s basic
patch and C-terminal switching mechanisms. These residues,
though highly conserved in Ran, strikingly diverge from the
FY-pivot canonical residues at those positions.

H30Ran (Fig. 7D) corresponds to and diverges from the
canonical phenylalanine or tyrosine (F40Sec4 in Fig. 4C)
within the P-loop/Switch I region that establishes an aromatic
stacking interaction with a canonical phenylalanine
(F173Sec4) within the SA region. H30Ran establishes a similar
aromatic-aromatic interaction in those Ran complexes for
which the C-terminal extension dissociates from the GTPase
domain (Fig. 8A). In the GDP-bound form, however, this in-
teraction is disrupted, and instead H30Ran hydrogen bonds
with the backbone nitrogen of residue 33 (Fig. 8B), which is
within a region of Switch I (32–34Ran) that would otherwise
clash with the C-terminal linker (182–184Ran; Vetter et al.
1999a,b). This bond also serves as an N-cap (Presta and Rose
1988; Richardson and Richardson 1988) favoring formation
of a short �-helix involving residues 31–35, that—along with
other stabilizing interactions by Ran-conserved residues (Fig.
8B)—moves a canonical phenylalanine (F35Ran) out of coor-
dination with guanine. Moreover, upon formation of this
bond, nearby main-chain atoms and the sequence-adjacent
conserved arginine (R29Ran) are repositioned for hydrogen
bonding to the C-terminal linker (Fig. 8B inset). Thus, H30Ran

appears to play a central role in establishing Ran-GDP’s C-
terminal conformation.

H139Ran (Fig. 6C) likewise corresponds to and diverges
from a canonical alanine typically found at this position
(A151Sec4 in Fig. 4B). Notably, histidine is a particularly bulky
and polar substitute for alanine. A nearby isoleucine residue

(I136Ran in Fig. 6C) is a similarly bulky substitute for the ca-
nonical alanine or glycine at that position (G147Sec4 in Fig.
4B). Moreover, there is a single residue deletion between
I136Ran and H139Ran relative to the canonical residues. (This
deletion is evident in the structure-based alignment of Figure
3, but in the sequence-based alignment of Figure 1C this de-
letion and I136Ran are misaligned relative to the FY-pivot con-
sensus pattern below the Ran family alignment.) Due to their
small size, the canonical residues at these positions facilitate
packing of the helix in which they occur against a canonical
phenylalanine or tyrosine (F158Sec4 in Fig. 4B). In Ran this
helix contains the basic patch (139HRKK142) that, in the GDP-
bound state, is believed to interact with the C-terminal acidic
tail (Fig. 9A). We propose that H139Ran, I136Ran, and the de-
letion between them destabilize packing of the basic patch
helix against the canonical Y146Ran and thereby facilitate dis-
tinct conformation states, which are stabilized through alter-
native interactions involving these and other residues. In
agreement with this notion, the conformation of the basic
patch varies between different Ran-GDP structures (Scheffzek
et al. 1995; Stewart et al. 1998a,b).

Y98Ran appears to help mediate conformational changes
of the basic patch helix (Fig. 9). This tyrosine residue is in-
variant in Ran, but in other FY-pivot GTPases phenylalanine
typically occurs at this position (Figs. 1, 3). This suggests that
the tyrosine �OH group, though apparently selected against
in other GTPases, is critical to Ran’s function. Consistent with
this notion, the Y98Ran�OH group hydrogen bonds to the
basic patch helix in various ways depending on Ran’s confor-
mational state. In GTP-bound forms complexed with either
importin-� (Chook and Blobel 1999; Vetter et al. 1999a) or

Figure 8 Interactions involving H30Ran and Ran’s C-terminal switching mechanism. See text for details. (A) Ran-GTP-importin-�. Note that
H30Ran forms an aromatic-aromatic interaction with F161Ran that is similar to the canonical interaction (Fig. 4C). Rather than simply interacting with
canonical F161Ran, however, H30Ran inserts itself into an aromatic pocket formed by F161Ran and two other aromatic residues specifically conserved
in Ran, F26Ran and F157 Ran (data not shown). (B) Ran-GDP. H30Ran appears to be critical for establishing this conformation, in which Ran’s
C-terminal linker displaces the F35Ran interaction with guanine. The inset provides a different perspective that shows main-chain to main-chain
hydrogen bonds between the C-terminal and H30 regions.
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RanBD1 (Chook and Blobel 1999; Vetter et al. 1999a,b; the
structure of Ran-GTP by itself is not yet available), this �OH
group hydrogen bonds with two main-chain nitrogens (Fig.
9C). In Ran-RCC1 (Renault et al. 2001), the �OH group hy-
drogen bonds to the side-chain nitrogen of the basic patch
residue K141Ran (Fig. 9B), whereas in Ran-GDP it typically
hydrogen bonds to a main-chain oxygen (Fig. 9A; the latter is
found in nine out of 12 of the available structures of Ran-
GDP; in two of the three remaining structures the�OH group
is slightly shifted away from this configuration, and in one it
binds to the same main-chain nitrogens as in the Ran-GTP
complexes).

In all available forms of Ran, the orientation of Y98Ran is
stabilized through canonical CH-� and aromatic-aromatic in-
teractions with the FY-pivot residue (F90Ran in Fig. 9A–C). In
nucleotide-bound forms, further stabilization of the basic
patch helix occurs through interaction of I136Ran with ca-
nonical Y146Ran and through the canonical salt bridge be-
tween the NK.D and SA regions (Figs. 9A,C) (these interac-
tions are maintained in all of the 17 currently available struc-
tures of nucleotide-bound Ran).

These observations, together with others described be-

low, suggest that I136Ran and H139Ran destabilize the basic
patch helix and thereby facilitate distinct conformation
states, which are stabilized through alternative interactions
involving these residues, Y98Ran, and other residues depend-
ing on the particular conformational state. At the same time,
nearby canonical residues provide a structural context for
these conformational changes, which we believe to be impor-
tant for the following nucleotide exchange mechanism.

