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Abstract

Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and 

hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required 

for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain 

hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR 

binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid 

receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more 

abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-

hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell 

interact at the molecular and functional level and these functions may be complementary or 

opposing depending on the cell type. Thus the balance between MR and GR expression and 

activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that 

inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus 

solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid 

concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the 

PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase 

required to generate the requisite cofactor for reductase activity, thus acts as a dehydrogenase. MR 

antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the 

brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR 

activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases 

related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a 

dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR 

hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is 

crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a 

better therapeutic goal.
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Introduction

Because of their complexity, understanding the functions of the mineralocorticoid receptor 

(MR) lagged that of the other receptors. Like other steroid hormone receptors, MR are 

ligand-activated nuclear transcription factors for protein effectors of MR action that also 

initiate rapid non-genomic effects through cell signaling pathways presumably through MR 

associated with the plasma membrane. A full discussion of the rapid non-transcriptional 

signaling by the MR is not attempted herein[1–9]. MR and glucocorticoid receptors (GR) 

are expressed in many tissues types, often in the same cells, where they interact at molecular 

and functional levels, at times in synergy, others in opposition. Ligand activated MR and GR 

in the cytosol enter the cell nucleus, form dimers that bind to hormone response elements on 

the DNA as a complex with co-transcription factors[10–13]. These transcription factors can 

be repressors or activators and are cell-type and context specific. MR and GR form 

homodimers and heterodimers with different transcriptional efficacy depending on the cell 

type both in vitro and in vivo[14–18], thus the appropriate balance of MR and GR activation 

is crucial for homeostasis and a discussion of one is often not adequate without 

consideration of the other, especially in the CNS. This is especially important in analyzing 

the function of neurons expressing both MR and GR where MR activation tends to be 

excitatory and GR mediated events tend to mitigate excitation[19–21].

Also unlike the other steroid receptors with relatively narrow ligand specificities, the MR 

has similar intrinsic affinity for aldosterone, the major glucocorticoids cortisol and 

corticosterone, deoxycorticosterone, and progesterone. Progesterone is a competitive MR 

antagonist that is inactivated by several enzymes in aldosterone target renal epithelial cells 

[22], but attains sufficient concentrations during pregnancy and the luteal phase of the estrus 

cycle in species with distinct luteal and follicular phases to inhibit MR, leading to renin-

angiotensin-aldosterone system (RAAS) activation and doubling of aldosterone levels in 

women during the luteal phase[23–26]. The presence of MR in ovaries, testes, uterus and 

placenta[27–29] has led to the proposal that progesterone binding to the MR may serve a 

reproductive function[30]. Despite higher levels of aldosterone, premenopausal women have 

a reduced risk of cardiovascular disease due to as yet unclear interactions with the estrogen 

receptor and estrogen mediated events, in part through yet incompletely-defined, MR-

independent effects of aldosterone[6, 31–35].

Concentrations of endogenous glucocorticoids exceed those of aldosterone by 2–3 orders of 

magnitude, thus they are the physiological ligand for MR as well as for GR, except in 

aldosterone target cells in which pre-receptor inactivation of glucocorticoids by enzymes 

with 11β-steroid dehydrogenase (11β-HSD) activity occurs. Description of the 11β-steroid 

dehydrogenase enzymes, 11β-HSD types 1 & 2 will be addressed below. As a gross 

generalization, activation of MR in the higher centers of the brain by glucocorticoids is 
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crucial for neuronal plasticity, learning and memory, while activation of MR in the 

hypothalamus and brain stem modulates electrolyte and hemodynamic homeostasis[8, 9]. At 

a time in which the use of MR antagonists is being resurrected to protect from the ravages of 

heart failure and the development and therapeutic use of MR agonists and 11β–HSD1 

antagonists are being considered to stop the progression of cardiometabolic disorders and 

age-related cognitive decline, there is a pressing need to widen the focus of studies of MR 

activities in the CNS.

Mineralocorticoid receptors function is crucial in epithelial and non-epithelial cells

Several decades after the adrenal gland was reported to be critically important for life by 

Thomas Addison in the mid-1800s, it was recognized that the adrenal cortex produced 

different factors classified by their functions. Mineralocorticoids increased vectorial 

transport of Na+, K+ and H+, followed by water, across epithelia of the nephron, colon and 

amphibian urinary bladder; glucocorticoids had gluconeogenesis/glycogen depletion and 

anti-inflammatory properties [36–43]. The first mineralocorticoid to be isolated, 

deoxycorticosterone (deoxycorticosterone; DOC)[36] was life-saving for patients in adrenal 

failure, however excessive amounts were soon found to cause hypertension and pathological 

remodeling of the heart and kidneys [44, 45] (reviewed in [8]. The selective effect of 

aldosterone on fluid and electrolyte homeostasis is reflected in its first name upon its 

isolation, ‘electrocortin’[46, 47]. Subsequent studies over the last 50 years have 

demonstrated that MR regulates fluid and electrolyte homeostasis by multiple complex 

events far beyond the scope of this review [48, 49]. Three years later, Jerome Conn 

described Primary Aldosteronism in patients with persistent hypertension and hypokalemia 

[50]. Primary Aldosteronism is now recognized as a major cause of secondary hypertension 

associated with more severe cardiovascular and renal complications than essential 

hypertension of similar severity and duration[51–55]. Primary aldosteronism is also 

associated with depression and cognitive decline[56–59].

