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Equilibrium Kinetic Network of the Villin Headpiece in Implicit Solvent
Weina Du1 and Peter G. Bolhuis1,*
1van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
ABSTRACT We applied the single-replica multiple-state transition-interface sampling method to elucidate the equilibrium
kinetic network of the 35-residue-fragment (HP-35) villin headpiece in implicit water at room temperature. Starting from the
native Protein Data Bank structure, nine (meta)stable states of the system were identified, from which the kinetic network
was built by sampling pathways between these states. Application of transition path theory allowed analysis of the (un)folding
mechanism. The resulting (un)folding rates agree well with experiments. This work demonstrates that high (un)folding barriers
can now be studied.
INTRODUCTION
To elucidate and understand the detailed folding mechanism
of proteins, it is desirable to have access to both experi-
mental measurements and numerical simulation data. Up
to now, only fast-folding proteins have fulfilled that crite-
rion, since they fold sufficiently slowly for time-resolved
experiments yet fast enough that their folding kinetics
can be estimated by molecular dynamics simulations. One
such fast-folding protein, the 35-residue subdomain of the
villin headpiece (HP-35) (1,2) folds into a native state that
is characterized by three a-helices packed together, thus
forming a hydrophobic core (3,4) (see Fig. 1 for a visualiza-
tion of the native structure). The experimental folding rate
of the villin headpiece is on the order of a few microseconds
(~0.5–5 ms�1) (5–8). The experimental unfolding rate for
wild-type HP-35 is much slower, specifically ~800 ms�1,
at 300 K (5). Thus, the stability of the native state with
respect to the unfolded state is ~5–6 kBT (where kB is Boltz-
mann’s constant and T is temperature). Past experiments
have revealed several important aspects of the villin head-
piece folding/unfolding mechanism. Backbone mutagenesis
(9) indicated that backbone hydrogen bonds mediate the he-
lix formation from the transition state to the native state, and
a folding nucleus found between helices II and III was pre-
dicted to accelerate folding. The finding that the transition
state does not contain many native tertiary contacts and/or
hydrogen-bonded helices, but may contain a hydrogen-
bonded loop, is consistent with a relatively low folding
free-energy barrier (10). Reiner et al. (11) used triplet-triplet
energy transfer to monitor conformational fluctuations from
equilibrium and found two conformational traps in the HP-
35 unfolding process. They proposed that as it unfolds from
the native structure, the protein encounters a relatively high
barrier on the way to a major conformation where the C- and
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N-termini are proximate and then crosses a relatively low
barrier on the way to a minor conformation where the two
termini are farther apart.

The villin headpiece has been investigated extensively
using molecular simulations (12–14) with both implicit
(14–19) (including a study of a double mutant (19)) and
explicit solvent (12,13,20–22). The first microsecond all-
atom explicit-solvent molecular dynamics (MD) simulation
of the villin headpiece took place in the late 1990s (20),
and by only a few years later, the simulation length under
the same condition had been extended 300-fold (12), by
employing distributed computing. These long-time simula-
tion trajectories clarified the folding mechanism to a large
extent. A conformational search, after a quick (20-ns) mo-
lecular collapse, was proposed to be the rate-limiting step
before the native state was finally reached (12). The folding
rate was predicted to be ~5 ms. Freddolino and Schulten
analyzed three folding trajectories from MD simulations
(13). They found a folding time of 5.6–8.2 ms, during
which the protein visited a long-lived intermediate state
that has the native secondary structure, but with helix I
flipped and rotated with respect to helix III. Folding to
the native state was observed to proceed only after all three
helices dissociate and reassociate with each other (13). A
recent simulation of the Nle/Nle double mutant of the
C-terminal fragment of the villin headpiece resulted in a
folding rate of 2.8 ms at a melting temperature of 342 5
5 K (23).

Similar to explicit-solvent simulations, implicit-solvent
Monte Carlo simulations of the folding process by Yang
et al. (14) showed early-stage collapse into a fairly compact
structure, which remains compact until the native state is
found, indicating the presence of well-formed secondary
structure in the transition state. Later implicit-solvent simu-
lations by Lei and Duan (17) proposed a well-defined two-
stage folding process. Coming from the unfolded structure,
the rate-limiting first stage leads to a folding intermediate
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FIGURE 1 Structures for each state drawn with VMD (41). The protein

backbone is shaded blue to red from the N-terminus to the C-terminus. For

state N, several residues are highlighted: Lys in gray, Pro in brown, Arg in

white, and Asp in red. States R and T are composed of multiple structures,

with the native structure shown in transparent gray. States A and B are

composed of multiple structures, whereas states C and D are single-struc-

ture states. To see this figure in color, go online.
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where helices II and III form, which further facilitates the
folding and docking of helix I in the second stage. Lei and
Duan found on-pathway and off-pathway intermediates
both with formed helices II and III. In contrast to the exper-
iments by Reiner et al. (11), they found that the barrier sepa-
rating the native state and the intermediate state is small,
whereas that between the intermediate and the denatured
states is large.

