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Comparative-based gene recognition is driven by the principle that conserved regions between related organisms
are more likely than divergent regions to be coding. We describe a probabilistic framework for gene structure
and alignment that can be used to simultaneously find both the gene structure and alignment of two syntenic
genomic regions. A key feature of the method is the ability to enhance gene predictions by finding the best
alignment between two syntenic sequences, while at the same time finding biologically meaningful alignments
that preserve the correspondence between coding exons. Our probabilistic framework is the generalized pair
hidden Markov model, a hybrid of (I) generalized hidden Markov models, which have been used previously for
gene finding, and (2) pair hidden Markov models, which have applications to sequence alignment. We have built
a gene finding and alignment program called SLAM, which aligns and identifies complete exon/intron structures
of genes in two related but unannotated sequences of DNA. SLAM is able to reliably predict gene structures for
any suitably related pair of organisms, most notably with fewer false-positive predictions compared to previous
methods (examples are provided for Homo sapiens/ Mus musculus and Plasmodium falciparum/ Plasmodium vivax
comparisons). Accuracy is obtained by distinguishing conserved noncoding sequence (CNS) from conserved
coding sequence. CNS annotation is a novel feature of SLAM and may be useful for the annotation of UTRs,

regulatory elements, and other noncoding features.

The idea of comparing organisms in order to further the un-
derstanding of their biology has been a central theme in bi-
ology, arguably originating with the work of Darwin, who
formalized the theory of evolution by observing the similari-
ties and differences between related organisms. The compara-
tive method itself has evolved, advancing much in recent
years with the ability to compare the genomic sequences of
organisms. These comparisons have yielded many new re-
sults, often leading directly to important biological discover-
ies (for a recent example, see Penacchio et al. 2001). Indeed,
motivated by the success of comparative genomics in identi-
fying regulatory elements, Hardison et al. (1997) suggested
sequencing the mouse genome for the purpose of annotating
the human genome.

Comparative gene finding with such large volumes of
data requires formalization and automation of methods. This
process began with the ROSETTA program (Batzoglou et al.
2000), the first automated program for annotating human
genes using syntenic unannotated mouse genomic DNA. The
comparative approach was subsequently adopted by several
groups, resulting in the CEM program (Bafna and Huson
2000), TWINSCAN (Korf et al. 2001; http://genes.cs.wustl.
edu), SGP-1 (Wiehe et al. 2001; http://www1.imim.es/datasets/
humanmouse), and SGP-2 (R. Guig6, pers. comm.). These pro-
grams differ from the homology-based gene finders such as
PROCRUSTES (Gelfand et al. 1996), GENOMESCAN (Yeh et al.
2001), and GENEWISE2 (Birney and Durbin 2000) in that
rather than using protein homologs or confirming EST evi-
dence to help in coding exon prediction, they compare two
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identical types of sequences (genomic DNA). This distinction
is subtle but important; comparative-based gene finders can
use extra information such as gene structure and splice site
conservation, introducing complications different from the
issues arising in other homology-based approaches.

At the same time that gene finding was moving toward
the comparative approach, a similar development was taking
place in the alignment community. Alignment programs such
as BLAST (Altschul et al. 1990) had traditionally been based
on pure sequence comparison. In both BLAST and other
methods there had been no attempt to incorporate the anno-
tation of the sequences being aligned into the alignment pro-
gram. Because biological sequences do not display random
patterns of conservation, the consideration of biological fea-
tures during alignment can greatly improve performance. An
excellent example of this is WABA (Wobble Aware Bulk
Aligner, Kent and Zahler 2000), which takes advantage of the
third base wobble in coding exons to improve alignment and
was successfully applied towards the problem of aligning the
Caenorhabditis elegans and C. briggsae genomes.

In this paper we describe a program that places the an-
notation and alignment problems on an equal footing. Our
probabilistic model is a generalized pair hidden Markov model
(GPHMM). Generalized hidden Markov models (GHMMs)
have been applied successfully in gene finding programs such
as GENSCAN (Burge and Karlin 1997; http://genes.mit.
edu/GENSCAN.html) and GENIE (Reese et al. 2000). Pair hid-
den Markov models (PHMMs) have been used for alignment,
and can be shown to be equivalent to the Needleman-
Wunsch (Needleman and Wunsch 1970) alignment method
(Durbin et al. 1998; Holmes 1998). The GPHMM we have
developed directly generalizes both of these types of HMMs.
As a special case, by appropriately altering model parameters,
our method can be made equivalent to GHMM-based single-
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organism gene finders like GENSCAN and GENIE, or to com-
parative gene finders such as ROSETTA (which separates the
steps of alignment and gene finding). We have built a pro-
gram called SLAM which implements these ideas and can be
used to annotate syntenic sequences by finding coding exons
and conserved noncoding sequences, or as a global alignment
program which takes advantage of the biological features of
the sequences to improve the accuracy of the alignments.

