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Abstract

Myeloid-derived suppressor cells (MDSCs) represent an important class of immunoregulatory
cells that can be activated to suppress T cell functions. These MDSCs can inhibit T cell functions
through cell surface interactions and the release of soluble mediators. MDSCs accumulate in the
inflamed tissues and lymphoid organs of patients with autoimmune diseases. Much of our
knowledge of MDSC function has come from studies involving cancer models, however many
recent studies have helped to characterize MDSC involvement in autoimmune diseases. MDSCs
are a heterogeneous group of immature myeloid cells with a number of different functions for the
suppression of T cell responses. However, we have yet to fully understand their contributions to
the development and regulation of autoimmune diseases. A number of studies have described
beneficial functions of MDSCs during autoimmune diseases, and thus there appears to be a
potential role for MDSCs in the treatment of these diseases. Nevertheless, many questions remain
as to the activation, differentiation, and inhibitory functions of MDSCs. This review aims to
summarize our current knowledge of MDSC subsets and suppressive functions in tissue-specific
autoimmune disorders. We also describe the potential of MDSC-based cell therapy for the
treatment of autoimmune diseases and note some of hurdles facing the implementation of this
therapy.
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Introduction

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid
cells that have the ability to suppress T cell functions[tl. MDSCs are derived from the bone
marrow and arise from a delay in maturation during pathologic conditions, such as cancer,
chronic inflammation, infection, and traumatic stress[?l. Most studies focus on the
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pathogenic nature of MDSCs in cancer, where suppression of T cell-mediated immune
responses prevents immune surveillance and clearance of developing tumors[3-5. Recently,
MDSCs have been reported to regulate autoimmunity and control the generation and
perpetuation of autoimmune diseasesl®l. In this review, we will summarize the current
knowledge of MDSC subsets and suppressive functions in tissue-specific autoimmune
disorders. We also describe the potential of MDSC-based cell therapy for the treatment of
these autoimmune diseases, while noting some of the obstacles that may hinder the
implementation of this therapy.

MDSC Involvement In Autoimmune Diseases

Our knowledge of the origination and functions of MDSCs has come mainly from studies in
tumor models and from cancer patients(?:>71. The role of MDSCs in autoimmune diseases is
only starting to be elucidated. We now know that MDSCs are involved in a number of
different autoimmune disorders, including multiple sclerosis (MS), type 1 diabetes,
rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and autoimmune hepatitis. In
steady state conditions, MDSCs reside primarily in the bone marrow. Under pathological
conditions, MDSC populations expand and can be detected in the spleen, lymph nodes,
cancerous tumors, and bloodstream. An early study using a mouse model of autoimmune
uveoretinitis showed that the accumulation of nitric oxide-producing monocytes in the
choroid and retina of the eye correlated with the severity of diseasel®l. A later study showed
similar results and confirmed the identity of these cells to be MDSCs[®l. Studies using the
mouse model of MS, experimental autoimmune encephalomyelitis (EAE), showed that
MDSCs were present in the demyelinated areas of the spinal cord tissue of mice. Another
EAE model showed that MDSC accumulation in the spleen correlated with disease
progression[10]. Here, they showed that the start of MDSC accumulation occurred during the
asymptomatic phase and increased throughout the onset phase. At the peak of the disease,
MDSC accumulation reached its highest level, and then began to decrease during the
recovery phase and returned to steady state levels by disease resolution. Similar results were
found using collagen-induced arthritis (CIA), a mouse model of RA, where MDSC
accumulation in the spleen correlated with the course of disease[*]. In humans, MDSCs
were found to be enriched in the bloodstream of patients with active MS, but were only
slightly elevated in the blood of patients in recoveryl12],

MDSCs require certain signals for their expansion and activation. The factors responsible
for driving the expansion of MDSCs include cyclooxygenase-2, prostaglandins, interleukin
6 (IL-6), macrophage colony-stimulating factor (M-CSF), and granulocyte-macrophage
colony-stimulating factor (GM-CSF)[9:13-18] Most of these factors trigger signaling
pathways that stimulate the proliferation of myeloid cells in the bone marrow and inhibit
their differentiation into mature cellsl3l. MDSCs can be activated to suppress T cell
functions via interferon gamma (IFNy) and transforming growth factor beta (TGF-B)[13].
Blocking IFNy production by activated T cells abolishes MDSC-mediated T cell
suppression111.19]. Cancer models have identified IL-6, IL-1f, prostaglandin Es, and the
calcium binding proteins S100A8 and S100A9, as factors important for the accumulation of
MDSCs at sites of inflammation[17:20.21] Tumor necrosis factor (TNF) signaling drives
MDSC accumulation in the periphery by promoting MDSC survival and inhibiting
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apoptosis(?2]. Treatment with a TNF-a antagonist showed decreased MDSC accumulation in
the spleen in response to chronic inflammation[23].