RCC1-Mediated Nucleotide Exchange
The main contributors to guanine nucleotide-binding affin-
ity, and thus the main inhibitors of nucleotide exchange, are
the interaction of the P-loop lysine (Sigal et al. 1986; John et
al. 1988; Klebe et al. 1993) and main-chain (Rensland et al.
1995) with � phosphate, and the coordination of Mg2+ (Hall
and Self 1986; Klebe et al. 1995). Based on these facts and on
various GTPase-GEF structures, Renault et al. (2001) proposed
a general nucleotide exchange mechanism, a key component
of which is disruption of the interaction of nucleotide phos-
phates with the invariant P-loop lysine and with Mg2+.

Renault et al. (2001) also proposed a specific Ran-RCC1

Figure 9 Interactions involving H139Ran, Y98Ran, and Ran’s basic patch switching mechanism. See text for details. This figure focuses on three
structural forms: (A,D) canine Ran-GDP (pdb code: 1BYU), (B,E) human Ran in complex with RCC1 (pdb code: 1I2M), and (C) human Ran in
complex with importin-� and a GTP analog (pdb code: 1IBR). The perspective for A–C is as that for Sec4p in Figure 4B; the perspective for D,E is
rotated approximately 180° relative to that for A,B. The reaction pathway for these three forms of Ran is shown between the upper and lower
figures. Note that in C the invariant histidine at position 139 in Ran forms both an aromatic-aromatic interaction and an NH-� (or perhaps a CH-�)
interaction with Trp342 of importin-�. (F) Proposed mechanism for Ran nucleotide exchange. The conformation of Canine Ran-GDP is shown with
arrows indicating the direction of movement of key residues and main-chain regions upon binding to RCC1. A movie demonstrating the
conformational changes involved in this mechanism is available as supplementary information at www.genome.org.
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exchange mechanism, a key component of which is insertion
of a surface-exposed ‘�-wedge’ on RCC1 between the Ran
Switch II and P-loop regions. This displaces the P loop,
thereby changing the orientation of Ran’s GDP binding sites
relative to the guanine base and the phosphate groups. This
favors nucleotide release because, based on studies with Ras
(Rensland et al. 1995), the relative orientation of these sites is
critical to nucleotide binding. Another component of this
Ran-specific mechanism is that, upon nucleotide release, the
base leaves first and the phosphate last, whereas, upon reen-
try, the phosphate comes in first and the base last. Our analy-
sis suggests additional features of this exchange mechanism
where, in particular, H139Ran and Y98Ran play important
roles.

Upon binding to Ran, RCC1 interacts most extensively
with the LV.D region (Fig. 9; Renault et al. 2001) and appears
to pull it away from its indirect link to the P-loop lysine (cf.
W104Ran in Figs. 9D,E), perhaps thereby transiently tugging
on the interaction of this lysine with the � phosphate of GDP.
The RCC1-Ran interaction may also alter binding to the gua-
nine base, because the LV.D region is connected via canonical
interactions (Fig. 5C) to the NK.D loop, which binds both to
guanine and the P loop.

To envision precisely what may occur, consider that
upon binding to RCC1 a threefold CH-� interaction (Fig. 9B),
which we term a CH-� triad, forms between the FY-pivot resi-
due, F90Ran, and two other aromatic residues, Y98Ran and
F138Ran. Notably, in Ran the FY-pivot is always phenylalanine
rather than tyrosine, which is more commonly found at this
position in other FY-pivot GTPases and which cannot partici-
pate in such a triad due to its �OH group. This CH-� triad
may thus perform a specific function associated with the Ran-
RCC1 complex. Further support for this notion is provided by
the sequence adjacency of Y98Ran to K99Ran, a key residue that
inserts into and hydrogen bonds to the central hole of the
RCC1 �-propeller structure (Fig. 9E; Renault et al. 2001). In-
deed, among all the residues of Ran, K99 establishes the great-
est surface contact (164 Å2) with RCC1.

In forming the CH-� triad from Ran-GDP, Y98Ran loses a
CH-� interaction with canonical V131Ran (cf. Fig. 9A,B) and
gains one with V101Ran (cf. Fig. 9D,E), whereas the �OH
group of Y98Ran loses its hydrogen bond with a main-chain
�C=O group and gains one with K141Ran (cf. Fig. 9A,B). This
allows this �C=O group and the main-chain nitrogen of
F138Ran to form a hydrogen bond (not shown), thereby estab-
lishing a typical main-chain �-helical conformation that ap-
pears to help position F138Ran within the CH-� triad.

At the same time, H139Ran flips to the other side of the
basic patch helix (Fig. 9A,B), a conformational change facili-
tated by participation of the sequence-adjacent F138Ran in the
CH-� triad and by the establishment of two interactions that
explain the absolute requirement for histidine at position
139: an aromatic-aromatic interaction with canonical
Y146Ran and a hydrogen bond to a side-chain oxygen of ca-
nonical D148Ran. In Ran, aspartate may occur at position 148
more often than glutamate, which is prevalent in other FY-
pivot GTPases, to better facilitate this hydrogen bond—the
formation of which also disrupts the canonical salt bridge.

This H139Ran flip also brings it closer to the canonical
location for this residue relative to Y146Ran, whereas I136Ran

swings away from its interaction with Y146Ran. These coordi-
nated changes may be aided by the single residue deletion
between I136Ran and H139Ran, inasmuch as the deletion dis-
favors concurrent interaction of both of these residues with

Y146Ran. Moreover, recall that F90Ran of the CH-� triad also
forms a CH-� interaction with the glycine residue directly
preceding the NK.D motif (G115Ran in Fig. 5C). Thus one may
easily imagine these atomic rearrangements twisting the
NK.D loop (cf. Fig. 9A,B) in coordination with the previously
mentioned movement of the P loop. This may lead to oppos-
ing movements of the guanine and phosphate binding sites,
thereby leveraging separation of the P loop from the � phos-
phate or separation of the guanine base from the NK.D loop
(Fig. 9F). The latter is consistent with the ‘guanine base first’
nucleotide release mechanism proposed for Ran-RCC1 (Re-
nault et al. 2001).