Most simulation approaches use either straightforward
MD (23) or Markov-state modeling (24–26) to construct a
(complex) transition network from a large but finite number
of trajectories. However, when the trajectories spend most
of their time in kinetic traps, these approaches can become
inefficient. Parallel tempering or replica exchange, a pop-
ular simulation strategy to enhance sampling of protein
conformational changes, efficiently generates a folding
free-energy landscape but loses the direct connection to
the kinetics. The path-sampling method (27,28) can alleviate
these problems, since it samples unbiased rare trajectories
between stable states and hence can sample transitions in
which high barriers are encountered without losing any ki-
netic information.
In this study, we apply the recently developed single-repl-
ica multiple-state transition-interface sampling (SRMSTIS)
(29,30) to HP-35 in implicit solvent. The aim of this work
is to build up and analyze the equilibrium kinetic network
for this protein and to show that we can overcome huge un-
folding barriers (on the submillisecond timescale). For
computational efficiency, we chose to work with a relatively
small protein in implicit solvent. We note, however, that the
method is fully applicable to explicit solvent (30). Starting
with the native state, the SRMSTIS method builds up the
equilibrium kinetic network by identifying metastable states
and computing the kinetic-rate matrix between all these
states. First, we performed a regular transition-interface
sampling (TIS) of the native state to detect and define signif-
icant metastable states. Next, the SRMSTIS was applied to
these states. During this sampling more metastable states
were found, and these were added to the state set. A second
SRMSTIS with nine states was applied to explore the kinetic
network. Subsequent analysis using transition path theory
(TPT) yielded new insight into the network, the unfolding
mechanism, and the rate (31,32).

This article is organized as follows. In Materials and
Methods, we introduce the molecular simulation and path-
sampling conditions. In Results, we present the state
identification along with the path sampling, followed
by evaluation and analysis of the results. We end with
concluding remarks.
MATERIALS AND METHODS

Molecular dynamics

All MD simulations were performed with the Gromacs-4.5.4 package (33–

36). The experimental NMR structure (Protein Data Bank code 1YRF) (4)

was used to initiate the simulation. We employed the CHARMM27 force

field (37) with the multibody CMAP correction (38,39), which was param-

eterized to incorporate a-helix formation cooperativity in the force field

(40) to deal with implicit-solvent systems. Protein configurations were visu-

alized with VMD (41).

After putting the protein into a 6-nm cubic box, the energy was mini-

mized by the steepest-descent method for 30 ps. In all simulations, the

time step was 2 fs and the temperature was kept at 300 K by the v-rescale

scheme (42). The nonbonded van der Waals cutoff radius was 1.4 nm, the

LINCS algorithm constrained the bonds (43), and the Coulomb interaction

cutoff was 4.8 nm. Frames were saved every 10 ps.

To represent solvation, we used the generalized Born surface area (GBSA)

approach,which combines aGBelectrostaticmodelwith an approximation of

the hydrophobic effect based on the solvent-accessible SA (44–49). Although

the GBSA method can successfully identify native states of some short pep-

tides with well-defined tertiary structure (50), in some studies, GBSAmodels

predict different conformations compared with those from explicit solvent

due to overly strong salt bridges and overpopulated a-helix (51).

Stable states were identified with the assistance of the k-centers cluster

method (52,53).
Multiple-state transition interface sampling

The multiple-state TIS method samples the equilibrium kinetic network be-

tween predefined (meta)stable states and computes the corresponding rate
Biophysical Journal 108(2) 368–378
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matrix. For each (meta)stable state I, the method requires a definition of a

series of m nonintersecting interfaces based on an order parameter lkI,

where each successive interface 1%k%m delimits a volume in configura-

tion space that encompasses the previous interface. The path ensemble

belonging to each interface consists of all dynamical trajectories that start

in the stable state and cross the interface, then return to the same state or

end in any other state. The sampling of this interface-path ensemble is

done via a Monte Carlo importance sampling by shooting off new trial tra-

jectories from an existing pathway.

For this path sampling we use the one-way shooting algorithm (54). The

stochastic one-way shooting move selects an initial point randomly from a

previous accepted path and randomly decides whether to shoot forward or

backward. For a forward move, an MD trajectory is initiated from the shoot-

ing point in the forward time direction until it reaches any stable-state defi-

nition. For a backward move, the momenta of all particles are reversed first,

so that the integration effectively runs backward in time. The new trial path

is constructed by joining the newly generated trajectory with the existing

first half of the previous path (separated by the shooting point). This trial

path can be accepted according to a metropolis Monte Carlo rule (for

more details, see Du and Bolhuis (30)).