RESULTS

The SLAM program was tested on the ROSETTA test set (Bat-
zoglou et al. 2000) of 117 single-gene sequences as well as on
the multigene HoxA cluster (220 Kb; L. Elnitski, pers. comm.),
and the Elastin gene region (390 Kb, accession nos.
NT_025776 and NT_014920). SLAM was compared to the fol-
lowing programs:

1. GENSCAN (Burge and Karlin 1997): makes gene predic-
tions in genomic DNA from a single organism.

2. ROSETTA (Batzoglou et al. 2000): uses syntenic DNA pairs
to make gene predictions in one sequence.

3. SGP-1 (Wiehe et al. 2001): uses syntenic DNA pairs to make
gene predictions in both sequences.

4. SGP-2 (R. Guig6, pers. comm.): predicts genes in one se-
quence, incorporating as evidence matches to a collection
of informant sequences.

5. TWINSCAN (Korf et al. 2001): predicts genes in one se-
quence, incorporating as evidence matches to a collection
of informant sequences.

Note that the TWINSCAN web-server allows for the specifica-
tion of a custom informant sequence to be used instead of the
default informant sequence database. By supplying the syn-
tenic mouse DNA as a custom informant sequence for a hu-

Table 1. Results on the Test Sets

man region, it is therefore possible to run TWINSCAN on
syntenic DNA pairs—we use the modifier TWINSCAN.p to
label runs of this type. The most direct comparison is then
between ROSETTA, SGP-1, SLAM, and TWINSCAN.p, because
all run on a syntenic pair of genomic DNA sequences.
TWINSCAN and SGP-2 fall into their own category, each in-
corporating matches against a database of mouse sequences to
predict genes in human, and GENSCAN serves as a bench-
mark, making gene predictions using only one sequence.

Results for GENSCAN and TWINSCAN were obtained by
submitting the test sets to their servers, and the results of
SGP-1 on the ROSETTA set were retrieved from (Wiehe 2001).
SGP-2 results for HoxA and Elastin were obtained from (R.
Guigd, pers. comm.). The programs were compared using
standard performance measures (Burset and Guigd 1996;
Burge and Karlin 1997). The results of the programs on the
test sets are summarized in Table 1. The table presents the
sensitivity (SN) and the specificity (SP) at both the nucleotide
and exon levels, the approximate correlation (AC), and rates
for missed (ME) and wrong (WE) exons (false positives not
overlapping any true exons).

Perhaps the most striking aspect of the results shown in
Table 1 is the difference in performance between the class of
programs operating on syntenic pairs (ROSETTA, SGP-1,
SLAM, and TWINSCAN.p) and the class of programs operating
on human sequence using matches against a mouse database
(SGP-2, TWINSCAN). This is not unexpected—when homol-
ogy against a large database of sequences is used to boost exon
scores, this will naturally include more false-positive align-
ments, leading to a degradation in specificity (the difference is
particularly large in the case of HoxA, where the sensitivity
achieved is even lower than that of a single-organism gene
finder). At the same time, the increase in sensitivity when
using homology against a large database is negligible. It is