Mineralocorticoids exert extra-renal effects on blood pressure in addition to increasing Na+ 

and water retention by kidneys[44, 47], as discovered in early studies showing that they 

increased vascular tone directly by increasing ion, particularly calcium, within vascular 

smooth muscle cells, effects that occurred before an increase in blood pressure was evident, 

as well as indirectly through activation of the sympathetic nervous system (SNS)[60–66]. 

The massive literature addressing MR-mediated regulation of ion channel function of 

vascular endothelial and smooth muscle cells, as well as vessel remodeling is beyond the 

scope of this review [5, 67–72]. Similarly, MR-mediated changes in ion transport in neurons 

increases their excitability[19–21]. Inappropriate MR activation in cerebral vessels impacts 

neurological function, thus must be considered in discussions of the clinical effects of 

altered MR actions in the brain[73, 74].

The role of the brain in mineralocorticoid hypertension was first shown by ablation studies. 

The paraventricular nucleus (PVN) of the hypothalamus, circumventricular organs, brain 

stem, central sympathetic neurons, and interconnecting tracts were shown to also contribute 

to or be essential for mineralocorticoid-salt excess and renovascular hypertension [75–79], 

reviewed in[8]. The PVN comprises many types of neurons that receive and integrate 
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information from diverse areas of the brain, including neuroendocrine neurons that secrete 

peptides that control pituitary function, pre-sympathetic neurons projecting to the medulla 

and spinal cord, parasympathetic neurons projecting to the dorsal motor nucleus of the 

vagus, and interneurons[80–82]. The r o le of brain MR in mineralocorticoid-salt 

hypertension was confirmed by the lateral intracerebroventricular (icv) infusion of MR 

agonists and antagonists at doses too small to cause an effect when diluted by the blood 

volume upon peripheral infusion[83–87], reviewed in [8]. Similar studies in several labs 

confirmed that MR-regulated increases in ion channel activity previously documented in the 

kidney and vessels were also instrumental in centrally mediated mineralocorticoid-salt 

hypertension, [88–93] and that activation of the SNS was a primary effector of 

mineralocorticoid hypertension [85, 94, 95]. The selectivity of the MR antagonists in these 

studies was confirmed by the demonstration that the intracerebroventricular infusion of 

siRNA for MR abrogated the increased SNS activation and hypertension induced by either 

aldosterone-salt or AngII-salt excess [96]. More recently MR were visualized within pre-

sympathetic neurons of the rat PVN projecting to the spinal cord by a combination of 

retrograde tracer and fluoroimmunohistochemistry[82]. Chronically increasing or decreasing 

endogenous plasma aldosterone concentrations with a low or high sodium diet, respectively, 

significantly increased total MR expression and translocation of MR from the cytoplasm to 

the nuclei of pre-sympathetic neurons in rats adapted to the low, compared to high salt 

diet[82]. This is consistent with the activation of the SNS to support the circulation during 

sodium, thus water and volume, depletion [97, 98]. This adaptive mechanism for terrestrial 

animals, most of which do not have ready access to large amounts of sodium, is quite 

different from the experimental model of mineralocorticoid-salt excess hypertension in 

which mineralocorticoids are elevated in the context of a high sodium intake.

Aldosterone increases sodium appetite, also an adaptive mechanism shaped by evolution, 

that is centrally regulated[99–101]. Inappropriate mineralocorticoid excess increases sodium 

appetite even when in the sodium replete state[102, 103]. While MR that mediate the 

increases in blood pressure appear to reside primarily in the hypothalamus and 

circumventricular organs of the third ventricle, those initiating sodium appetite are primarily 

in the medulla and amygdala [99, 104–107]. Small concentrations and volumes of 

aldosterone infused into the lateral cerebroventricles produce hypertension without altering 

sodium appetite[108], similar infusions into the fourth ventricle increase sodium appetite 

with no effect on the blood pressure[109], presumably by activating aldosterone sensitive 

neurons of the NTS[107, 110]. The capacity for common laboratory animals to regulation 

their sodium intake has often been underappreciated and over-ridden by the excessive 

amounts of sodium in standard maintenance chows. The voluntary sodium intake between 

Sprague-Dawley rats weaned to a sodium deficient diet and an al libitum choice between 

saline and water to drink was shown to be about 15% of the sodium consumed by cohorts 

provided a commonly used rodent chow containing 0.5% Na. At 10 weeks of age body 

weights were no different between groups, however blood pressures were significantly 

higher in those receiving the standard chow than those consuming sodium by free 

choice[111].