To identify the stable states, we used the root mean-square deviation

(RMSD) of the backbone Ca atoms with respect to a reference structure.

As the heads and tails of polypeptides are usually flexible, we use only Ca

atoms from residue index 2–32. This order parameter, denoted rmsd2–32,

was used for both state and interface definitions. For instance, the native

state S01 is defined by rmsd2–32 < 0.13 nm, i.e., any structure with a

distance of <0.13 nm to the reference structure S01 is considered to

be in the native state. Using the same order parameter, l h rmsd2–32,

a series of 10 nonintersecting interfaces were defined around S01, with

increasing radii. Starting from 0.17 nm, neighboring interfaces are sepa-

rated by a fixed interval of 0.04 nm. The TIS set of interfaces is thus

defined by l ¼ 0.17, 0.21, 0.25, 0.29, 0.33, 0.37, 0.41, 0.45, 0.49, and

0.53 nm.

In addition, we employ the minus interface shooting to ensure faster

decorrelation in the first interface ensembles (29,55). Every time the first

interface of a state is visited, instead of performing a shooting move, we

simply continue the MD trajectory from one end point until it crosses the

first interface again and subsequently ends in some state. By cutting off

the segment spent in the stable state(s), the last part of this trajectory forms

a qualified trial path for the first interface ensemble. The average duration of

MD trajectory between first crossings of the first interface also provides an

estimate of the flux through the first interface (55,56). The MSTIS simula-

tions were performed using a home-written Perl script. For more details, we

refer the reader to Du and Bolhuis (30).
SRMSTIS simulations

Combining the MSTIS algorithm with a single-replica exchange method

enables us to sample all interface ensembles for a single state in one

path-sampling simulation (29). This SRMSTIS algorithm requires an

optimal bias function, which can be constructed using a Wang-Landau

approach, or, more efficiently, by a fixed bias, which is periodically up-

dated. The optimal bias is equal to the crossing probability, i.e., the proba-

bility that a path will cross the interface provided that it left the metastable

state at an earlier time. To improve convergence, an additional state swap

move allows switching between different states, so that all defined states

are sampled and paths decorrelate faster (29,30).

We performed SRMSTIS using multiple walkers. The ratio of trial inter-

face exchanges to shooting moves is 9:1. Interface exchanging is governed

by a fixed biasing function, denoted lnP(l), which is updated after every

4500 interface exchange moves. State swapping allows paths to start in a

different state, but it is only attempted in the outermost interface, for an

accepted path that connects two different states and crosses the outermost

interface of both these states. The state-swapping move is controlled by a

Wang-Landau algorithm, with its own biasing function, which is updated
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every attempt (29). In this way, all states should eventually be sampled

an equal amount. The initial (logarithmic) update factor is 0.0001, which

is reduced by a factor of 2 once the sampling histograms of all states are

equal within <10% of each other.

The path sampling can start from any interface of any state, with a qual-

ified initial path. Ideally, with state swapping and interface exchanging, one

single replica could accomplish equal sampling of all path ensembles given

enough time. However, for efficiency, we employ multiple independent rep-

licas, or walkers. These walkers store their results in a shared file, which is

used to update bias functions for state swapping and interface exchanging.

These bias functions govern the state-swapping and interface-exchanging

behavior in all walkers (30).
Path-type analysis

The sampled path ensembles can be combined using a path-type analysis, as

detailed in Du and Bolhuis (30). The rate-constant matrix is given by

kIJ ¼ hf1IiPIðl0J jl1IÞ; (1)

where hf1Ii is the positive effective flux through the first interface l1I , and

PIðl0J jl1IÞ is the crossing probability for reaching state J (defined by l0J)

from state I:

PIðl0Jjl1IÞ ¼
Pm

k¼ 1~nIJðlkIÞP
J˛M

Pm
k¼ 1~nIJðlkIÞ

: (2)

Here, the reweighted path-type number, ~nIJðlkIÞ, is

~nIJðlkIÞ ¼ wk

Xm

i¼ 1

niIJðlkIÞ; (3)

