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Abstract

Studying how genetic predispositions come together with environmental factors to contribute to 

complex behavioral outcomes has great potential for advancing our understanding of the 

development of psychopathology. It represents a clear theoretical advance over studying these 

factors in isolation. However, research at the intersection of multiple fields creates many 

challenges. We review several reasons why the rapidly expanding candidate gene-environment 

interaction (cGxE) literature should be considered with a degree of caution. We discuss lessons 

learned about candidate gene main effects from the evolving genetics literature and how these 

inform the study of cGxE. We review the importance of the measurement of the gene and 

environment of interest in cGxE studies. We discuss statistical concerns with modeling cGxE that 

are frequently overlooked. And we review other challenges that have likely contributed to the 

cGxE literature being difficult to interpret, including low power and publication bias. Many of 

these issues are similar to other concerns about research integrity (e.g., high false positive rates) 

that have received increasing attention in the social sciences. We provide recommendations for 

rigorous research practices for cGxE studies that we believe will advance its potential to 

contribute more robustly to the understanding of complex behavioral phenotypes.
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Background of this Article

There have been radical shifts as to belief about whether human behavior is more strongly 

determined by genes or by environment over the course of scientific history. Different fields 

seemingly advocated for the importance of one over the other (the so-called nature versus 

nurture debate), with some camps studying genetic influence and others studying 

environmental factors. It is now widely accepted that both genetic and environmental 

influences are important, and characterizing how these influences come together to impact 

outcome, ie the study of gene-environment interaction (GxE) has become an important area 

of study across multiple disciplines. That said, few research topics have generated more 

controversy and less clarity than the study of candidate gene by environment interaction 

(cGxE) in complex behavioral outcomes. Following the publication of cGxE studies in high 

profile scientific journals (Caspi et al., 2002; Caspi et al., 2003), the last decade has 

witnessed an explosion of interest in this area. There has been an exponential increase in the 

number of cGxE studies published, with researchers from diverse backgrounds routinely 

incorporating cGxE components into their studies. However, there has been growing 

skepticism about the replicability of many of these findings (e.g., Risch, Herrell, Lehner, 

Liang, Eaves, Hoh, Griem, Kovacs, et al., 2009) and increasing concern about the quality of 

this rapidly expanding literature.

This concern led the National Institute on Alcohol Abuse and Alcoholism (NIAAA) to 

sponsor a workshop in January 2013 that brought together a small group of researchers to 

discuss these challenges and provide recommendations for how to move the field forward. 

Those discussions formed the foundation for this paper, in which we review a number of 

reasons why the existing cGxE literature should be considered with a degree of caution. This 

is not to imply that true discoveries are absent in the literature. However, there are reasons to 

be concerned about the methods employed and the conclusions drawn from many cGxE 

studies. Drawing from accumulating findings in psychiatric genomics1, we consider 

potential pitfalls and logical inconsistencies with some of the extant cGxE literature. We 

discuss ways of refining the development of cGxE hypotheses, conducting statistically 

rigorous analyses, and interpreting findings within the broader context of genetics research – 

all directions that we believe hold promise for advancing the potential of cGxE studies to 

contribute more robustly to the understanding of complex behavioral phenotypes.

History

The idea that genetic or biological predispositions are likely to interact with environmental 

factors to contribute to psychiatric and substance use disorders has been entertained for quite 

some time (Whytt, 1765). Long before it was feasible and cost-efficient to measure specific 

genes, twin studies documented that the importance of overall genetic influences (i.e., 

heritability) could vary considerably as a function of measured environmental factors (K. S. 