MDSC Subsets In Autoimmunity

Early classification of MDSCs was based on cell surface expression of CD11b and Gr-1.
The CD11b*Gr-1* subgroup is now divided into two separate groups, exhibiting either a
monocytic morphology or a granulocytic morphology[?4l. Granulocytic MDSCs (G-
MDSCs) display a CD11b*Ly6C!°WLy6G™* phenotype, whereas monocytic MDSCs (M-
MDSCs) are CD11b*Ly6C*Ly6G[1824-26] The two groups also differ in
functionalityl18.25.27] MDSCs suppress T cell functions via a number of different
mechanisms involving the production of soluble mediators or through cell-cell
contact!?8-31], G-MDSCs frequently inhibit T cell function through arginase-1 enzyme
activity. M-MDSCs more commonly inhibit T cell functions via nitric oxide production.
IFNy-mediated activation of MDSCs results in the upregulation of arginase-1 and nitric
oxide production. In the CIA model, MDSCs were found to inhibit both T cell proliferation
and CD4* T cell differentiation into Th17 cells[!1]. Here, the researchers used the total
CD11b*Gr-1* population from the spleen and found both arginase-1 and nitric oxide to be
mechanisms of inhibition. The Gr-1 antibody recognizes both Ly6G and Ly6C surface
antigens, therefore the population of cells used for their studies contained both G-MDSCs
and M-MDSCs. In a mouse model of diabetes, CD11b*Gr-1* cells were found to inhibit
CD8* and CD4™* T cell responses via nitric oxide- and I1L-10-dependent mechanisms(32l. In
the EAE model, G-MDSCs from myelin oligodendrocyte glycoprotein-immunized mice
were found to express high levels of programmed cell death 1 ligand 1 (PD-L1), a
costimulatory molecule that negatively regulates T cell proliferation. G-MDSCs were found
to inhibit autoantigen-priming of Th1 and Th17 cells in a PD-L1-dependent manner[2],
Interestingly, one report showed that CD11b*Gr-1* cells isolated from mice with EAE
inhibited T cell proliferation in co-culture but promoted Th17 cell differentiation under
Th17-polarizing conditions[33].

M-MDSCs also display immunosuppressive effects during autoimmune diseases. Recent
data showed that M-MDSCs induced during the priming phase of EAE were potent
suppressors of activated T cells and mediated T cell inhibition through the production of
nitric oxidel!8]. Nitric oxide production by MDSCs results in the nitrosylation of cysteine
residues, leading to a significant decrease in mMRNA stability, and thereby preventing the
production of cytokines required for T cell proliferation[28]. Another study demonstrated
that activation of M-MDSC suppressive function occurred at the peak of EAE disease[34].
This study determined that the suppression of T cell responses was due to M-MDSC-
mediated nitric oxide production. Furthermore, transfer of activated M-MDSCs led to
apoptosis of T cells in the central nervous system and decreased EAE severity. In
autoimmune arthritis, clinical trials against C-C chemokine receptor 2 (CCR2), the major
chemokine receptor mediating monocyte recruitment, were surprisingly unsuccessful as
monocytes/macrophages were thought to be pathogenic in RAB5-371. Interestingly, CCR2-
deficient mice are now known to develop exacerbated CIA[38:39. The underlying
mechanisms contributing to the aggravated disease are not clear. However, our data showed
that M-MDSCs were absent from the periphery of collagen-immunized CCR2-deficient
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mice, as CCR2 is required for the emigration of M-MDSCs from the bone marrow([38:40],
Further, M-MDSCs isolated from the bone marrow of CCR2-deficient mice with CIA
inhibited CD4" T cell proliferation and mitigated CIA severity, suggesting M-MDSCs are
required for the regulation of autoimmune arthritis(42].