Gomez-Sanchez Page 4

Steroids. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Pathological cardiac remodeling produced by inappropriate systemic MR activation is not 

entirely dependent upon hypertension as demonstrated by a combination of systemic and 

intracerebroventricular (icv) infusions of MR agonists and antagonists in rats, emphasizing 

the importance of local MR action in peripheral non-epithelial tissues [84, 112]. The 

extensive literature on the mechanisms of injury mediated by MR in the heart, vessels, and 

kidneys led to the first clinical trials, RALES and EPHESUS, that demonstrated that 

addition of mineralocorticoid antagonists to standard therapy for chronic heart failure at low 

doses that do not further lower the blood pressure, significantly benefited cardiovascular 

function, as well as prolonged and increased the quality of life[113, 114]. Benefits of MR 

antagonists occurred even in patients who did not have elevated aldosterone levels. 

Successful outcomes of similar subsequent trials have led to increased use of MR 

antagonists in treatment regimens for renal and cardiac failure, as well as milder dysfunction 

[113, 115–118].

Inappropriate MR activation leads to inflammation that precedes the cell death and fibrosis 

in the heart, vessels and kidneys in several experimental models including the L-NAME, 

Angiotensin II-salt excess, mineralocorticoid-salt excess, and several genetic models of 

hypertension [119–126] and involves classic mediators of inflammation, including NADPH 

oxidase, ROS and inflammatory cytokines[73, 127–130]. Activation of NADPH oxidase and 

production of ROS are among the rapid non-transcriptional actions of MR critical for its 

rapid signaling in the heart[131] and in neurons[132–135] required for normal function, but 

that become pathological when inappropriate[136–144, 145, 146]. Excessive neuronal 

NADPH oxidase expression and activity in the NTS, RVLM and PVN are found in animal 

models of hypertension including those produced by myocardial infarction and by the 

chronic administration of phenylephrine, AngII, mineralocorticoids, or lipopolysaccharides 

[96, 133, 147–149]. Excessive neuronal NADPH oxidase activation in the hippocampus 

correlates with chronic stress and depression[145, 146]. The physiological ligand for the 

rapid non-genomic actions mediated by MR associated with the plasma membrane, is not 

certain. Studies in peripheral cells assume that aldosterone is the ligand, however 11β-

HSD1&2 enzymes are microsomal. In hippocampal neurons the affinity of the membrane 

associated MR for glucocorticoids was less than that of the MR mediating transcriptional 

effects[150]. A high salt diet, oxidative and nitrosative stresses may induce post-

translational modifications and alter MR intracellular trafficking, including to the 

membrane[1, 2], that might alter its ligand affinity, as well as its activity. There is evidence 

that increased ROS activates Rac1 GTP in neurons, as well as the kidney and heart, to 

produce ligand-independent activation of the transcriptional MR [134, 151]. Ligand-

independent activation of the transcriptional MR has been used to explain why MR 

antagonists are effective treatments for heart failure even when circulating aldosterone levels 

are normal[134, 151].

Circulating inflammatory cytokines due to peripheral injury and inflammation increase SNS 

drive through an MR-mediated mechanism and may also explain some of the therapeutic 

effects MR antagonists in heart failure patients who have no significant aldosterone 

elevation. Pioneering studies from Robert Felder’s lab in rats, confirmed and extended by 

others, demonstrate that cardiac injury produced by a myocardial infarction activates neural 

afferents to the brain and increases circulating inflammatory cytokines that activate MR in 
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the PVN, thus increase SNS drive to the periphery, exacerbating cardiac injury[92, 144, 149, 

152–155]. Inflammatory cytokines do not normally cross the blood brain barrier to directly 

influence neurons in the PVN, however they increase cyclooxygenase 2 (COX-2) activity in 

perivascular macrophages, resulting in increased prostaglandin E2, which does diffuse 

across the blood brain barrier, and activation of NADPH oxidase through MR. These events 

lead to inflammatory cytokine production within the brain and sympathetic nervous system 

excitation[156]. Antagonists of cytokines, COX-2, NADPH oxidase, and ROS scavengers, 

as well as of the MR, inhibit this cascade of events and decrease the maladaptive persistent 

increase in SNS drive that prevents healing and exacerbates damage and dysfunction of the 

infarcted heart[96, 149, 154]. Similarly, inhibitors of inflammation also prevent the 

excessive sustained sympathetic nervous system activation and hypertension in aldo-salt and 

AII-salt excess models[96].