These events may also help dislodge Ran’s C-terminal
extension from the GTPase domain, given the proposed con-
tact between the basic patch and the C-terminal acidic tail.
Indeed, an active role for RCC1 in inducing the C-terminal
switch has been suggested based on structural considerations
(Renault et al. 2001) and in vitro experiments showing that
deletion of the acidic tail speeds up RCC1-catalyzed GDP re-
lease (Richards et al. 1995). Thus, these basic patch conforma-
tional changes may link nucleotide exchange with Ran’s C-
terminal switch, which, in turn, could help orchestrate other
events. For example, dissociation of the C-terminus would
allow it to wrap around the Ran binding domains (RanBDs) of
RanBPs (Vetter et al. 1999b), which play important roles in
Ran nuclear transport. Indeed, RanBD1 and RCC1 bind to
distinct regions of Ran (Renault et al. 2001), and RanBPs in-
teract with Ran-RCC1 to form trimeric complexes (Bischoff et
al. 1995; Yokoyama et al. 1995; Noguchi et al. 1997; Mueller
et al. 1998) that modulate RCC1 nucleotide exchange activity
(Bischoff et al. 1995). Furthermore, recent studies suggest that
RanBP1 and another protein that binds to Ran, Mog1, act as
cofactors ensuring that RCC1-catalyzed exchange promotes
the generation of Ran-GTP (Nicolas et al. 2001). Thus the
basic patch mechanism we propose may facilitate efficient
ordering of the molecular events mediated by these proteins.

Ran Binding to Importin-�
Other aspects of this H139-mediated basic patch mechanism
are suggested by Ran’s interaction with importin-�. The three
residues directly following H139Ran within Ran’s basic patch
establish key contacts with acidic residues in importin-�
(Chook and Blobel 1999; Vetter et al. 1999a). In particular, the
residue directly following H139Ran, R140Ran, establishes a 152
Å2 contact surface with importin-�; this is the second most
extensive contact among all the residues in Ran. However, a
comparison of the contacting acidic residues within distinct
importin-� families (Chook and Blobel 1999; Vetter et al.
1999a) reveals that these residues are not homologous and,
therefore, are nonconserved. In contrast, a tryptophan
(W342imp� in human importin-�1) that establishes an aro-
matic-aromatic interaction with H139Ran (Fig. 9C) is con-
served across diverse organisms and distinct families—as is an
acidic loop directly preceding this tryptophan. This interac-
tion, along with electrostatic repulsion by importin-�’s acidic
loop and the above-mentioned interactions of the other basic
patch residues, may help release Ran’s C-terminal acidic tail
for binding to RanBP-related proteins, which, in this context,
act as Ran-importin-� release factors and as coactivators of
RanGAP (Bischoff et al. 1995; Bischoff and Gorlich 1997)
upon exit from the nucleus (Melchior and Gerace 1998). The
previously mentioned repositioning of the Y98Ran �OH
group hydrogen bond may also assist the conformational
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change required for these interactions (Fig. 9C). Incidentally,
the transcriptional enhancer TIP120, which like importin-� is
composed of HEAT repeats (Andrade and Bork 1995), contains
a similar acidic loop and adjacent tryptophan within one of
these repeats (Neuwald and Hirano 2000)—suggesting a pos-
sible role for Ran in the regulation of this protein.

Summary and Conclusion
The cell has been likened to a collection of protein machines,
each with highly coordinated moving parts driven by energy-
dependent conformational changes (Alberts 1998). If so, then
discovering the underlying mechanisms at the core of this
machinery is critical to understanding cellular activities.
CHAIN analysis addresses this problem by capitalizing on two
statistically useful characteristics of many core components:
High sequence conservation across diverse taxa (implying an
intricate mechanism performing an essential function) and
the existence of many homologs (reflecting the notion that
Nature seldom uses a good idea only once). Furthermore, we
focused on a set of related proteins (i.e., P-loop GTPases) for
which there is extensive sequence, structural, and other ex-
perimental data—a situation where the sheer volume of data
is likely to obscure pertinent information. Fortunately, such
an overabundance of data lends itself favorably to statistical
analysis, which can detect subtle clues pointing to the most
significant features of these proteins. Taking this approach
has led to our findings here, which demonstrate that mecha-
nistic aspects of core components of the cellular machinery
can indeed be explored in this way.

We found among FY-pivot GTPases a canonical network
of atomic interactions, the evolutionary persistence of which
implies a critical cellular function. What might this be? It
seems unlikely to involve binding to a specific type of domain
because regulators and effectors differ in structure from family
to family. On the other hand, we note that all of these
GTPases must be stably maintained in either a GDP- or GTP-
bound state, yet, when necessary, readily undergo conforma-
tional switching between states. One way to achieve this may
be by embedding bound guanine nucleotide within a suffi-
ciently stable, yet flexible network of molecular interactions
that incorporates a pivotingmechanism for coordinating con-
formational changes needed for nucleotide release (and pos-
sibly other molecular events).

More specifically, our analysis here provides useful clues
regarding Ran’s C-terminal, basic patch, and nucleotide ex-
change mechanisms. In particular, we find that H30Ran,
T98Ran, and H139Ran, which deviate from the corresponding
FY-pivot canonical residues (though in the case of Y98Ran,
only slightly), appear to destabilize the canonical conforma-
tions in these regions and, at the same time, help stabilize
alternative conformations unique to Ran. These deviant resi-
dues may thus facilitate additional Ran-specific conforma-
tional states. Such innovative deviations from canonical resi-
dues may be a common evolutionary strategy for functional
divergence and specialization, considering that other FY-
pivot families display similar variations on the canonical
theme.

There is likely much more to this canonical network,
however, than is evident from the limited perspective of Ran
GTPases discussed here. Similar in-depth analysis of other FY-
pivot families should help provide a more complete picture.
On the other hand, many statistically surprising structural
features found through CHAIN analysis may be difficult to
interpret in the absence of sufficient biochemical and struc-

tural data. In these instances, CHAIN analysis nevertheless
provides a stimulus for first formulating and then experimen-
tally testing hypotheses regarding canonical features and
strikingly conserved deviations from those features observed
for some families. In this context, we note that experimental
studies of H30F, F90Y, and Y98F mutants of Ran are likely to
be particularly informative.

Finally, we note that CHAIN analysis has other applica-
tions. For example, it can help assess the biological relevance
of specific types of atomic interactions, as we found regarding
the critical role in FY-pivot GTPase function of CH-� hydro-
gen bonds—whose importance to structural biology has only
rather recently been appreciated (Weiss et al. 2001). By en-
hancing our understanding of structural principles, this
could, in turn, lead to improved structural refinement and
homology modeling methods. Yet, even in the absence of
structural data, contrast hierarchical alignments can identify
structurally relevant signature patterns useful for functional
classification of genomic sequences and for evolutionary
studies—as in the analysis here, which indicates that Ras,
Rho, Rab, and Ran may have evolved from a predecessor re-
sembling Sec4p. Thus, the strategies applied here serve as a
starting point for further analyses along various lines.