Kendler & Eaves, 1986). For instance, Kendler and colleagues found that people at highest 

genetic risk for depression (i.e., individuals with an identical twin with a history of 

depression) were significantly more likely than individuals not carrying a genetic 

1Words indicated in bold in the text are defined in the Glossary.
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predisposition to have an onset of the disorder in the presence of exposure to a severe 

stressful life event, suggesting that genetic factors influence the risk for major depression in 

part by altering individual sensitivity to the depression-inducing effects of stressful life 

events (K. S. Kendler et al., 1995). With methodological advances that allowed twin 

researchers to model how genetic influences change as a function of the environment 

(Button et al., 2009), studying gene-environment interaction (GxE) became a popular area of 

research in behavior genetics (Button, Lau, Maughan, & Eley, 2008; Dick, Bernard, et al., 

2009; Dick, Pagan, Holliday, et al., 2007; Dick, Pagan, Viken, et al., 2007; Dick, Rose, 

Viken, Kaprio, & Koskenvuo, 2001; Dick, Viken, et al., 2007; Harden, Hill, Turkheimer, & 

Emery, 2008; Purcell, 2002; R. J. Rose, Dick, Viken, & Kaprio, 2001; South & Krueger, 

2008).

The accumulating body of research has demonstrated that the importance of genetic 

influences can vary dramatically as a function of environmental context; importantly and 

alternatively phrased, the importance of environmental influences can vary dramatically as a 

function of genetic factors. For example, it has been demonstrated that genetic influences on 

adolescent substance use and externalizing behavior are far stronger under conditions of low 

parental monitoring (Dick, Pagan, Viken, et al., 2007; Dick, Viken, et al., 2007), high peer 

deviance (Button et al., 2009; Dick, Pagan, Holliday, et al., 2007; Dick, Pagan, Viken, et al., 

2007; Harden et al., 2008), and state, school and neighborhood conditions that provide 

reduced social monitoring and enhanced opportunity to use (J. D. Boardman, 2009; Dick, 

Bernard, et al., 2009; Dick et al., 2001; R. J. Rose et al., 2001). However, this body of GxE 

research did not gain widespread recognition outside the field of twin research. It was not 

until the influential Science publication by Caspi and colleagues (Caspi et al., 2003) 

attributing part of the genetic sensitivity to the depressogenic effects of stressful life events 

to variations in a specific DNA sequence (a polymorphism in the serotonin-transporter-

linked polymorphic region [5-HTTLPR]) that gene-environment interaction research 

became a widely-recognized area of study outside the field of behavior genetics. However, 

an important distinction arose between the GxE work conducted in the field of behavior 

genetics, and the widespread adoption of GxE by other fields, particularly the social 

sciences. Historically, the research conducted by behavior geneticists focused on “latent” 

genetic influences. This means that the importance of genetic factors is estimated 

statistically by phenotypic similarity across individuals with different degrees of genetic and 

environmental sharing, using methodologies such as family, twin, and adoption studies 

(Bergeman & Plomin, 1989). This method estimates the overall importance of genetic 

effects on a phenotype, i.e., the total contribution of all genes influencing the phenotype. 

Gene-environment interaction in this context means that the overall importance of genetic 

variance differs across environments. In contrast, most GxE research in fields outside 

behavior genetics has studied measured candidate genes. These studies test whether the 

association of a specific genetic variant with a given outcome varies across different 

environments. We refer to these studies as cGxE (where cG refers to candidate gene), and 

they are the focus of this review.

The publication of several high profile cGxE studies (e.g., MAOA × maltreatment in 

antisociality; Caspi et al., 2002), as well as the technological advances in genetics that made 
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genotyping accessible and cost-efficient, likely contributed to the dramatic increase in cGxE 

research. Regardless of the validity and reproducibility of those initial efforts (which 

continues to be debated; Brown & Harris, 2008; Clarke, Flint, Attwood, & Munafo, 2010; 

Culverhouse et al., 2013; Karg, Burmeister, Shedden, & Sen, 2011; Munafo, Durrant, Lewis, 

& Flint, 2009; Risch, Herrell, Lehner, Liang, Eaves, Hoh, Griem, Kovas, et al., 2009), they 

left their mark on the field by creating widespread recognition of the potential importance of 

the interplay between genetic and environmental factors in developmental pathways 

underlying the etiology of behavioral outcomes in ways that the latent GxE work of 

behavior geneticists had failed to do. In the excitement surrounding the initial cGxE 

findings, and spurred by funding initiatives that encouraged research in this area, 

investigators from disparate backgrounds incorporated measured genotypes into their 

studies. In the wake of historical tension surrounding the relative importance of genetic 

versus environmental effects (the so-called nature versus nurture debate), GxE provided a 

conciliatory framework that could facilitate a synthesis of scientific fields that had 

historically been at odds with one another.