Activation of the sympathetic nervous and RAAS systems is an adaptive response to a 

decrease in blood pressure, however the sustained inappropriate increase in sympathetic 

activity is maladaptive and associated with hypertension and chronic heart failure[157]. The 

standard practice of using thiazide and thiazide-like diuretics as first line treatment for 

hypertension lowers the blood pressure, but may cause a compensatory increase in SNS 

activation, resulting in unintended and too often unmeasured and underappreciated effects of 

sympathoexcitation, including increased blood glucose and insulin resistance[158, 159]. 

Untoward effects related to inappropriate SNS activation were avoided with the use of low 

doses of MR antagonists with or instead of the diuretic[158, 159]. These findings further 

support the increased use of MR antagonists for the treatment of cardiovascular and 

cardiometabolic disease[160–162], but ignore other crucial functions of MR, particularly 

those in the cerebral cortex and hippocampus.

The mineralocorticoid receptor is highly expressed in the whole brain in areas that do not 

have direct influence over the cardiovascular system, but are involved in memory, learning, 

affect, and the regulation of the HPA axis [6, 9, 150, 163, 164]. MR function is essential for 

long term potentiation (LTP) formation, the basis for memory and learning[132, 165–167]. 

Diabetes in the rat causes a reduction in in vitro LTP formation and levels of brain derived 

neurotrophic factor that is reversed by an MR agonist [168]. In contrast to magnocellular 

neurons and pre-sympathetic neurons of the PVN, that express MR, but not GR[169], most, 

if not all MR in neurons in the hippocampus and cortex are co-expressed with GR and, as 

explained more fully below, are occupied by endogenous glucocorticoids, with MR 

occupied at normal diurnal peak levels and GR activated during higher stress levels[164, 

170, 171]. The MR and GR in these neurons interact functionally to ensure the appropriate 

level of vigilance and reaction to stress[6, 150, 163, 164]. In addition to transcriptional 

effects, rapid non-nuclear effects involving presynaptic ERK1/2 and/or NADPH oxidase are 

essential for MR-mediated learning and memory formation[21, 134, 163, 172–177].

Confusion over the natural ligand for the mineralocorticoid receptor (MR)

Binding and activity studies demonstrated that natural glucocorticoids, albeit at significantly 

higher concentrations than those required for DOCA or aldosterone, also produced 

mineralocorticoid effects on epithelial ion transport in vitro in toad bladder-Ussing chamber 
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studies used to define mineralocorticoid action [178, 179]. Similarly, early studies showed 

that aldosterone and DOCA activate the glucocorticoid receptor (GR)[180], but at higher 

concentrations than those attained even in Primary Aldosteronism, a fact to be considered 

when interpreting experimental results involving supra-physiological amounts of 

mineralocorticoids, especially DOCA[181]. Intravenous infusion of tritiated aldosterone and 

corticosterone in adrenalectomized rats pretreated with unlabeled GR-specific ligands 

produced distinct overlapping autoradiograph patterns in the brain[182–185]. Binding of 

both steroids was highest in the hippocampus, followed by the choroid plexus, and select 

nuclei of the brain stem. Binding in the cortex, thalamus and hypothalamus was significantly 

greater for aldosterone than for corticosterone [183–185]. By this time it was recognized that 

aldosterone binding to its receptor caused it to move into the cell nucleus and initiate 

transcription [186]. To avoid the bias of using large amounts of a single steroid in 

adrenalectomized rats as required for autoradiography, Yongue and Roy measured 

endogenous aldosterone and corticosterone within cell nuclei isolated from different parts of 

the brains of intact rats under basal and stressed conditions that increased corticosterone 

levels, and after a chronically low salt diet to stimulate or high salt diet to suppress 

endogenous aldosterone production[187]. Under these conditions of physiological 

concentrations of both aldosterone and corticosterone, the highest concentrations of 

aldosterone were found in cell nuclei from the hypothalamus, not from the hippocampus 

where autoradiography indicated the highest concentrations of MR would be found. The 

highest concentrations of corticosterone were measured in the hippocampus even at basal 

corticosterone levels[187]. Aldosterone retention in the brain was not as greatly influenced 

by circulating endogenous levels of steroid as was that of corticosterone[187].