Nucleotide level Exon level
Test set SN SP AC SN SP (SN+SP)/2 ME WE
The ROSETTA set
ROSETTA 0.935 0.978 0.949 0.833 0.829 0.831 0.048 0.047
SGP-1 0.940 0.960 0.940 0.700 0.760 0.730 0.120 0.040
SLAM 0.951 0.981 0.960 0.783 0.755 0.769 0.038 0.057
TWINSCAN.p 0.960 0.941 0.940 0.855 0.824 0.840 0.045 0.081
TWINSCAN 0.984 0.889 0.923 0.839 0.767 0.803 0.034 0.118
GENSCAN 0.975 0.908 0.929 0.817 0.770 0.793 0.057 0.107
HoxA
SLAM 0.852 0.896 0.864 0.727 0.533 0.630 0.000 0.333
TWINSCAN.p 0.976 0.829 0.896 0.773 0.531 0.652 0.000 0.312
TWINSCAN 0.949 0.511 0.704 0.591 0.173 0.382 0.000 0.707
SGP-2 0.640 0.637 0.619 0.409 0.173 0.291 0.091 0.596
GENSCAN 0.932 0.687 0.796 0.545 0.235 0.390 0.000 0.569
Elastin
SLAM 0.876 0.981 0.926 0.802 0.859 0.831 0.121 0.059
TWINSCAN.p 0.942 0.950 0.945 0.879 0.889 0.884 0.066 0.056
TWINSCAN 0.933 0.877 0.903 0.835 0.826 0.831 0.110 0.120
SGP-2 0.755 0.998 0.873 0.593 0.900 0.291 0.352 0.017
GENSCAN 0.947 0.766 0.852 0.835 0.731 0.783 0.121 0.231

The measures of sensitivity SN = TP/TP + FN and specificity SP = TP/TP + FP (where TP = true positives, TN = true negatives, FP = false positives
and FN = false negatives) are shown at both the nucleotide and exon level. ME is entirely missed exons, WE is wrong exons, and the
approximate correlation AC = 1/2 (TP/TP + FN + TP/TP + FP + TN/TN + FP + TN/TN + FN) — 1 summarizes the overall nucleotide sensitivity
and specificity by one number. Within each of the three data sets the methods are divided into three classes: those operating on a syntenic
DNA pair, those operating on a human sequence using as evidence matches against a database of mouse sequences, and a single-organism

gene finder (GENSCAN).

Genome Research 497
www.genome.org



Alexandersson et al.

clear that whenever possible, it is better to operate on a syn-
tenic DNA pair (though of course in practice the finished ge-
nomic data may not be available).

Analysis of the programs operating on syntenic pairs on
the ROSETTA test set shows that although SLAM nucleotide
sensitivity is slightly lower than that for TWINSCAN.p, the
specificity is significantly higher, with half as many nucleo-
tides being incorrectly predicted as coding. At the exon level,
ROSETTA and TWINSCAN.p perform better. SLAM’s high
nucleotide scores in conjunction with the low wrong and
missed exon rates suggest that it is getting exon boundaries
slightly wrong rather than missing them entirely. The current
model used for a human-mouse splice-site pair treats the
splice-site sequences as independent in each organism.
Clearly, modeling the significant conservation in splice-site
pairs will improve exon-level performance. Examination of
the longer HoxA and Elastin regions shows that SLAM’s speci-
ficity is consistently higher. The lower sensitivity rates for
SLAM on these regions is due in part to inaccurate approxi-
mate alignments (a preprocessing step done with AVID [Bray
et al. 2003; http://bio.math.berkeley.edu/avid] to reduce the
computational complexity of the GPHMM); this problem,
which arises with longer (more difficult to align) regions,
should be fixed with the forthcoming implementation of
more sophisticated approximate alignment methods.

There are a number of reasons why we believe SLAM
should be highly specific. A notable property shared by SLAM
and SGP-1 is that the gene prediction is performed symmetri-
cally in both sequences. In addition to requiring good align-
ment between exons, this has the effect of requiring conser-
vation of exon-order and frame consistency in both se-
quences.

Another important and novel feature of SLAM is the pre-
diction of conserved noncoding sequence (CNS). The anno-
tation of CNSs allows for the distinction between conserved
coding and conserved noncoding sequence in a probabilistic
manner.

It has been observed (Makalowski et al. 1996; Burge and
Karlin 1997) that in the case of human/mouse comparisons
there is much noncoding conservation to be found, including

UTR-, regulatory element-, and other biologically related con-
servation, and also nonfunctional background conservation.
The CNS state significantly lowers the false-positive rate by
eliminating the consideration of noncoding conserved re-
gions as exons. To test the effectiveness of the CNS state, we
examined the performance of SLAM on the ROSETTA test set
with and without the CNS state. With the CNS state, SLAM
predicted 548 CNSs with an average length of 103.2 bp and
78.9% identity. Running SLAM without the CNS state re-
sulted in a drop in nucleotide specificity from 98.1% to
95.4%, and in exon specificity from 75.5% to 69.1%. One
might expect the CNS state to increase the rate of false-
negatives (missed exons) due to the fact that some true exons
might be mistaken for CNS, but the exon sensitivity in-
creased, from 76.9% without the CNS state to 78.3% with the
state. This can almost certainly be attributed to the protein
space exon scoring, which effectively distinguishes the type of
conservation. Thus, it seems that comparative gene finding
requires both an exon recognition component (based on pro-
tein alignment) and a conserved noncoding comparison
(based on DNA alignment) to be effective.