where niIJðlkIÞ is the path-type number for interface ensemble i, defined as

the number of paths that start in state I, end in state J, and maximally reach

interface lkI . The weights wk ¼ ðPk
l¼1w

�1
l Þ�1 are obtained from a weighted

histogram analysis of the crossing probabilities for state I. See Du and

Bolhuis (30) for more details.
RESULTS

Finding the stable-state set

Native-state TIS

The NMR (Protein Data Bank) structure after equilibration
with MD, labeled as S01, defines the native state N. Starting
from this state, we performed regular TIS in implicit solvent
at 300 K. A sampling of the path ensembles at all 10
interfaces comprised around 4000 shooting moves in
total. Of these, 314 long trajectories, including accepted
paths >10 ns and rejected paths >5 ns, were collected for
cluster analysis. Together, these 314 paths add up to
~6.4 ms, and given the frame interval of 10 ps, they contain
6:4� 105 configurations. Using the k-center clustering
method with rmsd2–32 as the metric, all configurations
were grouped into 2000 clusters with a near-equal radius
of ~0.13 nm. Among these 2000 clusters, 55 clusters
with >1000 members each comprise 79% of the total con-
figurations. For each of these clusters, we extracted the
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central structure based on the rmsd2–32 metric. Further, we
computed the rmsd2–32 of all trajectories against the 55
extracted structures to check the clusters’ stability. Here,
a more strict criterion is applied, in which a structure
is only qualified as a stable state when it is stable
for >10 ns. Note that only paths >10 ns contribute in this
step. This criterion yielded 42 stable structures.

A drawback of the used k-center clustering algorithm is
that one well-populated state may be divided into two or
more clusters, which are then kinetically very close to
each other. By identifying correlations between groups of
clusters in the trajectories, we lump these clusters together
into a single state. Usually, such clusters are also confor-
mationally similar, and in fact should have been lumped
together in the clustering step. In this way, the 42 clusters
were found to belong to just two states. The one containing
40 cluster centers is a major kinetic trap, whereas the other
is a minor kinetic trap, with only two member clusters. Of
the major trap, 28 clusters were very sparsely populated
(<2%) and so were discarded. The remaining 12 structures
were combined in the R state, whereas the two minor
trap structures were considered to be part of the T state.
In Table 1, the three stable-state definitions are listed in
the first three rows, with the microstate (cluster) structures.
Numbers in parentheses indicate the stable-state definition
using the rmsd2–32. For a visualization of their structures,
see Fig. 1.

SRMSTIS with three states

Next, we performed SRMSTIS for the three states N, R, and
T. Each state was defined by either a single structure
(state N) or multiple structures (states R and T), as detailed
in Table 1. Similar to the native-state TIS above, for states R
and T, 10 interfaces were defined with an interval of
0.04 nm. When a state consists of multiple structures, e.g.,
state R or state T, we use the combination rule (57), which
returns the minimum rmsd2–32 distance of a trial structure
to any of the state’s member structures as the distance to
the state.

In this first round of SRMSTIS, 20,000 paths were har-
vested for states N and R, whereas <3000 paths were
sampled for state T, indicating that there are further kinetic
TABLE 1 Construction of all seven stable states by 26

structures

State Structures

N 1 (0.13)

R 2 (0.13) 3 (0.13) 4 (0.13) 5 (0.13) 6(0.13) 7(0.13)

8 (0.13) 9 (0.13) 10 (0.13) 11 (0.13) 12(0.13) 13(0.13)

T 14 (0.10) 15 (0.10)

A 16 (0.10) 17 (0.10) 18 (0.10) 19 (0.10) 20(0.10)

B 21 (0.10) 22( 0.10) 23 (0.10) 24 (0.10)

C 25 (0.10)

D 26(0.10)

The RMSD cutoff for each structure is given in parentheses.
traps in the vicinity of state T, which should have been
defined as states. Using the same procedure as in the previ-
ous section, we collected 1218 trajectories>10 ns (accepted
paths) or 5 ns (rejected paths) from all interface ensembles,
adding up to 20 ms and comprising more than 2 million
frames in total. Using k-center clustering, these configura-
tions were grouped into 4000 microstates with an average
radius of 0.13 nm. The RMSD centers of the 309 most popu-
lated clusters, each containing over 1000 members, were
taken as microstates. Comparing the rmsd2–32 metric of all
trajectories against those 309 structures yielded 50 struc-
tures that trapped trajectories for >10 ns. Kinetic checking
of those 50 structures resulted eventually in four additional
macrostates, two of which are composed of five and four
structures each, whereas the other two only contain a single
structure each. The new macrostates were arbitrarily labeled
A, B, C, and D, respectively. The definition of these macro-
states by microstate structures and their cutoff in terms of
the metric are also listed in Table 1. Their structures are
shown in Fig. 1.

Besides these macrostates, we also added a denatured
intermediate state, M, and an unfolded state, U, determined
by deformation criteria of all three helices. State M has a
denatured helix I and helix II, whereas helix III remains
intact. For this state, the RMSD of helix I and helix II rela-
tive to the native state should be >0.30 nm and 0.25 nm,
respectively, whereas the RMSD of helix III is within
0.15 nm of the native helix III. State U is defined by having
all helices denatured, with an RMSD for the three helices
of >0.30, 0.25, and 0.30 nm from the native helices I–III,
respectively.
Sampling the kinetic network

SRMSTIS with seven states

We carried out a SRMSTIS simulation for the system based
on the extended state set E ¼ (N, R, T, A, B, C, D, M, U).
We allowed paths to start in any of the seven states (N, R,
T, A, B, C, or D) and to end in any X˛E. A set of 10 inter-
faces with a fixed interval of 0.04 nm was defined for each
state, X˛ (N, R, T, A, B, C, and D). As described in the
Materials and Methods section, we allowed for shooting
moves, exchange moves, and state swapping.