In addition to his pioneering work with the role of mineralocorticoid excess in hypertension 

and its pathological effects in the heart and kidneys in the 1940’s, Hans Selye recognized the 

importance of steroid activity in the brain and that glucocorticoids acted both in the brain 

and periphery to produce the “general adaptation syndrome”, now known as the stress 

response [188, 189]. Demonstration of the selective retention of corticosterone in the 

hippocampus prompted studies on the role of glucocorticoids in cognition, learning, 

memory, and mood, as well as the response to stress by many labs[163, 190]. It became 

apparent that corticosterone was bound by two receptors in the hippocampus, a higher 

affinity, Type I corticosteroid receptor occupied at basal levels of corticosterone at the peak 

of its circadian rhythm, and Type II corticosteroid receptor that was occupied at stress levels 

[191] and that the balance of Type I and Type II corticosteroid receptor activation and 

function was crucial for normal adaptation to environmental stressors[189, 191]. Acute 

activation of the lower affinity Type II receptors dampened the responses to stress; severe or 

chronic over-activation of these was shown to be detrimental to neurons, reducing dendrites 

and synapses and neuronal death. Use of sophisticated methods for the time demonstrated 

that the hippocampal Type I and Type II corticosteroid receptors were the same as the MR 

and GR identified in peripheral tissues[192, 193]. Cloning of the human MR conclusively 

demonstrated that the MR and Type I corticosteroid receptor were the same[194]. The 

cloned MR was also shown to have similar affinities for aldosterone, cortisol, corticosterone, 

DOC, and progesterone in vitro[194], though it clearly had tissue-specific ligand preference 

in vivo described years before.
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The glucocorticoids cortisol and corticosterone circulate at 1000 times the concentration of 

aldosterone in rats and humans with about 80–90% bound to corticosteroid binding globulin 

(CBG; transcortin) and albumin, providing concentrations of free glucocorticoids that are 

100 times those of aldosterone. Stanley Ulick had demonstrated that patients with Apparent 

Mineralocorticoid Excess, a pseudohyperaldosteronism characterized by hypertension and 

hypokalemia, low aldosterone and normal cortisol levels, had impaired conversion of 

cortisol to its inactive metabolite cortisone due to a deficiency in 11β-hydroxysteroid 

dehydrogenase (11β-HSD) activity [195–197]. Paul Stewart showed that licorice inhibited 

11β-HSD dehydrogenase activity and induced a similar syndrome[198]. Very soon 

thereafter the role of 11β-HSD dehydrogenase activity in providing pre-receptor ligand 

selectivity to the MR for aldosterone in aldosterone target cells was demonstrated[199–206].

There are at least two 11β-hydroxysteroid dehydrogenases, 11β-HSD1 and 11β-HSD2[204, 

207–209];Gomez-Sanchez, 1997 #3110;Gomez-Sanchez, 1997 #2519;Krozowski, 1999 

#7650}, located primarily in endoplasmic reticulum (ER) [210–212]. The existence of other 

11β-HSDs has been postulated[213–215] and an 11β-HSD3 has been described in porcine 

testes[216]. Cloning and characterization of 11β-HSD2 [217, 218], clarified the confusion 

caused by experiments using tissue homogenates that tore the ER and juxtaposed enzymes 

and co-factors that normally reside in separate cellular compartments. 11β-HSD1 is bi-

directional, but in the liver where it is most abundant it is responsible for the oxido-

reduction of inactive cortisone and 11-dehydrocorticosterone, converting them to cortisol 

and corticosterone, thus increasing the intracellular availability of activating ligand for both 

the GR and MR, particularly in the liver, adipose tissue and hippocampus, where the MR is 

normally bound by glucocorticoids[219, 220]. The obligate cofactor for 11β-HSD1 

reductase activity is NADPH which is regenerated from NADP+ within microsomes by 

hexose-6-phosphate dehydrogenase (H6PDH). (NADPH formed by glucose-6-phosphate 

dehydrogenase in the cytosol does not readily cross the ER membrane). Pre-adipocytes, do 

not express H6PD, thus 11β-HSD1 functions primarily as a dehydrogenase using NADP+ as 

cofactor in these cells. Upon adipocyte maturation and expression of H6PD, 11β-HSD1 

becomes a reductase[221–223].

11β-HSD2 is a unidirectional NAD+-dependent dehydrogenase that converts cortisol and 

corticosterone to the inactive cortisone and 11-dehydrocorticosterone[210, 215, 224]. 

Aldosterone is not a substrate. In the absence of ligand, MR in aldosterone target cells are 

thought to associate with 11β-HSD2 within the endoplasmic reticulum creating a micro-

environment in which aldosterone can attain sufficient concentrations compared to those of 

cortisol or corticosterone to bind and activate the MR[210, 211, 225]. An alternative 

hypothesis is that the change in redox potential produced by the dehydrogenase activity 

alters the structure, thus activity, of the MR bound by the more abundant 

glucocorticoid[226]. The metabolite of 11β-HSD2, 11-dehydrocorticosterone, was found to 

dampen MR-mediated increase in sodium transport, presumably acting as a check on 

aldosterone stimulated activity[227, 228]. Estrogens were found to significantly increase 

