Skip to main content
. 2014 Nov 20;47(2):227–249. doi: 10.1007/s00726-014-1873-1

Table 1.

The most promising antifungals inhibiting amino acid biosynthesis in fungi

Compound Enzyme inhibited Fungi affected Antifungal effect
The threonine branch
RI-331 (Fig. 2c) Homoserine dehydrogenase C. kefyr, Growth inhibition
C. albicans,
C. tropicalis,
C. parapsilosis,
C. glabrata, Effective in the treatment of systemic murine candidiasis being highly tolerated in micea, b
C. neoformans
Phenolic analogs (Fig. 2d–g) Probably homoserine dehydrogenase Candida strains, Growth inhibitionc
S. cerevisiae
3,6-Dimethyl-1-phenylpyrazolo[5,4-b]pyridin-4-ol (Fig. 2i) Homoserine kinase S. cerevisiae, Growth inhibitiond
S. pombe,
C. neoformas
Rhizocticin A (Fig. 2 j) Threonine synthase C. albicans Growth inhibitione
S. cerevisiae
The methionine branch
Azoxybacilin and esters analogs (Fig. 2a) ATP sulfurylase, homoserine transacetylase, sulfite reductase A. corymbifera, Growth inhibition (low antifungal activity in an animal infection modelf, g)
A. fumigates,
M. canis,
T. mentagrophytes

3,3,3-Trifluoro-N-(2-methylphenyl)

-2-(trifluoromethyl) propanamide (Fig. 2 d)

Probably cystathionine

β-lyase

C. albicans Growth inhibitionh
The fungal α-Ketoadipate pathway of lysine biosynthesis
Trimethyl ester of (2R,3S)-3-(p-carboxybenzyl)malate (Fig. 5a) Homoisocitrate dehydrogenase C. krusei, Growth inhibition
C. albicans,
C. tropicalis,
S. cerevisiae,
C. pseudotropicalis,
C. dubliniensis,
C. lusitaniae,
(2R,3S)-3-(p-carboxybenzyl) malate (Fig. 5b) C. dubliniensis, Low activity
C. lusitaniae Low activityi
Trans-homoaconitate (Fig. 5g) Homoaconitase C. albicans Growth inhibitionj
trans-1,2-epoxy-propane-1,2,3-carboxylate (Fig. 5h) Homoaconitase C. albicans Growth inhibitionj
(2R,3S)-2-fluoro-3-allylsuccinate and the methyl esters (Fig. 5i) Homoisocitrate dehydrogenase C. albicans Growth inhibitionj
(1R,2S)-1-fluorobutane-1,2,4-tricarboxylate and the methyl esters (Fig. 5 j) Homoisocitrate dehydrogenase C. albicans Growth inhibitionj
L-thialysine and DL-hydroxylysine (Fig. 5l, m) Homocitrate synthase S. cerevisiae Growth inhibitionk
Branched-chain amino acid biosynthesis
Sulfonylureas derivatives (Fig. 7a–d) Acetohydroxyacid synthase C. albicans Growth inhibitionl
Triazolo-pyrimidine-sulfonamides (Fig. 7g, h) Acetohydroxyacid synthase S. cerevisiae, Growth inhibitionm
C. albicans,
A. fumigatus,
R. oryzae
C. neoformans
N-(5-substituted-1,3,4-thiadiazol-2-yl)cyclo- propanecarboxamides (Fig. 7i–j) Ketol-acid reductoisomerase R. solanii, Growth inhibitionn
F. oxysporum,
C. cassiicola,
B. cinerea
Biosynthesis of glutamate and glutamine
Dimethyl 2-methyleneglutarate (Fig. 10a) NADP-glutamate dehydrogenase A. niger Growth inhibitiono
Dimethyl isophthalate (Fig. 10b) NADP-glutamate dehydrogenase A. niger Inhibit growth in vivo and resulted in changes in mycelial morphologyo
1,2,3 Triazole-linked β-lactam-bile acid conjugates: B18 (Fig. 10d) NAD-glutamate dehydrogenase B. poitrasii Inhibition of germ tube formation during Y–H transitionp, q
1,2,3 Triazole-linked β-lactam-bile acid conjugates: B20 (Fig. 10e) NAD-glutamate dehydrogenase B. poitrasii, Inhibition of germ tube formation during Y–H transitionp, q
C. albicans,
Y. lipolytica

a Yamaguchi et al. (1988); b Yamaki et al. (1990); c Ejim et al. (2004a); d Pascale et al. (2011); e Kugler et al. (1990); f Aoki et al. (1994); Aoki et al. (1996); h Ejim et al. (2007); i Gabriel et al. (2013); j Milewska et al. (2012); k Gray and Bhattacharjee (1976); l Lee et al. (2013); Richie et al. (2013b); n (Liu et al. 2009); o Choudhury et al. (2008); pJoshi et al. (2013); q Peters and Sypherd (1979)