Forty independent SRMSTIS simulations (walkers) were
initiated, exchanging interfaces and states on the fly based
on the biasing functions. In total, ~10,000 shooting moves
were performed for each state (Table 2). The acceptance
ratio for shooting moves is 54%, and those of interface
exchange and state swap are 62% and 30%, respectively.
The total aggregate simulation time of the sampled paths
is ~200 ms. Convergence of the sampling bias functions
is shown in Fig. 2. Fig. 3 gives an indication of how the
40 walkers randomly move through the interface space.
(For a list of normalized path-length distributions for
Biophysical Journal 108(2) 368–378



TABLE 2 Number of trial shooting, interface exchanging

moves, and state swaps for seven states

State Shootings Exchanges Swaps

N 9309 84,567 118

R 10,011 89,190 238

T 10,016 87,757 178

A 8118 72,340 53

B 7575 67,244 145

C 9562 86,521 55

D 9278 84,736 220
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FIGURE 3 Replica index as a function of the number of exchange moves

for all 40 walkers. On the x axis, the walkers are separated by vertical lines.

On the y axis, each successive set of 10 replicas corresponds to a different

state, with each replica in the set corresponding to l1–l10. States are in the

order (lowest to highest) N, PN, SN, Mg, meta, and Pd.
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ensembles from l1 to l10 of all states, see Fig. 8 in the
Appendix).

Based on a total of � 64,000 trial shooting moves,
we extract the flux and transition count matrices. Using
path-type reweighting (see Du and Bolhuis (30)) we
compute the crossing probability matrix, the rate matrix,
FIGURE 2 The last three biasing functions (in the order red, green, and

blue, where blue is the last bias condition) for all sampled states, N, R, T, A,

B, C and D, compared with the final crossing probability of the respective

state (black dotted line). The near overlap of the curves implies conver-

gence. To see this figure in color, go online.
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and the transition time-length matrix (see Table 4). To check
the reliability of the reweighting, we compare the crossing
probability at each interface of a state as computed from
path-type reweighting analysis with the results from
ensemble-based crossing probability analysis. Deviations
of crossing probabilities from the two analysis methods
are small for all interfaces of the seven sampled states
(see Table 7 in the Appendix).

During sampling, the denatured state M was sampled by
many paths. Exemplary structures of state M are shown in
Fig. 4. However, state U was not visited by any path. To
gain more information about the unfolded state and build
up the connection from U to any other states, we performed
FIGURE 4 Three exemplary denatured structures in state M. The stable

helix III is formed in all structures, but helices I and II are mostly deformed.

The protein backbone runs blue to red from N-terminus to C-terminus. To

see this figure in color, go online.



TABLE 3 Flux information at the first interface of each state

State MFPT Error npath hf1i
N 0.1830 0.0191 2456 5.4648

R 0.3671 0.0075 1854 2.7241

T 0.3527 0.0681 2682 2.8354

A 1.3108 0.6954 978 0.7629

B 0.2454 0.0438 1146 4.0757

C 0.3653 0.2167 2462 2.7374

D 0.3125 0.2738 1490 3.1996

M 0.2223 0.1305 4226 4.4994

U 0.4947 0.2808 9389 2.0215

Columns denote, respectively, the state, the mean first passage time (MFPT)

in ns, the error in the mfpt, the number of trajectories, and the average flux

in units of ns�1.
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additional straightforward MD trajectories, which will be
discussed in the next section.

MD trajectories start from fully unfolded structures

Eight 1-ms-long MD trajectories were started from
randomly selected unfolded structures to extract more
information from the unfolded region U and make a
connection to the sampled network of states. As the exper-
imental and theoretical folding time is ~5 ms, these MD
trajectories should be able to sample the early stage of
folding. Indeed, two out of the eight MD trajectories
form helix III, whereas the remaining trajectories do not
form helix III during the entire 1-ms trajectory. Two exem-
plary trapped structures in the unfolded region are shown
in Fig. 5. Lysine residues form an obstacle to folding, espe-
cially in the formation of helix III. Helix III forms only
slowly, but once formed it is stable and hard to deform.
In contrast, helices I and II showed much more flexible
and fast dynamics; they form and deform, merge into one
helix or break up into two helices, and flip with respect
to each other.