Human MDSCs are identified as CD14*CD16* and CD14*CD16" cells. These CD14* cells
were found to be abundant in the blood and synovial fluid of RA patients[4243]. Recently,
MDSCs were shown to mediate enhancement of regulatory T cell (Treg) suppressive
functionsl43]. Here, Tregs were isolated from healthy subjects and their suppressive activity
and cytokine expression were analyzed after co-culture with CD14* cells. Results showed an
increase in the expression of IFNy, TNF-a, IL-17, and IL-10 by Tregs, a sustained Treg
phenotype, and an enhanced capacity to suppress T cell-mediated proinflammatory cytokine
production and T cell proliferation.

Taken together, these studies demonstrate that MDSCs can use various functions to suppress
T cell responses and suggest that MDSC differentiation and function may be influenced by
the distinct environment associated with each type of disease. Although both G-MDSCs and
M-MDSCs can suppress T cell functions, further research is needed to confirm whether the
two subsets have different outcomes in different diseases (Table 1).

MDSC-Mediated Suppression of Antigen-Specific Immune Responses

Loss of immunological tolerance is the basis for the development of autoimmune diseases.
Recognition of self-antigens leads to autoimmune-driven tissue inflammation. However,
regulation of the responses to self-antigens must be highly specific in order for the host
immune recognition of pathogens to remain intact. MDSCs may play a crucial role in
maintaining this balance as they are capable of suppressing antigen-specific immune
responses. It is believed that MDSCs internalize antigens and present them to T cells,
bringing the two cells into close contact. Peroxynitrite, a derivative of nitric oxide, causes
nitration of tyrosine residues on the T cell receptor (TCR), thereby preventing binding
between the major histocompatibility complex (MHC) and peptide[44]. Increased levels of
nitrotyrosine have been documented for patients suffering from MS, RA, autoimmune
myocarditis, and diabetes[45-48]. In a cancer model, increased production of peroxynitrite
and hydrogen peroxide resulted from the interaction between immature myeloid cells and
antigen-specific CD8* T cells in the presence of the specific antigen, but not in the presence
of the control antigen[2%]. In some cancer models, arginase-1 production is the mechanism of
MDSC-mediated suppression31:49]. The arginase-1 enzyme hydrolyzes arginine, depleting
the pool of arginine available to the celll50-521, A deficiency in arginine prevents the
formation of CD3 molecules[®3]. The absence of CD3 prevents signaling through the TCR
upon recognition of a specific antigen-MHC complex.

In one study of autoimmune diabetes, MDSCs induced the antigen-specific expansion of
Tregs, which resulted in the suppression of T cell proliferation and prevented the onset of
disease[®4]. The authors described that MDSC-mediated expansion of Tregs was dependent
on antigen presentation by MHC class 1l molecules. For these experiments, hemagglutinin
(HA)-specific CD4" T cells were adoptively transferred to mice, followed by the
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administration of MDSCs and HA antigen. The results showed a significant reduction in
disease upon administration of MDSCs and HA, but no decrease in disease when MDSCs
were administered with the ovalbumin peptide, confirming that the MDSC-mediated
suppression was antigen-specific.

MDSCs also mediate suppression of non-specific T cell responses, i.e., mitogen-activated T
cell responses, suggesting MDSCs may be involved in the late phase of tissue inflammation
during autoimmune diseases. Others have hypothesized that MDSCs function in both
antigen-specific and non-specific manners depending on the signals they are exposed to in a
particular microenvironment[®°1. Indeed, comparison of MDSCs isolated from the spleen to
those isolated from a tumor showed that splenic MDSCs were able to inhibit antigen-
specific T cell responses via the production of reactive oxygen species, whereas MDSCs
isolated from the tumor inhibited T cells nonspecifically and more potently than those from
the spleenlS6l. T cells isolated from the peripheral lymphoid organs of human cancer
patients, or from a mouse tumor model, are still responsive to non-cancer related stimuli,
including viruses, IL-2, and anti-CD3/CD28 antibodies[>:>7]. This suggests that the
expansion of MDSCs does not induce systemic immune suppression. Taken together, these
data suggest that MDSCs from the site of inflammation may be more potent and far-
reaching in their suppressive effects than those MDSCs in the peripheral organs. The
MDSCs in circulation may function to prevent the spread of inflammation to other areas of
the body, without compromising immune recognition of pathogens.