11β-HSD2 expression in the rat kidney, however the formation of inactive dimers was also 

increased and the increase in 11β-HSD2 expression was not associated with an increase 

dehydrogenase activity[229, 230]. The mechanism for control of 11β-HSD2 dimerization 

has not been clarified.
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11β-HSD2 is highly expressed in the normal placenta and the fetal brain where it mitigates 

exposure of the fetus to high glucocorticoid levels required for the mother’s metabolism 

during gestation[231–233]. Inhibition of 11β-HSD1 & 2 by relatively non-selective 

antagonists results intrauterine growth retardation and alterations of the HPA axis, increased 

anxiety, impaired ability to learn under stressful conditions, as well as hypertension[234–

240]. The effects of 11β-HSD2 inhibition during gestation on the adult progeny are similar 

to those produced by fetal malnutrition, relatively benign perinatal stress, and iatrogenic 

glucocorticoid treatment during ontogeny, especially with synthetic steroids that are not 

inactivated by 11β-HSD2 that are also associated with low for term birth weight or 

intrauterine growth restriction (IUGR). IUGR is associated with epigenetic changes in the 

corticoid receptors that alter functional MR:GR ratios in tissue-specific ways and have 

significant negative implications on the HPA axis, energy metabolism, cardiovascular 

health, as well as the ability to cope with psychological stress as an adult[165, 234, 241–

243].

As a reductase of cortisone/11-dehydrocorticosterone, 11β-HSD1 augments glucocorticoid 

action by increasing intracellular concentrations of active steroid, thus activation of either 

the MR or GR or both, depending on the cell type[220, 234, 243–246]. 11β-HSD1&2 may 

be found in different cell types in the same tissue. 11β-HSD1 in proximal cells and 11β-

HSD2 in collecting duct cells of the kidney where both appear to function as a 

dehydrogenase[247]. Both are expressed and tightly regulated throughout gestation in the 

placenta, 11 beta-HSD1 in decidualized stromal cells on the maternal side of the placenta, 

11 beta-HSD2 in villous cytotrophoblast, syncytiotrophoblasts and trophoblast cells from the 

fetus that invade the placental bed and maternal vasculature[248]. While most have found 

11β-HSD1 expression in smooth muscle cells and 11β-HSD2 in endothelial cells of 

vessels[249], both enzymes were reported to be expressed in human aortic vascular and 

bronchial smooth muscle cells[250] 11β-HSD1, but not 11β-HSD2, in these smooth muscle 

cells was increased in by inflammatory cytokines, resulting in an increased net conversion 

of 3H-cortisone to 3H-cortisol [250]. Both 11β-HSD1 & 2, along with GR, and MR mRNAs, 

were reported to be expressed in isolated rat and bovine granulosa cells. Net glucocorticoid 

inactivation by 11 beta HSD2 in immature cells changed to activation by 11β-HSD1 in 

granulosa cells stimulated by gonadotropins [251–254]. Imunohistochemistry of the rat 

ovary detected strong 11β-HSD2, but no 11β-HSD1 in granulosa cells of immature follicles 

and both in the granulosa cells of the corpora luteum [27]. An increase in conversion of the 

inactive 11-dehydro metabolites to active cortisol and corticosterone after ovulation would 

mitigate local inflammation in acute injury, including rupture of the ovarian follicle or 

injured vessel[250, 253, 254], however chronically it could lead to inappropriate MR and 

GR activation. Another example of 11β-HSD dehydrogenase/reductase activity switching 

during differentiation is the adipocyte[221–223]. The requirement for pre-receptor 

modulation of glucocorticoid concentrations is clearly dynamic.

DNA methylation and epigenetic repression of 11β-HSD2 transcription was shown to cause 

of the increase in the ratio of tissue 11β-HSD1:11β-HSD2, thus glucocorticoid action, and to 

be implicated in the cardiometabolic syndrome[255]. 11beta-HSD2-deficiency or inhibition 

causes hypertension, while 11beta-HSD1 deficiency or inhibition is atheroprotective, 

improves glycemic control and reduces the ravages of aging on vessels, memory and 
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cognition in animals [220, 249, 256–260] and humans[261]. Therefore 11β-HSD1 has 

become a target for the development of selective antagonists to mitigate diseases associated 

with excessive glucocorticoid action, including obesity, type II diabetes, cardiometabolic 

syndrome, and age-associated dementia in which excessive cortisol action on the GR is 

thought to have a role[257, 258, 262–267]. Selective 11β-HSD1 antagonists have been 

synthesized and tested [263, 264, 268–271], though not much information on their clinical 

efficacy is found in the literature as yet. They have shown promise in accelerating wound 

healing in stressed patients[272] and in ameliorating glycemic control in obese, but not 

simply overweight, type II diabetic humans[264].

Potentially significant environmental 11β-HSD enzyme inhibitors have been identified as 

disruptors of the balance of MR:GR action with implications for human health[273]. 