METHODS

CHAIN Analysis
CHAIN analysis first classifies the residues conserved in a pro-
tein family into distinct categories based on their patterns of
conservation within related sequences. To ensure that conser-
vation within that family reflects functionally imposed con-
straints rather than recent common descent, representative
family members are selected from distinct phyla that have
diverged at least half a billion years ago. This is sufficient time
for random mutations to have eliminated sequence similarity
merely due to recent descent.

CHAIN analysis is initiated using a particular query se-
quence of interest. Using the gapped BLAST/PSI-BLAST proce-
dure (Altschul et al. 1997), the query, which is typically a
protein of known structure, is aligned against two sets of se-
quences, the ‘family set’ consisting of the representatives of
the query family, and the ‘main set’ consisting of these and
other related sequences. Note that, when aligning the query
against the main set, a family consensus sequence (of the
same length as the query) is used rather than the query itself,
as we found that this generally improves the main set align-
ment. Because the PSI-BLAST alignment still tends to misalign
sequences distantly related to the query, however, sequences
in the main set are subsequently realigned using an optimi-
zation procedure (Neuwald and Poleksic 2000) based on Gibbs
sampling (Lawrence et al. 1993; Liu et al. 1995, 1999).

Next a ‘superfamily set’ that contains the family set is
derived from the main set (Fig. 2A). This is done using a pro-
cedure, called Bayesian partitioning with pattern selection
(BPPS), that optimally partitions the main set into two dis-
tinct sets, one of which (the superfamily set) consists of se-
quences sharing conserved patterns with the query family
and with each other, but not with sequences in the other set.
This yields a series of telescoping aligned sequence sets, which
we term a ‘hierarchical alignment.’ We will limit our discus-
sion here to three sets, though this approach easily generalizes
to more sets.

BPPS Procedure
The BPPS procedure is a Markov chain Monte Carlo method
for sampling random variables from a probability distribution
(Liu 2001), the details of which are described in the Appendix
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herein. Here there are two variables: a conserved pattern and
a set of indicators for assigning each sequence to either the
query or the nonquery partition. The procedure explores pos-
sible combinations of pattern-partition pairs, searching for
one where the pattern maximally distinguishes the sequences
in the query partition from those in the nonquery partition.
This corresponds to an optimum point in the probability dis-
tribution defined by our statistical model.

In order to examine all the categories to which the query
family belongs, the BPPS procedure is called multiple times,
each time initialized with a distinct ‘seed pattern’ character-
istic of a particular query-related subgroup of the main set. For
each seed pattern, the procedure converges on a correspond-
ing (possibly locally) optimum pattern-partition pair that de-
fines a superfamily set. The final pattern found should be
viewed as the characteristic signature for this superfamily.
When the superfamily and family sets are distinct, these, to-
gether with the main set, define a three-level hierarchical
alignment. (The BPPS procedure can be used to define the
family set, but this is usually unnecessary for highly con-
served families.) Based on this alignment, the selective con-
straints acting on the query are decomposed into four distinct
categories, namely the main, superfamily, and family catego-
ries as well as an intermediate category (see below). We will
refer to a set lower in the hierarchy as a ‘subalignment’ and a
set higher up as a ‘superalignment’.

Measuring Selective Constraints
We identify the most significant structural features within a
contrast hierarchical alignment by determining which con-
served residue positions are most characteristic of each cat-
egory. From an evolutionary perspective this involves mea-
suring the selective constraints shifting residues in a specific
column of a subalignment away from (and thus in ‘contrast’
to) the composition observed in that column of the super-
alignment. This measure, which is defined by the urn model
in Figure 2C, is displayed graphically in the highlighted align-
ments of Figures 1B–D and 3.

More precisely, the selective constraint acting at position
j in a subalignment is expressed in terms of the number of
random trials needed to draw from among the residues in a
superalignment (with replacement) at least as many con-
served residues as are observed in the subalignment at that
position. The likelihood of this event is given by the cumu-
lative binomial probability,

Pj
�L,B� = �

i= cj
�L�

Nj
�L�

�Nji ��pj�B��i�1 − pj
�B��Nj

�L�− i , ( 1)

where cj
(L) and Nj

(L) are the number of conserved residues and
the total number of residues, respectively, in the j-th column
of subalignment L, and pj

(B) is the frequency of the conserved
residues observed at that position for superalignment B,
which serves as the background model. The corresponding
selective constraint acting on subalignment L is then de-
fined as

Kj
�L,B� =

1

Pj
�L,B�

,

the expected number of random trials needed to observe this
event. This measure helps decompose the total constraints
acting on the family into specific categories, because it essen-
tially ‘subtracts’ the constraints acting on a superalignment
from those acting on the subalignment.

Histogram bar heights in alignment figures are set pro-
portional to the number of random trials implied by Kj

(L,B). If
displayed directly, however, a column with P = 0.01 (100 tri-

als), for example, would appear insignificant relative to a col-
umn with P = 0.00001 (100,000 trials). On the other hand,
direct logarithmic scaling may cause the bars for significant
columns to disappear depending on the value of P for the
most significant column. We get around these problems by
setting the bar height

h =
t1 − �

1 − �
,

where t is the number of random trials and 0 � � < 1 is a
scaling parameter for adjusting the relative bar heights so as to
converge to linear scaling at � = 0 and to logarithmic scaling
as � → 1. An automated routine chooses the appropriate val-
ues of � for display (as in Fig. 1) based on the pattern positions
selected by the BPPS procedure. The order-of-magnitude-
increase in t as a function of �, when the relative bar height
increases by twofold, is given by

log10 �t2hth � = log10 �21��1 − ��� .