Flux at the first interface of sampled states

For the seven sampled states, the flux through the first inter-
face, l1, was extracted directly from the inverse of the
average length of the paths in the minus shooting move
(55,56). For states M and U, the flux follows directly from
straightforward MD simulation by keeping track of their
mean first passage time (MFPT). We list the fluxes for all
nine states in Table 3.
Analysis of the network

The transition probability and the rate matrices

SRMSTIS enables construction of the transition network
among states N, R, T, A, B, C, D, M, and the MD trajectories
initiated from the unfolded region yield transitions between
M and U. By combining these two results, we construct the
complete kinetic network for all nine states, as detailed in
Du and Bolhuis (30). The transition matrix, the rate matrix
FIGURE 5 Two randomly selected metastable structures in the unfolded

regime, visited by MD trajectories coming from the completely unfolded

states. The protein backbone runs blue to red from N-terminus to C-termi-

nus. Lysine is shown in gray. To see this figure in color, go online.
K, and the transition time matrix are shown in Table 4. In
addition, we estimated the relative statistical error in the
rates by assuming a normal distribution of the path-type
numbers at the first interface. This statistical error estimate
is mostly <10% and never higher than 50% for rarely
sampled transitions.

These matrices indicate that, kinetically, A and B are
close to N and R, whereas C and D are close to T. The M
state acts as a bridge between all states and the unfolded
state U. The reciprocal eigenvalues of the rate matrix yield
the most important timescales in the kinetic network. These
timescales in descending order are t ¼ {N, 982.265,
378.568, 15.8943, 13.6639, 8.81709, 2.28238, 2.00341}
ns. The slowest timescale (apart from infinity, which is the
equilibrium solution) corresponds to the overall folding pro-
cess, and other timescales are fast processes related to tran-
sition between the metastable states. This slowest timescale
corresponds to the single-exponential kinetics observed in
time-resolved experiments. However, we also see a 378 ns
timescale that has not been observed in experiments up to
now, indicating the presence of at least one intermediate
state.

Population of states

Applying pðtÞ ¼ pð0ÞexpðKtÞ for t/N for the rate matrix
K yielded the stationary distribution for the nine states (see
Table 5). Besides the native state, N, the only other signifi-
cantly populated state is R, which accounts for ~30% of the
overall population. In this state, all three helices are intact,
but their relative positions are rearranged. Structurally, state
R (defined by structures 2–13 (Fig. 1)) is very similar to the
intermediate state identified by Lei and Duan (17). Those
authors found that this state is an off-pathway intermediate
that is not connected to N. However, in our calculations, the
R state is kinetically very close to N, and carries a signifi-
cant amount of unfolding flux (see section Transition-path
theory analysis). The other, much less populated, states, T,
A, B, C, and D (Fig. 1) have helix I flipped relative to helices
II and III. This structural feature is very similar to the on-
pathway intermediate state found in Lei and Duan (17)
Biophysical Journal 108(2) 368–378



TABLE 4 Transition probability, rate constant, transition time matrix, and relative error

N R T A B C D M U

Crossing probability matrix

N 9.96 � 10�1 3.95 � 10�1 8.96 � 10�6 1.19 � 10�4 1.22 � 10�4 1.04 � 10�7 1.84 � 10�6 2.72 � 10�7

R 1.85 � 10�2 9.81 � 10�1 1.09 � 10�5 2.58 � 10�4 9.25 � 10�5 4.90 � 10�7 2.28 � 10�5 1.49 � 10�6

T 4.94 � 10�4 1.28 � 10�4 9.93 � 10�1 4.77 � 10�6 1.27 � 10�3 4.67 � 10�3 1.70 � 10�4

A 6.44 � 10�2 2.98 � 10�2 4.67 � 10�5 9.05 � 10�1 9.66 � 10�5 5.86 � 10�5 4.51 � 10�4

B 1.05 � 10�1 1.69 � 10�2 1.53 � 10�4 8.78 � 10�1 2.62 � 10�5 3.27 � 10�4

C 8.83 � 10�5 8.87 � 10�5 1.95 � 10�2 9.78 � 10�1 1.16 � 10�3 1.01 � 10�3

D 6.08 � 10�4 1.61 � 10�3 2.80 � 10�2 3.59 � 10�5 1.01 � 10�5 4.54 � 10�4 9.68 � 10�1 1.27 � 10�3

M 2.56 � 10�3 2.99 � 10�3 2.89 � 10�2 7.87 � 10�3 3.60 � 10�3 1.12 � 10�2 3.61 � 10�2 9.03 � 10�1 3.60 � 10�3

U 5.32 � 10�4 9.99 � 10�1

Rate constant matrix (ns�1)