Another example demonstrating the importance of the
CNS state is the HoxA cluster in human and mouse. The re-
gion contains 11 HoxA genes (according to RefSeq annota-
tions), each consisting of two exons. What makes this region
particularly difficult for comparative gene finders is the re-
markably high level of conservation in both coding and non-
coding sequence. The intron and intergenic regions are 69%
identical at the DNA level as opposed to the ~36% that has
been observed on average for human and mouse (Makalowski
et al. 1996). This makes the overprediction of exons more
likely, particularly for TWINSCAN and SGP-2, which boost
exon scores on the basis of local alignments against a large
database. The poor performance is due to the number of false-
positive exons: 29 for GENSCAN, 53 for TWINSCAN, and
31 for SGP-2, as opposed to 10 for SLAM and 10 for
TWINSCAN.p.

Figure 1 shows the region of the HoxA2 and HoxA3 genes
in human (accession numbers NM_006735 and NM_030661,
respectively), where there is a high level of conservation.
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Figure 1 Fourteen thousand bp from the HoxA cluster showing the HoxA2 and HoxA3 genes. The top half of the figure consists of predictions
and annotations for the 5' — 3’ strand and the bottom half for the 3" — 5’ strand. The tracks shown are: RefSeq annotations, GENSCAN,
TWINSCAN, SGP-2, and SLAM predictions, Repeats masked by RepeatMasker (A. Smit and P. Green, unpubl.), TBLASTX alignments, and SLAM and
VISTA CNS annotations. The figure was created using gff2ps by J.F. Abril and R. Guig6, available at http://www1.imim.es/software/gfftools/

GFF2PS.html.
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The TBLASTX hits represent matches between this region
and a database of mouse genomic sequence. SLAM and
TWINSCAN.p do a good job of distinguishing between exons
and CNSs, whereas SGP and TWINSCAN are led to some false
positives by the high rate of TBLASTX hits against the mouse
genome.

In addition to being a necessary component to reduce
false-positive predictions, we found that the CNS state en-
abled the identification of biologically important noncoding
features. For instance, we have observed many cases where
the SLAM CNS predictions agree excellently with UTR regions
(we currently do not report quantitative results for UTR pre-
dictions due to the lack of reliable UTR annotations in our
data sets).

The model used by SLAM is useful for organism pairs
other than human and mouse. It has been retrained for use in
comparisons between the malaria parasites Plasmodium falci-
parum and Plasmodium vivax. There are very few sequenced
orthologous pairs currently available, but we were interested
in these organisms because of the importance of the malaria
genome and the major sequencing efforts underway. Because
of the lack of data we were not able to undertake a perfor-
mance analysis such as in Table 1 but as an example, we tested
on the chloroquin resistance transporter syntenic gene pair
(accessions AF030694 and AF314649). SLAM correctly found
nine of the exon pairs, there being 13 exons in P. falciparum
and 14 in P. vivax. The performance is good when one con-
siders that the third exon in P. falciparum has an intron in-
serted in P. vivax, leading to a differing number of exons and
violating the model assumptions. Moreover, the first two
exon pairs were not included in the approximate alignment
determined by AVID because of weak sequence homology,
and so were not even considered. Also, the smaller size of this
example allowed us to test the program with larger approxi-
mate alignments, thus moving us closer to simultaneous
alignment and gene prediction, and these approximate align-
ments did not result in any extra false positives.

DISCUSSION

SLAM is the first implementation of a GPHMM, which simul-
taneously aligns and predicts genes in two orthologous se-
quences. Moreover, the requirement of valid gene structures
in both sequences improves the accuracy of the program,
most notably reducing the false-positive rate. The novel com-
ponents of the program, such as a CNS state and paired exon
scoring in protein space to distinguish coding from noncod-
ing conservation, make SLAM a powerful tool that can be used
for gene prediction as well as for alignment.