Amino Acid Distributions
Several points regarding amino acid distributions should be
noted. First, for the alignments in Figures 1A,B and 3A selec-
tive constraints are based on a standard background distribu-
tion, which we define as the overall amino acid frequencies
observed for sequences in the main set. Second, when esti-
mating amino acid distributions from observed counts, we
adjust for small sample size by adding one pseudo-count for
each type of amino acid at each position. In a Bayesian sta-
tistical context, this procedure corresponds to an uninformed
prior probability. Third, because misaligned positions corrupt
position-specific background frequency estimates, marginal
alignment probabilities may be computed (Yu and Smith
1999) and, when there is significant alignment uncertainty,
background distributions can be based on the weighted aver-
age of all superalignment positions likely to be aligned with
that position in the subalignment. (This weighting procedure
is akin to the use of Dirichlet mixture priors; Brown et al.
1993.) Note, however, that currently marginal probabilities
are computed solely to identify regions of uncertainty, rather
than to modify background distributions in this way.

Finally, when counting observed residues (for measuring
selective constraints or for the BPPS procedure), sequences are
down-weighted to adjust for correlations between them, us-
ing the PSI-BLAST weighting scheme (Henikoff and Henikoff
1994; Altschul et al. 1997). Note, however, that PSI-BLAST
weights sum to 1, whereas we require weights that sum to the
effective number of observed sequences. Calculation of such
weights is an unsolved problem, but, as a rough estimate, one
approach is to normalize the weights so that the maximum
weight (corresponding to the least correlated sequence) is
one. This may yield erratic results, however, because the ef-
fective number of sequences then depends on a single outly-
ing sequence. As a robust alternative, we normalize weights
such that the expected weight is one-half, with occasional
normalized weights greater than one being truncated to one.
Though admittedly ad hoc, this approach is adequate because
we use these as relative measures rather than as precise prob-
abilities. Note that weights are not computed for the query
family alignment, because these sequences are selected from
distinct phyla or kingdoms and, therefore, are treated as sta-
tistically independent.

Categorization of Residue Positions
Wewould like to classify residue positions within a three-level
hierarchical alignment into four functional categories,
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namely the Main, Superfamily, and Family categories (Fig.
1B–D, respectively), and an Intermediate category. Although
the BPPS procedure assigns certain query residue positions to
the Superfamily, it does not explicitly assign residue positions
to other categories. To do this, CHAIN analysis uses the fol-
lowing (admittedly ad hoc) procedures based on our measure
of category-specific selective constraints. In describing these
procedures, we will use the following alignment notation:
Main alignment, M; Superfamily alignment, S; Family align-
ment, F; null alignment (standard amino acid background
model), �. Note that the positions assigned by the following
procedures are indicated by the dots directly above the align-
ments in Figures 1A–D and, with respect to the residue side-
chains in Figures 4–9, by the color scheme of Figure 2D.

Residue positions in the Superfamily category are defined
by the pattern obtained by the BPPS procedure. We also in-
clude in this category any other positions j for which the
Superfamily-specific selective constraint Kj

(S,M) is at least as
high as the Kj

(S,M)s for any of the pattern positions selected by
the BPPS procedure. The subset of related residues yielding the
maximum Kj

(S,M) is chosen as the conserved residue set at each
of these additional positions. (Note that residues in this set are
typically unrelated to the query residue.) These additional po-
sitions correspond to conserved residues in the superfamily
that are either nonconserved or divergently conserved within
the query family and thus were not selected by the BPPS pro-
cedure. In other words, this procedure identifies positions in
the superfamily that (based on their Kj

(S,M)) would have been
detected by the BPPS procedure, if the query family had con-
tained the conserved residue at that position.

Residue positions assigned to the Main category are de-
fined as those that are absent from the Superfamily category
and for which the Main-set-specific selective constraint Kj

(M,�)

is greater than the average Kj
(M,�) obtained for those positions

assigned to the Superfamily category. Note that all of these
Kj
(M,�) are computed from equation (1) based on standard
background frequencies. Conceptually, this identifies previ-
ously uncategorized residue positions that are more highly
conserved in the Main set than the average Superfamily po-
sition.

Residue positions in the Family category are defined as
those that are absent from the Superfamily category and for
which the Family-specific selective constraint Kj

(F,M) is greater
than one standard deviation above the average Kj

(F,M) for those
positions assigned to the Superfamily category. Conceptually,
this identifies those residue positions outside of the Superfam-
ily category with Family constraints greater than most of the
Superfamily-assigned positions. We also assign to this cat-
egory any Superfamily-assigned positions with Kj

(F,M)s at least
as high as any of these positions and for which the Family
residue set (as defined in the Appendix) is a proper subset of
the Superfamily residue set at that position.

Finally, we classify into an Intermediate category those
previously uncategorized residue positions that have a stan-
dard background-based Family-specific selective constraint
Kj
(F,�) greater than one standard deviation below the mean
Kj
(F,�) for all previously categorized positions. Conceptually,
this represents residues that are roughly just as conserved in
the query family as many of the previously classified columns
but that are inconsistently conserved across these other cat-
egories, and thus cannot otherwise be definitively classified
under the current hierarchical scheme.

Interaction Network Analysis
Interaction network analysis involves the identification of
molecular interactions associated with category-specific selec-
tive constraints within available structures. The interactions
considered include both classical (Baker and Hubbard 1984)
and weak (Wahl and Sundaralingam 1997; Toth et al. 2001;

Weiss et al. 2001) hydrogen bonds, aromatic-aromatic inter-
actions (Burley and Petsko 1985), and van der Waals contacts
(determined based on a standard distance of 4.5 Å). The
REDUCE program (Word et al. 1999) was used to attach hy-
drogen atoms prior to hydrogen bond determination. Residue
interactions between subunits were assessed based on buried
surface area (Lee and Richards 1971). Other procedures gen-
erated RasMol (Sayle and Milner-White 1995) scripts for dis-
playing interactions (as in Figs. 4–9).
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APPENDIX