However, early enthusiasm for cGxE findings has waned as the number of failures to 

replicate original findings mounted. In many ways, the progression of cGxE studies has 

closely paralleled the trajectory of studies of the main effects of candidate genes, with early 

enthusiasm and adoption of genotyping candidate genes giving way to a literature plagued 

by small studies, failures to replicate, and a proliferation of novel findings with effect sizes 

that appeared at odds with what was subsequently found with well-powered studies 

(Neiswanger, Kaplan, & Hill, 1995). However, the study of genetic main effects has 

advanced dramatically since the early days of candidate gene research. We believe that what 

has been learned about the genetics of complex behavior from studies of genetic main 

effects yields insights into previous cGxE studies and ways to improve such research in the 

future. We begin by providing a broad review of developments in the field of psychiatric 

genetics over the past decade and discuss how this knowledge can inform studies of cGxE.

Early Statistical Genetics: Linkage and Candidate Gene Studies

The field of statistical genetics, focused on finding genes that contribute to behavioral 

outcomes and disorders, has undergone rapid advances over the past decade. As our 

knowledge about genetics has progressed, so too have the methodologies favored for gene 

identification (See Figure 1 for an overview of common gene finding strategies). Linkage 

and candidate gene studies were early gene identification strategies, believed to have 

complementary strengths.

Linkage studies agnostically scanned the mapped genome by looking for chromosomal 

regions that were shared among affected family members (suggesting there was a gene in 

that region that contributed to the disorder). The advantage of linkage was that it did not 

require any a priori knowledge of the underlying biology of the outcome, in theory making 

it possible to discover new genes involved in the outcome that could expand our 

understanding of the biology of the disorder. Linkage studies were used to successfully 

identify many genes that contributed to Mendelian disorders, where a single gene following 

a straightforward inheritance pattern with a major impact on outcome was present (Gusella 
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et al., 1983; Murray et al., 1982; Tsui et al., 1985). However, linkage methods were less 

successful when applied to complex behavioral outcomes where many genes are likely to be 

involved, each having just a small effect on the behavior, along with the environment.

In contrast to the hypothesis-free linkage approach, candidate gene studies focused on genes, 

and variants within those genes, that were hypothesized to have biological relevance to the 

outcome of interest. In this way, candidate gene studies had the advantage of being more 

precise than linkage studies in that they had the potential to pinpoint specific genes or 

genetic variants, rather than just specific chromosomal regions. However, they relied on the 

investigator to correctly “guess” what genes were biologically relevant to the outcome. 

Despite thousands of candidate gene publications on behavioral phenotypes, the approach 

remains controversial, and very few candidate gene findings are widely accepted within the 

genetics community. Over time, it has become clear that the genetic architecture of 

behavioral traits is highly complex, that effect sizes of genetic polymorphisms are likely to 

be small (see below), and that scientists’ ability to predict a priori which genes are likely to 

be relevant to a behavioral outcome has been very poor (F.J. Bosker et al., 2011; Colhoun, 

McKeigue, & Davey Smith, 2003; Need et al., 2009; P.F. Sullivan et al., 2008).