SLAM compares favorably to other gene finders, particu-
larly with regard to the false-positive rate, which has been the
Achilles’ heel of many gene finding programs. It should be
noted that the numbers quoted in our comparisons should be
examined qualitatively to determine the relative strengths
and weaknesses of the programs, rather than to obtain quan-
titative measures of their (expected) performance. In the tests
performed it was impossible to ensure that the programs were
trained and tested on the same sequences, partly due to the
fact that there is not a lot of publicly available, well annotated
orthologous sequence. Furthermore, different programs were
optimized for different inputs. For instance, most of the gene
finders (including SLAM) were optimized for larger genomic
regions (or even for draft sequence) rather than single-gene
sequences such as in the ROSETTA set. To account for this we

also tested on two long regions, the HoxA cluster and the
Elastin region. An extensive and quantitative comparison
similar to the single-organism gene finding comparison in
(Guig6 et al. 2000) is a worthwhile endeavor to pursue in the
future, as more data become available.

Nevertheless, we believe that the results obtained shed
light on some of the relative strengths and weaknesses of the
programs tested, and are valuable in that regard. For example,
it is a well known fact that single-organism GHMM-based
gene finders such as GENSCAN and GENIE have high false-
positive rates (Guigdé et al. 2000), and it has been universally
accepted that “adding” homology information can reduce
this problem. However, merely adding alignment informa-
tion by boosting the scores of highly conserved potential ex-
ons is not enough. In shorter, single-gene regions, such as in
the ROSETTA set, the difference between GENSCAN and
TWINSCAN is negligible. On the other hand, longer, highly
conserved regions such as the HoxA cluster demonstrate the
difficulty faced by an approach that does not explicitly ad-
dress the problem of distinguishing the type of conservation
(the TWINSCAN program does leverage the third base pair
wobble in determining whether to boost an exon score, but it
does not distinguish coding from noncoding conservation).
The introduction of a CNS state turned out to be crucial for
bringing down the false-positive rate, and we included it in
the model only after we discovered that it was impossible to
remove false-positive predictions of UTRs that were highly
conserved, and happened to contain open reading frames.

Examining CNS predictions by eye, we already noticed
that they should be valuable for the detection of noncoding
features, such as regulatory regions and UTRs. Indeed, it ap-
pears that predictions of CNSs will be an important applica-
tion of human/mouse comparative studies, and it remains an
open problem to establish the precise criteria for what a CNS
is. The CNS model described in this paper can be extended
and enhanced to take advantage of more complex conserva-
tion patterns when these are revealed through biological stud-
ies.

On the ROSETTA set, the SLAM performance is some-
what lower at the exon level. However, the high nucleotide
sensitivity and specificity in conjunction with a low rate of
missed exons indicate that most exons not predicted correctly
have a significant overlap with true exons, the exon bound-
aries being slightly off. Future developments to the SLAM pro-
gram will include the introduction of a paired splice-site
model. The development of a good theoretical model for scor-
ing splice sites in pairs remains an interesting, unsolved prob-
lem. The structure of the underlying Markovian-state space in
SLAM models genes in both organisms, and includes the as-
sumption that there the genes have the same number of ex-
ons (in the same order) in each organism. As mentioned
above, this assumption allows for an increase in specificity by
imposing additional constraints that are almost always valid.
However, these assumptions are violated (albeit less than 1%
of the time in human-mouse; Pachter 1999) and some or-
thologous genes have different numbers of exons, and/or
frameshifts (related exons which have lengths that do not
differ by a multiple of 3). These difficulties can be addressed
by suitably modifying the GPHMM used.

A more serious obstacle to practically using the SLAM
GPHMM method, is that in a naive implementation, the
memory usage and the computational complexity scale as the
order of the product of the lengths of the input sequences.
One way of mitigating this problem is to preprocess the data,
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producing an approximate alignment as described in the
Methods section, such that the computational task grows lin-
early in the length of one of the input sequences. This already
helps immensely, but the pressing need for high-throughput
algorithms requires even more sophisticated methods to re-
duce the memory and computational demands. Producing
lean approximate alignments is an interesting problem in its
own right, and we have been exploring different strategies,
one of which is in development (Pachter et al. 2002).