Bayesian Partitioning With Pattern Selection

Pattern Definition
A pattern is defined as sets of amino acids, one set (termed a
‘query residue set’) for each position in the query sequence.
Each query residue set must contain either no residues, in
which case the position is ignored, or the query residue at that
position along with zero or more related residues, which en-
sures that these patterns capture features of the query. Related
residues are defined as those amino acids with a positive
BLOSUM62 (Henikoff and Henikoff 1992) score against the
query residue. For example, if the query sequence contains ‘F’
at a certain position, then the possible residue sets at that
position would be {F}, {F,Y}, {F,W}, and {F,Y,W} because the
distinct, positive scoring residues against ‘F’ are ‘Y’, and ‘W.’
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Bayesian Partitioning With Pattern Selection (BPPS)
Our statistical model treats the aligned sequences in the non-
query partition as randomly and independently generated us-
ing the position-specific residue frequencies (PSFs) observed
for those sequences. It treats sequences in the query partition
as having two types of positions: nonpattern and pattern po-
sitions. Residues at nonpattern positions are generated from
the same PSF as the nonquery sequences. Residues at pattern
positions are generated from amixture model at each position
that is based both on the nonquery PSF (which models non-
conserved residues) and on the query residues matching the
conserved pattern at that position. For these mixture models
a parameter �, the value of which is inferred from the ob-
served sequences, specifies for the query partition the relative
fraction of the observed residues derived from the conserved
pattern model. Note that, to ensure that the query partition
contains the query family itself, assignment of sequences in
the family alignment to the nonquery partition is disallowed
by the BPPS procedure. A complicating aspect of this model is
that we do not know which sequences outside of the query
family belong to the query partition nor which positions cor-
respond to pattern positions nor exactly which residues are
conserved at each pattern position. To solve this problem we
set up the following statistical model and corresponding sam-
pling strategy.

The Basic Model
To begin with, suppose we have vector observations (corre-
sponding to n multiply aligned protein sequences)
xi = (xi1,…,xik) for i = 1,…,n, where k is the number of columns
(or aligned positions) and where each xij takes one of the
residues in an alphabet of size m = 20. A more convenient
method is to represent xij as a 20-dimensional vector
(0,…,0,1,0,…,0), where the lone ‘1’ indicates the observed resi-
due type.

Suppose that each xi falls into one of two clusters (the
query or the nonquery partition), but that only a selected
number of columns (the pattern positions) are differentiating
these clusters and the remaining columns (the nonpattern
positions) are just “dummies.” We introduce a row indicator
vector R = (R l,…,Rn) and a column indicator vector
C = (Cl,…,Ck), where Ri = 1 if sequence i belongs to the query
partition and 0 otherwise, and Cj = 1 if column j is differen-
tiating (i.e., a pattern position) and 0 otherwise.

For a differentiating column, we require two 20-
dimensional frequency vectors, �j(0) and �j(1), to describe the
nonquery and the query compositions, respectively, whereas
for a nondifferentiating column (i.e., when Cj = 0) we only
need one �j. For convenience in writing, in the latter case we
let �j(0) ≡ �j(1) = �j. Then, the log-likelihood of the sequence
data can be written as:

log P( X � R, C, �)= �
j= 1

k

Cj��log �j�0�,�
i= 1

n

xij�1 − Ri��
+ �log �j�1�,�

i= 1

n

xijRi�}
+ �
j= 1

k

�1 − Cj��log �j�0�,�
i= 1

n

xij�
= �
j= 1

k �log �j�1� − log �j�0�,�
i= 1

n

xijRiCj�

+ �
j = 1

k �log �j�0�,�
i= 1

n

xij�
where 〈 ·, ·〉 denotes the inner product of two vectors. A prior
Dirichlet(b) distribution is used for all the �s. Note that if R
and C are given, we can easily obtain the corresponding pos-
terior distributions. However, when the sequence partitioning
and the pattern selection are unknown to us, the �s are not
identifiable without imposing further model assumptions.

A Mixture Model for Query-Centric Partitioning
Given that sequence x1 is the query sequence, we want to
assign the remaining sequences into either a query or a non-
query partition based on their similarity to x1. For notational
simplicity, we assume in this subsection that every column
contributes to the partitioning (i.e., Cj = 1 for all j). We let
�j(0) ≡ �j = (�j,1,…,�j,20)

T be the position-specific frequency vec-
tor for the nonquery partition and let �j(1) = (1 � �)�j + ��j be
the modified frequency vector for the query cluster, where �j
is another probability vector. Parameter � represents the small
amount of “contamination” (or departure from the query se-
quence) allowed at each differentiating position of the query
cluster. The prior distribution for � is �(a0, b0), where typically
we let a0 = b0 = 1 (see below). Here we first take �j = x1,j, i.e., be
identical to the query sequence. Then the data log-likelihood
can be modified as

log P( X � R, C, � )= �
j= 1

k ��log �j,�
i= 1

n

xij�1 − Ri�� +

�log��1 − ���j + ��j�,�
i= 1

n

xijRi��.
It is of interest to partition according to this model.

Let us consider the contribution of a single column, say
column j, to the overall likelihood. Suppose that the query
residue at position j is x1,j ≡ x and that the partition indicator
R is known. The likelihood of this column is:

��1 − ���j,x + ��n1,x �j,x
n0,x �1 − ��nl,· − n1,x �

l�x
�j,l
n·,l

Here n1,x is the number of occurrences of residue type x in
column j of the query partition, n0,x is that in the nonquery
partition, n1,· is the total number of sequences in the query
partition, and n·,1 is the count of residue type l in column j
(for all the sequences). Thus, conditional on � and �, it is easy
to determine the effect of moving a sequence in or out of the
query partition, which enables us to implement a Gibbs sam-
pler.

Conditional on the partitioning, we can also introduce
an indicator variable � = (	ij)n�k, where 	ij = 1 and 	ij = 0 imply
that position i of sequence j comes from the query and the
nonquery partition, respectively. Conditional on � and R, the
posterior distribution of � is

����] 
���+ a0− 1 ( 1 − �) N1,· − ��� + b0− 1 ∼ Beta���� + a0, N1,· − ��� + b0) ,
[ 1]

where ��� = ∑ i∑ j	ij, and N1,· is the total number of residues
in the query partition matching the corresponding query
residue. The conditional distribution for �j is:

�j | R, � ∼ Dirichlet (�
i= 1

n

xij + b − 		·j	x1j�, [ 2]
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where the prior for �j is Dirichlet(b) and | 	·,j| is the total sum
of 	ij in the jth column. On the other hand, conditional on �

and �j, we have

�	·j��,� ∼ Binom �n1,x, �

� + �1 − �� �j,x
�, [ 3]

The Gibbs sampling algorithm can be implemented as follows
to cycle through R, �, �, and �:

1. Conditional on the value of � and �, we cycle through all
the sequences to assign them into either the query (Ri = 1)
or nonquery (Ri = 0) partitions according to the following:

P �Ri = 1�xi, �, ��

P �Ri = 0�xi, �, ��
= �
j:xij�x1j

�1 − �� �
j:xij= x1j

�1 + � �1 − �j,x1j
�j,x1j

��;
2. Conditional on R, �, and �, update the | 	·,j| for each col-
umn according to (3).