N — 2.16 � 10�2 4.90 � 10�5 6.52 � 10�4 6.69 � 10�4 5.70 � 10�7 1.00 � 10�5 1.49 � 10�6

R 5.03 � 10�2 — 2.97 � 10�5 7.03 � 10�4 2.52 � 10�4 1.34 � 10�6 6.22 � 10�5 4.05 � 10�6

T 1.40 � 10�3 3.64 � 10�4 — 1.35 � 10�5 3.60 � 10�3 1.32 � 10�2 4.81 � 10�4

A 4.91 � 10�2 2.27 � 10�2 3.56 � 10�5 — 7.37 � 10�5 4.47 � 10�3 3.44 � 10�4

B 4.27 � 10�1 6.90 � 10�2 6.25 � 10�4 — 1.07 � 10�4 1.33 � 10�3

C 2.42 � 10�4 2.43 � 10�4 5.34 � 10�2 — 3.18 � 10�3 2.76 � 10�3

D 1.94 � 10�3 5.17 � 10�3 8.96 � 10�2 1.15 � 10�4 3.24 � 10�5 1.45 � 10�3 — 4.06 � 10�3

M 1.15 � 10�2 1.35 � 10�2 1.30 � 10�1 3.54 � 10�2 1.62 � 10�2 5.05 � 10�2 1.63 � 10�1 — 1.62 � 10�2

U 1.08 � 10�3 —

Transition time matrix (ns)

N — 46.36 20416.37 1533.86 1495.41 1753510.20 99588.61 671598.61

R 19.88 — 33673.33 1422.81 3968.37 748853.16 16072.51 246901.23

T 713.93 2745.38 — 73972.42 277.74 75.56 2080.43

A 20.36 44.04 28082.82 — 13572.99 22370.08 2906.55

B 2.34 14.49 1600.87 — 9367.68 749.82

C 4136.34 4118.55 18.74 — 314.27 361.97

D 514.45 193.58 11.16 8704.75 30905.90 688.23 — 246.29

M 86.67 74.29 7.68 28.25 61.80 19.80 6.15 — 61.77

U 929.21 —

Estimated relative error in rates

N — 0.0123 0.1196 0.0445 0.0596 0.1544 0.0645 0.0692

R 0.0149 — 0.2257 0.0526 0.0694 0.1949 0.0704 0.0494

T 0.0695 0.1844 — 0.1709 0.0429 0.0202 0.0340

A 0.0061 0.0098 0.2570 — 0.1429 0.1618 0.0226

B 0.0063 0.0073 0.1211 — 0.2486 0.1027

C 0.1510 0.1757 0.0115 — 0.0439 0.0184

D 0.0741 0.0472 0.0090 0.1687 0.4431 0.0448 — 0.0248

M 0.0378 0.0376 0.0071 0.0183 0.1504 0.0164 0.0102 — 0.0326

U 0.0755 —

Values were determined by path-type-reweighting analysis.
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and to the folding intermediate proposed in Freddolino and
Schulten (13), where the flipped helix I prevents the forma-
tion of the hydrophobic interactions present in the native
state.

The relaxation of the population is shown in Fig. 6.
From an initially completely folded state, there is a
quick relaxation toward the R state within 50 ns. Relaxation
to the other states is much slower, on the order of 1 ms (Fig. 7,
lower).

Transition-path theory analysis

Using flux analysis (32) based on TPT (31,57), we
computed the committor values for states R, T, A, B, C,
and D from the overall transition from N to U (see Table 5).
Based on the effective net flux matrix for the N / U tran-
sition (Table 6), the unfolding mechanisms can be summa-
Biophysical Journal 108(2) 368–378
rized as a plot shown in Fig. 7. Note that direct flux
transitions between (N, R, T, A, B, C, D) and U are rare.
Although the rates for (N, R, T, A, B, C, D) / U are all
zero in the rate matrix K, they appear in the transition
matrix, via the matrix exponent ofK. Because of symmetry,
the net fluxes for the folding transition U/ N are identical
to the unfolding fluxes, but then, of course, reversed. Note
also that the corresponding committor values are defined
as qfold ¼ 1� qunfold.

State M transfers 84% net flux between the two sets, con-
firming its key role in the (un)folding process. Using TPT,
we also computed the overall folding and unfolding mean
FPTs (MFPTs) as 1.3 and 748 ms, respectively. We stress
that to compute the rate of such a slow unfolding process us-
ing straightforward MD simulations would have taken
orders of magnitude more computer time.



TABLE 5 Equilibrium populations and committors

State Population Committor

N 0.6719 0

R 0.2882 0.000036

T 0.0235 0.015

A 0.0089 0.00026

B 0.0011 0.00014

C 0.0016 0.016

D 0.0035 0.015

M 0.0001 0.049

U 0.0013 1

Corresponding to each state, the second column gives the population

obtained from the rate matrix and the third column lists the committors

for the N / U transition following from transition path theory analysis.
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DISCUSSION

Using SRMSTIS, we computed the entire unfolding kinetics
network of the villin headpiece. This resulted in identifi-
cation of nine metastable states, and a 9 � 9 rate matrix.
The experimental folding and unfolding times are 0.5–5
FIGURE 6 (Upper) Plot of the population relaxation, P(t) ¼ p(0)

exp(Kt), as a function of time t for all nine states in the villin headpiece

system. At time t ¼ 0, only the native state is populated. (Lower) Enlarged

population versus time plot of the bottom region of the top figure, where the

population relaxation of the less populated seven states can be seen. Lines

in decreasing order of final population represent states T, A, D, C, U, B,

and M, respectively. To see this figure in color, go online.