Endogenous antagonists of the 11β-HSDs, glycyrrhetininc acid like factors (GALFs) were 

proposed as modulators of MR action in experimental models and humans and a cause of 

hypertension[274–276]. GALFs are thought to be produced from endogenous 

glucocorticoids and their metabolites excreted in the bile, converted by microbial action in 

the gut to 21-dehydroxylated products, 11β-OH-progesterone, or 11β-OH-(allo)-5a-

preganolones, then reabsorbed, later to be excreted in the urine from whence they have been 

isolated[274–276]. While the significance of these compounds has been questioned [277, 

278], recent recognition of the importance of intestinal microbial action in metabolism and 

risk for a surprising variety of diseases may make this issue worth revisiting.

The possibility that 11β-HSD1 can function as a dehydrogenase is often overlooked; as both 

reductase and dehydrogenase functions are blocked by 11β-HSD1 inhibitors and may cause 

unexpected results in clinical trials of selective 11β-HSD1 inhibitors. Non-selective11β-

HSD inhibitors increase blood pressure and SNS activity through MR activation in the PVN 

[279–281], but where 11β-HSD2 is not found [82, 107, 110]. This does not occur in 

adrenalectomized rats, confirming the requirement for endogenous adrenal steroids 

including corticosterone[281]. H6PD is required in the microsome to generate NADPH, the 

obligatory cofactor for 11β-HSD1 reductase activity. Pre-sympathetic neurons of the PVN 

were found to co-express MR and 11β-HSD1, but not H6PD or GR, suggesting that 11β-

HSD1 acts as a dehydrogenase, providing extrinsic selectivity for aldosterone[82] and 

explain how the non-selective 11β-HSD inhibitors increase SNS and blood pressure[281]. In 

addition to cardiovascular and renal effects, SNS activation also increases gluconeogenesis, 

thus exacerbating metabolic problems associated with obesity and cardiometabolic 

syndrome[159]. Unfortunately, selective 11β-HSD1 inhibitors may not be the panacea for 

aging and obesity.

Expression of 11β-HSD2 is very limited in the adult brain

It has been detected in epithelia cells of the subcommissural organ and a few neurons of the 

ventromediolateral hypothalamus, vestibular nucleus, and NTS [82, 282–287]. Sodium 

depletion increases endogenous aldosterone levels and activity of aldosterone target neurons 

that co-express MR and 11β-HSD2 in the NTS, resulting in an increase in sodium 

appetite[286, 288]. These neurons become quiescent and sodium appetite decreases upon 

oral sodium repletion[286, 288]. Despite the absence of 11β-HSD2, ample evidence accrued 
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over several decades by many labs indicates that aldosterone activates MR in autonomic 

neurons of the PVN. In addition the hypertension produced by the oral, subcutaneous or icv 

administration of non-selective 11β-HSD1&2 inhibitors glycyrrhizic and glycyrrhetinic acid 

and carbenoxolone, and the more 11β-HSD2 selective 11α-hydroxyprogesterone [289] 

produce hypertension that is prevented by the concomitant icv infusion of MR 

antagonists[279, 280]. Moreover, treatment or rats with glycyrrhizic acid and carbenoxolone 

produced sympathoexcitation that was inhibited by an MR antagonist and adrenalectomy 

prevented the effect, suggesting that a pre-receptor dehydrogenase mechanism protecting the 

MR from endogenous glucocorticoid activation exists in the PVN[281]. Both 11β-HSD1 and 

H6PD mRNA and protein were reported in the hypothalamus and other areas of the rat 

brain, however these studies were of relatively large blocks of tissue; they did not address 

individual cells[290]. More recently MR and 11β-HSD1, but neither GR nor H6PD, were 

detected by immunofluorescence within pre-autonomic neurons in the PVN identified by a 

retrograde tracer from the intermediolateral cell column of the spinal cord. Plasma 

aldosterone, MR expression and translocation to the nucleus, and c-fos activity were 

increased in pre-sympathetic neurons in the PVN of rats adapted to a low, compared to high 

salt diet, while the plasma corticosterone levels were not different [82]. These data suggest 

that 11β-HSD1 acts as a dehydrogenase and provide aldosterone selectivity to the MR in 

these pre-sympathetic neurons[82] and that the physiological role for MR in these neurons is 

to activate the SNS and maintain normal blood pressure during sodium depletion.

The balance between MR and GR mediated functions in the brain is crucial, differs for each 

cell type and is dynamic[6, 164, 291–293]. In the hippocampus, where GR activation is 

crucial for the modulation of MR-mediated excitation during stress[164], epigenetic 

repression of GR is associated with increased anxiety and response to stress[241, 242, 294]. 

Imbalance between MR and GR expression and/or activation also contributes significantly 

to depression and the loss of cognitive function during depression [163, 164, 173, 292, 293, 

295, 296]. Decreases in absolute MR and relative levels of MR:GR message in the 

prefrontal and anterior cingulate cortex and, conversely, the increase in the MR:GR ratio in 

the PVN were documented in patients with depression compared to controls with no history 

of depression[297].