3. Conditional on each | 	·j| , update � according to (1) and
update �j according to (2).

The Complete BPPS Model
Here we provide a more complete description of the model
that addresses also the column (pattern) selection. Suppose
that each column j is associated with a prior probability j for
it to be either 1 (a differentiating column) or 0 (a dummy
column). Then we have

log P �X � R,C,�,�� = �
j = 1

k �Cj��log �j,�
i= 1

n

xij �1 − Ri��
+ �log �j

�,�
i= 1

n

xijRi��
+ �1 − Cj� �log �j,�

i= 1

n

xij��
= �
j= 1

k �log �j,�
i= 1

n

xij�
+ �
j= 1

k

Cj �log �j
�

�j
,�
i= 1

n

xijRi�
where ��

j = (1 � �)�j + ��j. A set of independent priors for �,
�, C, and R are given as:

p��� =
��a0 + b0�
��a0���b0�

�a0− 1 �1 − ��b0− 1 �Beta�,

p��� = �
j = 1

d
�|b|
��b�

�j
b− 1 �Product Dirichlets�,

p�R� = �
i= 1

n

r i
Ri�1 − ri�

1− Ri,

and p�C� = �
j= 1

d

j
Cj �1 − j�

1− Cj �Independent Bernoullis�.

Hence, the logarithm of the joint distribution of all the vari-
ables is

log P�X,R,C,�,�� = �
j = 1

k

�
i= 1

n

	log �j,xij
 + �
j= 1

k

�
i= 1

n

RiCj �log �j
�

�j
, xij�

+ log p ��� + log p ��� + log p �R� + log p �C�
[ 4]

Sampling Strategy
When C is given, the updates of the remaining parameters are
identical to that in the previous section, except that all the
operations in steps 1 to 3 are confined to those columns with
Cj = 1. What we need now is the update of C conditional on
everything else. Consider changing C to a new C� that differs
from C only at the j-th column. Then, based on the distribu-
tion just described,

�C ≡ log
P�C�|X,R,�,��

P�C|X,R,�,��

= �1 − 2Cj� ��
i= 1

n

Ri�log �j
�

�j
, xij� + log

j

1 − j
� [ 5]

Hence, a simple Metropolis step can be used to update each Cj.
Similarly, let R� differ from R only at Ri, then,

�R ≡ log
P�R�|X,C,�,��

P�R|X,C,�,��

= �1 − 2Ri� ��
j = 1

k

Cj�log �j
�

�j
, xij� + log

rj
1 − rj� [ 6]

In summary, we have the following Markov chain Monte
Carlo (Liu 2001) sampling procedure:

1. For i = 1,…, n:
● Propose to change Ri to 1 � Ri;
● Draw U ∼ Uniform[0,1];
● Accept the proposal if log U is smaller than �R computed
by (6), and leave Rj unchanged otherwise.

2. Same as the previous step 2.
3. Same as the previous step 3.
4. For j = 1,…, k:

● Propose to change Cj to 1 � Cj;
● Draw U ∼ Uniform[0,1];
● Accept the proposal if log U is smaller than �C computed
by (5), and leave Cj unchanged otherwise.

Optimal Collapsing of Residues
The foregoing procedure models the pattern position fre-
quency �j(1) as a mixture of the background frequency and a
degenerate distribution concentrating on the query sequence
residue. It is desirable, however, to use a more flexible model
that allows for chemically related residues to be equally pre-
ferred at this position. In order to achieve this we implement
a residue collapsing procedure. More precisely, we assume
that the query partition pattern position frequency has the
form �j(1) = ��j + (1 � �)�Aj, where Aj is a subset of the 20
amino acids that includes the query residue type at position j
along with zero or more “exchangeable” residue types, which
we require to be positively related to the query residue accord-
ing to the BLOSUM62 matrix. The relative frequencies of
these residues in Aj are the same as that of �j. Mathematically,
this can be represented as �Aj 
 �j ◎ 1Aj, where the ‘◎’ operator
indicates multiplication of corresponding vector compo-
nents. Hence, operationally, this model requires us to
“merge” all these residue types into one residue and conduct
the same Gibbs sampling algorithm.

Since the pattern sets Aj are unknown to us a priori, we
need to estimate these from the aligned sequences. Condi-
tional on all the other variables such as R, C, �j, and �, we can
write down the probability of the observed residues in an
aligned column. Since we are working on one column at a
time, we suppress the column indicator j for a simple presen-
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tation; hence, the probability vector for a single column
� = (�1,…,�20) is given by:

��
k = 1

20

�k
n0,k���

k∉ A
���k�

n1,k �
k∈ A

���k + �1 − ��
�k

�A
�n1,k�

= ��
k= 1

20

�k
n0,k + n1,k���k = 1

20 n1,k�1 +
1 − �

��A
��k ∈ An1,k

where �A = �k∈ A�k. Based on this formula, we can conduct the
following Metropolis algorithm:

● Randomly select one residue r that is positively related to
the query residue; propose to change A to A� by either re-
moving r from or adding r into A (as the case may be);

● Accept the proposal with probability

pj = min �1, �1 +
1 − �

��A�
��k ∈ A�n1,k 
 �1 +

1 − �

��A
��k ∈ An1,k�

In order to further reduce the effect of relative frequencies for
residues in A, we can also assume that the residues within A
are equally likely, i.e., �k = �A/ |A| , where |A| is the size of A. The
above Metropolis algorithm can be modified accordingly.

The Significance of Pattern-Partition Pairs
To ensure that detected pattern-partition pairs are better than
one would expect by chance, we compute a “net maximum a
posteriori probability” (net-MAP). This involves first comput-
ing equation (4) for the particular pattern-partition pair of
interest and then subtracting from this the value computed
by equation (4) for a ‘null pattern-partition pair’, that is, one
where the pattern contains only empty residue sets at all po-
sitions and where all of the sequences are assigned to the
nonquery partition. This yields the log-probability ratio that
compares the model for given pattern-partition pair to a
model where the aligned sequences lack a distinct query-
related partition sharing a conserved pattern with the query.
Hence, given the conservative nature of our Bayesian formu-
lation, when the aligned sequences are randomly shuffled
within each column the net-MAP is expected to be negative.