Therapeutic Potential of MDSC-Based Treatments

Therapeutic approaches involving MDSCs require their purification and/or proliferation in
vitro. MDSCs migrate to peripheral lymphoid organs where they differentiate into
granulocytes, monocytes/macrophages, and dendritic cells (DCs). GM-CSF has been shown
to drive MDSC accumulation at sites of inflammation[58:5%] and has been used to generate
MDSCs from bone marrow cells in vitrol8%]. However, the concentration of GM-CSF in the
media must be tightly regulated as different concentrations of GM-CSF may lead to the
generation of neutrophils or DCs[60.611 Vascular endothelial growth factor (VEGF) is
important in the differentiation of hematopoietic progenitor cells(2], and studies have shown
that blocking VEGF binding leads to increased differentiation of MDSCs into DCs[®31.
Similar results were shown for stem cell factor, where blocking its function led to reduced
MDSC expansionl®4]. Factors such as granulocyte colony-stimulating factor (G-CSF) and
M-CSF are also known to induce MDSC expansion. G-CSF induces the proliferation of G-
MDSCs via the Janus kinase/signal transducers and activators of transcription pathway (Jak/
STAT)[85]. In the presence of IL-6, M-CSF was shown to inhibit DC generation from
hematopoietic stem cells (HSCs), thereby redirecting HSC differentiation towards
MDSCs![%6]. The calcium binding proteins, S100A8 and S100A9, are upregulated in some
autoimmune conditions, including RA, MS, and IBD[66-68]_ These proteins are secreted by
MDSCsl®] and may work in an autocrine fashion to promote the accumulation of MDSCs
while simultaneously preventing their differentiation into DCs[7%l. MDSC generation,
expansion, and gain of specific suppressive abilities occur primarily under inflammatory
conditions such as infection, cancer, trauma, and autoimmune diseases. It is important to
note that MDSCs are not terminally differentiated, and thus may mature into antigen-
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presenting cells, such as macrophages or DCs, highlighting a potential complication for
therapeutic attempts. Therefore, in order to develop effective MDSC-based therapies, we
must first understand how different cell types respond to different inflammatory mediators
and determine how these inflammatory mediators affect the potency and/or suppressive
mechanisms of MDSCs.

A number of studies have provided insight into the use of MDSCs for treatment of
autoimmune diseases. In a murine model of diabetes, MDSCs were generated in vitro by
culturing hepatic stellate cells with DCsI7. This method of MDSC generation was
previously shown to produce highly suppressive cells in an IFNy-dependent mannerl’2]. In
the diabetes study, these in vitro-generated MDSCs were mixed with pancreatic islet cells
and transplanted into diabetic mice. The MDSCs induced Treg expansion in the allograft
site, resulting in the inhibition of CD8* T cell responsest”l. In a mouse model of IBD,
MDSCs were found to be upregulated in the spleen and intestine of IBD micelX4]. Further
data showed that these MDSCs effectively prevented T cell proliferation and induced T cell
apoptosis after transfer of CD8* T cells[24]. One report showed that the in vivo transfer of G-
MDSCs in the EAE model resulted in the delayed onset of disease and a significant
reduction in demyelination12], however other studies were not as successful(33.73]. Adoptive
transfer of MDSCs also led to reduced disease severity in models of RA[LL41] |BDI74.75]
and inflammatory eye diseasel76].

Conclusion

MDSCs represent an important class of immunoregulatory cells. MDSCs display particular
heterogeneity and plasticity, and for these reasons they have become an attractive candidate
for the treatment of autoimmune diseases. On the other hand, MDSCs are very difficult to
work with because of their diverse nature. MDSCs have multiple phenotypes which inhibit
T cell responses by multiple mechanisms, and their environment dictates the development of
suppressive properties and activation pathways. Additionally, the maturation/differentiation
of these cells may depend on the particular inflammatory signals received from their
microenvironment. Though MDSCs hold promise in the treatment of autoimmune diseases,
their full utilization is stalled by our limited understanding of their phenotype,
differentiation, cellular functions, and influence on the microenvironment.
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Core tip

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells with
immunosuppressive abilities. MDSCs inhibit T cell function and regulate immune
responses in cancer and autoimmune diseases. Therapeutic administration of MDSCs in
the mouse models of multiple sclerosis, rheumatoid arthritis, and diabetes has shown
promising results. Thus, MDSCs have potential in cell-based treatments of autoimmune
disorders. However, the role of MDSCs in autoimmunity is complex and not fully
understood. Further studies are needed before new therapies can be implemented.
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