Transgenic mice with MR deleted only in the forebrain neurons have uncontrolled arousal 

and anxiety that impedes learning[173, 176], while over-expression of MR in the forebrain 

neurons reduces anxiety, and increases resilience to ischemia [298]. GR deletion decreases 

anxiety, but also impairs hippocampal-dependent explicit memory and increases HPA 

activity [296]. MR and GR neurotrophic effects are quite specific. Granule cells of the 

dentate gyrus of the hippocampus are lost in mice with targeted MR deletion in forebrain 

neurons; the morphology and function of hippocampal CA1 neurons are abnormal in those 

with GR deleted in forebrain neurons[296].

Similarly over-expression of the MR in the dentate gyrus granule cell layer in rats enhances 

the consolidation of non-spatial memory, augments short term memory, and protects against 

the effects of glucocorticoid excess in rats[174, 299], while selective over-expression of the 

MR in the basolateral amygdala of adult rats is anxiolytic and dampens to the response to 

acute stress [300]. Activation of GR decreases the excitability of neurons produced by a 
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stressful event, thereby restoring normal function[171], however severe stress early or 

chronic stress later in life leads to epigenetic changes increasing GR expression and chronic 

suppression of neuronal excitation producing animal behaviors analogous to depression in 

humans[165, 301].

The chronic infusion of corticosterone into the lateral ventricle at the same or double the 

molar dose of aldosterone that produces hypertension by itself had no effect on blood 

pressure, however its co-infusion in equimolar amounts of aldosterone blocked the 

hypertension produced by the icv infusion of aldo alone [302]. Similarly, a series of 

experiments in which MR and GR agonists and antagonists were infused 

intracerebroventricularly confirmed that activation of central MR increases, and of GR 

decreases, the blood pressure[303]. While we detected no GR in the pre-synaptic neurons of 

the PVN, GR and MR are abundantly expressed in adjacent parvocellular neurons, some of 

which are interneurons that modulate the pre-sympathetic neurons[304]. The infused 

corticosterone in these experiments may have acted through GR or MR in neurons that 

moderate the activity of the pre-sympathetic neurons of the PVN. If this is so, while 

selective inhibitors of GR or 11β-HSD1 curb excessive GR activation within the 

hippocampus and slow the progression of the ravages of obesity and age experimentally, it 

may be at the cost of losing dampening effect on excessive sympathoexcitation. Similarly, 

though the benefits of MR antagonists in heart failure are indisputable, there is persuasive 

evidence based on animal and human studies that decreasing the functional balance between 

MR and GR in the cerebral cortex and hippocampus by inhibiting MR and/or increasing GR 

activities leads to deleterious changes in the HPA axis, depression, memory deficits and 

lower cognition[8, 163].

Fludrocortisone, an MR agonist, was shown to be an asset to the standard treatment for 

depression[305], however it would seem contraindicated for those at risk for hypertension or 

in heart failure. Depression, hypertension and cardiovascular disease are frequent co-

morbidities and independent risk factors for each other[155, 306, 307], as are primary 

Aldosteronism and depression[59, 308]. All involve an imbalance of MR:GR activation in 

the brain.

In summary, as was shown for the stress response, memory, cognition, and mood[163, 188, 

309, 310], the MR and GR work in concert in the brain to mediate essential and 

complementary actions for cardiovascular and osmotic homeostasis. In seeking to correct an 

imbalance between MR and GR, and aldosterone- and glucocorticoid-mediated actions in 

one target system, it is essential to consider the effects on others.
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Highlights

• Brain MR mediate diverse events including memory, learning & hemodynamic 

regulation

• The ratio of MR:GR is crucial for normal cell function and whole body 

homeostasis.

• Glucocorticoids occupy most neuron MR and GR at basal & stress levels, 

respectively.

• 11β-HSD1 dehydrogenase activity may confer aldosterone selectivity to MR in 

some neurons.

• MR & 11β-HSD1 antagonists may have good & bad consequences on brain MR 

function.
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Figure. 
Schematic of 3 types of MR ligand selectivity in neurons. Hp: Hippocampal neurons express 

both MR and GR; endogenous glucocorticoids are the physiological ligand for the MR and 

11β-HSD1 is thought to act as a reductase. PVN: Pre-sympathetic neurons of the PVN 

express only MR, no GR; aldosterone appears to be the physiological ligand for the MR due 

to dehydrogenase activity of 11β-HSD1 in the absence of H6PD. NTS: Aldosterone target 

cells of the NTS express MR and 11β-HSD2, an obligate dehydrogenase. ?: preferred ligand 

for the membrane-associated MR is not certain. ??: whether GR is Expressed GR in aldo-

target cells is not certain.
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