Seed Patterns
Since it is biologically meaningful and computationally ad-
vantageous to focus only on residue positions that are “im-
portant,” we initialize the BPPS procedure with one or more
distinct ‘seed patterns’, each of which is characteristic of a
particular query-related subset of the main set. For example,
when using a member of the Cdc42 subfamily of the Rho
GTPases as the query, one seed pattern would correspond to
the Rho GTPases and another to the FY-pivot GTPases. Seed
patterns are obtained automatically using two procedures,
one for finding simple patterns and another for merging these
into more complex patterns.

Finding Simple Patterns
Seed patterns are obtained by first identifying ‘two-position’
patterns (defined as patterns having nonempty sets at only
two positions) that the query shares with a statistically sig-
nificant subset of the aligned sequences (i.e., the two posi-
tions are correlated). Because the sequence data is discrete,
significance is based on adjusted P-values in a Fisher’s exact
test (Fisher 1925) for positive pairwise correlation, as follows.
For all pairs of positions in the alignment and for all permis-
sible query residue sets at those positions, we construct 2�2

contingency tables, each of which corresponds to a distinct
two-position pattern (e.g., a phenylalanine or tyrosine at po-
sition 90 and a serine or threonine at position 96). Fisher’s
exact test gives the chance probability, P, of finding the ob-
served number of or more sequences matching the pattern,
given the numbers of sequences matching each residue set
individually. Significant patterns are then defined as those for
which P � 0.001 after adjusting for the total number of pat-
terns considered. Note, however, that when one or more resi-
due sets at a given position are correlated with one or more
residue sets at another position, we apply a standard optimum
matching procedure to find the most correlated distinct pairs
of residue sets at those positions. Only these pairs are further
analyzed, as this avoids analysis of overlapping, nearly iden-
tical patterns.

Merging Patterns
Related two-position patterns are merged as follows. A graph
is constructed with nodes corresponding to position-specific
query residue sets and with edges corresponding only to the
most significant of the patterns such that, given the number
of nodes in the graph, no fully connected subgraph (i.e.,
clique) with more than three nodes is expected by chance
based on the formula of Bollobas (1985). (Hence, the number
of edges, and thus the number of patterns considered, is lim-
ited by this restriction.) Each clique of more than three nodes
is identified (Bron and Kerbosch 1973), and its patterns are
merged by combining corresponding residue sets at each po-
sition. Finally, cliques sharing a significant number of com-
mon nodes (based again on a Fisher’s exact test with an ad-
justed P � 0.0001) are combined, and their associated pat-
terns merged. This last procedure is applied recursively on the
resulting subgraphs until convergence.

Performance of the BPPS Procedure
We have implemented the BPPS and other CHAIN analysis
procedures in the C++ programming language and have ap-
plied these procedures to various P-loop GTPases (as men-
tioned in the Results and Discussion) as well as to various
protein kinases (N. Kannan and A. Neuwald, unpubl.). (Aca-
demic researchers interested in performing CHAIN analysis
using these programs should contact the corresponding au-
thor.) Using the net-MAP to rank maxima and to provide a
measure of the significance of the corresponding pattern-
partition pairs, we found that typically the BPPS procedure
essentially detects only a few local maxima. In the case of Ran,
for instance, the BPPS procedure finds the Ran family itself,
the FY-pivot GTPases, and a third class that includes both
FY-pivot and non-FY-pivot GTPases sharing certain structural
features in common (data not shown). We use the phrase
‘essentially detects’ because some classes are, in fact, detected
as small clusters of nearly identical partitions that differ only
by the inclusion or exclusion of a few sequences or pattern
positions; these sequences presumably lack sufficient evi-
dence to be unambiguously categorized either within or out-
side of that class. Switch I and Switch II residues conserved
within Ras-like GTPases, many of which are well characterized
(and for this reason are not discussed in the Results and Dis-
cussion), and well characterized residues within the cyclin-
dependent and tyrosine protein kinases served as internal
controls regarding the biological relevance and the perfor-
mance of CHAIN analysis procedures.

CHAIN Analysis of Ran GTPase
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The Choice of Tuning Parameters in Prior Distributions
Using representatives of these GTPase and protein kinase
families, we explored how the choice of tuning parameters in
prior distributions influences the performance of the BPPS
procedure. For the BPPS model, we need to assign priors for all
the �j (b), for � (a0 and b0), and priors on R (j) and C (ri). By
default, we use uninformed priors, such that a0, b0 and the
elements of vector b are each set equal to one residue pseudo-
count, whereas the priors for R and C (the ri’s and j’s) are
each set to 0.5. Since the priors for both R and C cancel out in
our net-MAP equation, how these are chosen influences the
rate of convergence but not the actual maxima in the prob-
ability landscape; we thus ignore the influence of these priors
here. Essentially the same performance was observed whether
we used the default uninformed priors for the �j or priors
based on pseudo-counts that were skewed proportional to the
amino acid frequencies typically observed in proteins. In the
case of Ran, for example, choosing either of these priors for
the �j identified the same three classes with very slight, if any,
differences in the pattern-partition pairs.

By far, the greatest influence on the performance of the
BPPS procedure relates to the choice of priors for �. In general,
using priors such that a0 + b0 = 2 and � < 0.5 favors patterns
that are less stringently conserved relative to those using the
default prior. As a result, the maximal pattern-partition pairs
tended to include more columns in the patterns and more

atypical or marginally related sequences in the query parti-
tion. On the other hand, using priors such that a0 + b0 = 2 and
� > 0.5 requires that the patterns be more stringently con-
served relative to those using the default prior. As a result, the
maximal pattern-partition pairs tended to include fewer col-
umns in the patterns and fewer atypical or marginally related
sequences in the query partition. The degree of variably, how-
ever, was fairly small. In the case of Ran with a range of priors
such that a0 + b0 = 2 and 0.1 � � � 0.9, for example, the BPPS
procedure detected the same three categories with the se-
quences included in or excluded from these categories vary-
ing by less than �5%.
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