The prospect of investigating the utility of SLAM CNS
predictions, as well as the application of SLAM to finding
alternatively spliced transcripts (by looking, for example, for
suboptimal parses) is particularly exciting in light of the many
successes that have been obtained by application of the com-
parative method.

A SLAM server, including datasets and additional infor-
mation, is available at http://bio.math.berkeley.edu/slam/.
The Web site also contains results of a SLAM human-mouse
whole-genome analysis.

METHODS

Pairs of sequences and their associated gene structures and
alignment were modeled using a GPHMM (Pachter et al.
2001). The input to SLAM consists of two sequences and an
approximate alignment (Pachter et al. 2001). Approximate
alignments are used to reduce the search space for the Viterbi
algorithm, and allow for improvements in speed and reduc-
tions in memory usage. The main components in the SLAM
GPHMM are currently a splice-site detector, an intron/
intergene (I-state) model, an exon pair scoring model, and a
conserved noncoding sequence (CNS) model. The state space
and structure of the SLAM GPHMM are described below, fol-
lowed by details of the various new components we have
introduced.

The SLAM GPHMM

There are two types of HMMs relevant to our problem: pair
HMMs and generalized HMMs. Whereas HMMs generate one
single output in each step, a PHMM generates output in pairs,
and GHMMs can generate output of different lengths (deter-
mined from a distribution) in each hidden state. The SLAM
GPHMM is a combination of a PHMM and a GHMM. Details
can be found in (Pachter et al. 2001).

The main difference between the SLAM GPHMM model
and previous HMM-based gene finders is the interpretation of
the outputs of the states. The SLAM model is a PHMM, and so
the outputs in every state are aligned pairs of DNA bases. It is
also a GHMM, meaning that there is a duration distribution
associated with each of the generalized states (the exon states
in this case). The result of combining the two HMMs is that
the generalized states now generate two sets of durations (or
lengths) for the exons, one for each of the sequences.

The state space of the SLAM GPHMM is outlined in Fig-
ure 2 (the model also contains a mirror-image to the unidi-
rectional model, which allows for finding genes on both the
forward and reverse strands). The generalized states (un-
shaded) have been distinguished from states, which allow
self-transitions (shaded) to highlight the resulting partition-
ing of the state space. This partition results in the property
that every unshaded state must be followed by a shaded one.
This feature allows for a simplification of the HMM algo-
rithms; in particular, it is only necessary to compute the vari-
ous HMM variables for shaded states (leading to a reduction in
memory requirements).

A key component of the model was the introduction of
paired exon states that allow for the computation of exon
probabilities based on the alignment in protein space. This is
described in more detail below. CNS states were also added,
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allowing us to model the difference between DNA conserva-
tion in introns and intergenes, and protein conservation in
coding exons. Splice sites were modeled independently using
organism-specific, nonstationary variable-length Markov
models (VLMMs) as described (Cawley 2000).

Exon Model

A natural probabilistic model for a pair of exons is a PHMM at
the amino-acid level. However, there are two difficulties with
such a model in the context of a gene finding GPHMM: First,
the state outputs must consist of pairs of DNA bases (not
amino acids), and second, it is necessary to assign probabili-
ties to exon pairs.

We assigned probabilities to exon pairs by computing
the probability of codon pairs under different possible align-
ments. The codon pairs were assigned probabilities from a
61 X 61 codon-based PAM matrix, which was constructed us-
ing a PAM20 matrix and factoring in codon usage probabili-
ties in the appropriate manner. The dependency on previous
sequence in the codon usage table was modeled with a fifth-
order Markov model (corresponding to codon pair correla-
tions).

Intron and Intergenic Models

Simple PHMMs, such as the one shown in Figure 2B, have the
inherent property that any combination of parameters results
in a correlation between the lengths of the output sequences.
This restrictive property, coupled with the empirical observa-
tion that in pairs of orthologous sequences, noncoding re-
gions appear to consist of unrelated, nonconserved regions
interspersed by highly conserved regions, led us to develop a
more refined PHMM for the intron and intergenic states.

The model, shown in Figure 24, is formed of two com-
ponents: The first component, consisting of states I, and [,
generates a pair of independent intron or intergenic (I-state)
sequences, and the second component, a CNS state for gen-
erating related, conserved, noncoding sequence. The I, and I,
states were each modeled as a single-state second-order
Markov model, leading to the generation of independent I-
state sequences with geometrically distributed lengths. In ad-
dition, the self-transition probabilities for /,, and I,, were set to
be equal; this was found to be reasonable for human/mouse
comparisons. A standard PHMM was used for the CNS state,
having the advantage of creating Needleman-Wunsch-type
DNA alignments for the CNS pairs.