FIGURE 7 Villin headpiece flux for both unfolding (upper) and folding

(lower). Numbers on the left indicate the committor probabilities of the

corresponding levels. Thickness of the arrows indicates the N/U-related

flux density. This figure only considers fluxes>10�8 ns�1. To see this figure

in color, go online.
ms, and 800 ms, respectively, whereas our calculations
yielded times of 1.3 and 748 ms, respectively, in very good
agreement with experiment. Flux analysis shows that the
unfolding goes via intermediates R or T (and to a much
lesser extent A, B, C, and D), and a mandatory intermediate
M. There are two prominent unfolding routes, N / T /
M / U and N / R / D / M / U, observed from
the flux plot (Fig. 7). The intermediate states have formed
TABLE 6 Flux matrix of nine states for transition from N to U

(in 10�8 ns�1)

N R T A B C D M U

N 50.94 48.53 11.09 4.95 0.76 10.72 5.54 0.89

R 13.94 4.40 0.62 0.69 25.37 5.04 0.87

T 12.13 9.86 33.22 8.12

A 0.74 0.11 0.86 11.69 2.11

B 0.12 0.01 0.04 0.25 4.31 0.84

C 11.36 2.98

D 0.63 36.97 9.47

M 108.14

U

Biophysical Journal 108(2) 368–378



FIGURE 8 Normalized path length distributions for all sampled paths of

the corresponding state. Ensembles from l1 to l10 are shown with black,

red, green, blue, yellow, brown, gray, violet, cyan, and magenta lines,

respectively, at 150 ps resolution. To see this figure in color, go online.
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helix II and helix III, which compared well with the
previously detected on-pathway (states T, A, B, C, D) and
off-pathway (state R) intermediates by implicit-solvent
simulations (17). Moreover, we found a very fast N / R
transition, a slower N / T transition, and extremely slow
transitions R / U and T / U, in agreement with the con-
clusions of Lei and Duan (17) that the transition from native
state to intermediates is easy, whereas that from the inter-
mediates to the unfolded state is hard.

Both our SRMSTIS and straightforward MD simulations
have proved that helix III is much more stable than helix I
and helix II. In our SRMSTIS with seven structure-based
states, the sampled paths witnessed the formation and defor-
mation of helices I and II, but helix III was nearly always
intact. In a similar way, MD simulations initiated from the
unfolded state, as reported in the Results section, indicated
that helix III was hard to form/deform, whereas helixes I
and II were more flexible and exhibited (de)formation, heli-
Biophysical Journal 108(2) 368–378
cal merging, and bending more frequently. We thus defined
the structures with intact helix III and denatured helix I and
II as the intermediate state M, allowing it to connect the
structure-based states to the fully unfolded region (with
helix III deformed) as a transition.

Explicit-solvent simulations by Freddolino and Schulten
(13) corroborate this finding. In all three MD folding trajec-
tories, helix III was formed within the first 2 ms and re-
mained stable ever after. The following 4–6 ms showed
rearrangement of the relative positions of the three helices,
and in one trajectory this was accompanied by formation
and deformation of helices I and II before the native struc-
ture was reached. The different properties of helix III (sta-
ble) compared with the other two helices also has
theoretical support, since helix III, as the longest helix in
the villin headpiece, is composed of 10 residues, among
which four are Lysine residues. Once formed, helix III is sta-
bilized by those long residues due to the space constraints
and/or electrostatic interactions.

Our unfolding flux calculation has highlighted the key
role state M plays in (un)folding process (see Fig. 7). It
acts as the mandatory intermediate state between the native
and unfolded states. The importance of state M correlates
with the properties of the three helices: helices I and II are
flexible and experience multiple (de)formations, whereas
helix III is the bottleneck of the (un)folding process.
CONCLUSIONS

To summarize, we have performed an extensive sampling of
the kinetic network of the villin headpiece using SRMSTIS.
Although the initialization phase is currently rather ad hoc
and would benefit from automation, this work shows that
this method can be used to sample complex folding net-
works, which would cost orders of magnitude longer simu-
lation time with straightforward MD.
APPENDIX

In this appendix, we present additional information on the sampling. Fig. 8

shows the path-length distribution of all ensembles. Table 7 contains a com-

parison between the ensemble-based computation of the crossing probabil-

ities and the path-reweighting analysis.
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