Computational Complexity

A naive implementation of the GPHMM described has the
drawback that the Viterbi algorithm has a running time on
the order of D*N?TU, where D is the maximum allowable
length for an exon (on the order of thousands), N is the num-
ber of states, and T and U are the two sequence lengths. The
memory requirements are on the order of NTU, which also
scales as the product of the sequence lengths—ideally we
would like the problem to grow linearly in the length of the
larger of the observation sequences. Because most alignments
in the space of all possible alignments are very unlikely to be
real, we adopted the approach of preprocessing to restrict the
alignment search space to a set of more likely, or reasonable
alignments. We call a set of possible alignments an approxi-
mate alignment (details in Pachter et al. 2001); this is similar
to the concept of the envelope of an alignment (Holmes 1998).

Our strategy was to first align the two input sequences
using the AVID global alignment tool (Bray et al. 2003). AVID
is a recursive anchor-based alignment algorithm that gener-
alizes and extends GLASS (Pachter 1999; Batzoglou et al.
2000) and MUMmer (Delcher et al. 1999). The AVID global
alignment was “relaxed” in two steps, first by extending the
base-to-base alignments to an interval or window of bases
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Figure 2 A GPHMM for alignment and prediction of exons using genomic DNA from two different organisms. The shaded states are the typically
less-conserved intergene and intron states, each producing either a single base or a gap in each organism. The use of self-transitions models their
state durations as geometric. The unshaded states (all of which are exons) will all have duration 1, as they have no self-transitions; however, they
are generalized and produce exon pairs according to some predetermined joint distribution. (A) In order to avoid the prediction of coding exons
in all conserved regions, it was necessary to introduce conserved noncoding states (CNS). Each intron and intergene state consist of two parts: an
I-state for modeling long unrelated noncoding regions, and a CNS state for modeling interspersed conserved domains. (B) The modeling of coding
exon states in pairs required the construction of a specialized PHMM, consisting of match/mismatch (M), insertion (I), and deletion states (D),
which was used to assign probabilities to exon pairs based on alignments in protein space using an appropriate evolutionary model.

surrounding each matching base. We used a window size of
three bases. Larger window sizes slow the program down and
require more memory, but increase the chance that the Vit-
erbi algorithm will find the best (in the sense that orthologous
exons will be properly aligned) alignment between the se-
quences. A window size of 1 would be equivalent to separat-
ing the alignment and gene finding steps, as is done in the
ROSETTA program (Batzoglou et al. 2000). In the second step,
the potential state boundaries (e.g., boundaries separating ex-
ons and introns) were localized and the approximate align-
ment was expanded around them.

Parameters

The SLAM GPHMM parameters can be divided into two cat-
egories: those parameters that are organism-specific, and pa-
rameters that depend on the evolutionary distance of the two
input organisms. It is interesting to note that in the current
implementation of SLAM, only the CNS and exon-pair param-
eters are in the latter category. The exon states require the
selection of an appropriate PAM matrix, and the CNS states
require a similar paired output distribution on the DNA level.
We selected these parameters by using aligned sequences of
the organism pairs in which we were interested.

Initial and transition probabilities, splice-site VLMMs,
state duration distributions, and output probabilities were all
obtained from appropriate training sets. Parameters were
stratified by GC content as described (Burge and Karlin 1997).

Parameter sets for different pairs of organisms can be obtained
easily with the SLAM parameter toolbox, which parses Gen-
Bank files containing annotated sequences, generating all the
required parameters.

The training sets used for obtaining the results presented
here consisted of the GENIE human set (Reese et al. 2000).
The same parameters were used for both human and mouse
sequences. The parameters were stratified according to GC
content into four bins: binl = [0,43], bin2 = [43,51],
bin3 = [51,57], and bin4 = [57,100]. CNS parameters were set
to be consistent with Bergman and Kreitman 2001.

Finally, the output distribution in the CNS state was set
such that each pair of bases was independently generated
from a joint distribution over {A,C,G,T} X {A,C,G, T} where
the probability of a match was set to 0.5, the distribution
being otherwise uniform.
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