Later Statistical Genetics: Genome-Wide Association Studies (GWAS)

As the cost of genotyping dropped during the 2000s, it became possible to conduct 

association tests as are done in candidate gene studies, but across the entire genome. Such 

genome-wide association studies (GWAS) are hypothesis-free as with linkage studies, but 

have much higher power to detect small effects of common variants. In GWAS, hundreds of 

thousands to millions of genetic markers known as single nucleotide polymorphisms (SNPs) 

are genotyped across the genome in an attempt to identify common variants that are 

associated with a particular outcome (disorder, behavior, etc.), suggesting that a particular 

genetic variant (or one very nearby) contributes to the outcome. In a sense, GWAS 

combines the advantages of linkage studies (agnostic screening across the genome) and 

candidate gene studies (more precise localization of the gene/genetic variant).

GWAS were made possible by the rapid discovery of many more genetic variants through 

the International HapMap Project (hapmap.ncbi.nlm.nih.gov), which had the goal of 

developing a public resource to catalogue normally occurring genome-wide variation in 

SNPs by annotating the sample genomes of small groups of ethnically homogenous 

individuals (e.g., Caucasians of European descent, or CEU, are represented by Utah 

residents with ancestry from northern and western Europe collected in 1980) to create what 

is known as a reference panel. In addition to providing a database for identification and 

comparison of the polymorphic nature of SNPs, HapMap also allows for the examination of 

the extent to which neighboring SNPs are correlated with each other via a population 

genetics process called linkage disequilibrium (LD). When two or more SNPs are in high 

LD (e.g., correlations > 0.8), if one of the SNPs is genotyped then the genotype at the others 

can be probabilistically inferred via imputation. The ability to infer surrounding genotypes 

based on LD patterns means that we can now cost-efficiently scan the genome with a much 

smaller subset of markers than previously needed (e.g., in the range of 370,000–600,000) 

and impute the remaining commonly occurring markers across the genome. Whereas early 
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attempts to impute variation were restricted to common SNPs (>5% minor allele frequency), 

the landmark 1000 Genomes Project (http://www.1000genomes.org/) used a similar strategy 

to identify less common SNPs (≤1%). Our growing knowledge of genetic variants across the 

genome, coupled with exponential decreases in costs of high density GWAS arrays (>1 

million SNPs at <100 USD per participant currently), now allows investigators to interrogate 

over 10 million polymorphisms in relation to outcomes.

Two primary points have become apparent over the last several years from GWAS: (1) the 

effect sizes associated with individual genetic variants are very small, usually with odds 

ratios (ORs) on the order of 1.1, and (2) our ability to select a priori which genes are viable 

candidates for psychiatric and substance use disorders has been poor (K. S. Kendler, 2013; 

P. F. Sullivan, Daly, & O'Donovan, 2012). There are rare exceptions, such as the role of 

alcohol dehydrogenase genes in alcohol dependence (Shen et al., 1997). We now realize that 

early candidate gene studies, as well as early atheoretical systematic gene finding efforts 

(such as linkage studies), were underpowered to detect genes with the small effect sizes that 

more recent studies suggest are likely to be realistic. Although GWAS were more successful 

for some conditions (Crohn’s, diabetes, macular degeneration; Manolio & Collins, 2009), 

like linkage studies, early GWAS were largely unsuccessful in the area of psychiatric and 

substance use disorders (K. S. Kendler, 2013). Few SNPs were detected that met genome-

wide levels of significance. As increasingly large sample sizes have been procured, we now 

know that most early GWAS were simply underpowered (Visscher, Brown, McCarthy, & 

Yang, 2012). Amassing sample sizes through large consortia on the order of tens of 

thousands or more has revealed that the number of significant findings increases as the 

sample sizes increase.

The discoveries from these large GWAS studies are robust and replicable, and for certain 

phenotypes, the amount of variance explained in total from genome-wide significant SNPs is 

becoming non-trivial (e.g., 60% for type-I diabetes; 10% for height; Visscher et al., 2012). 

In the area of psychiatric genetics, studies of the genetic basis of schizophrenia are currently 

enjoying the most success, where sample sizes on the order of >13,800 cases and >18,000 

controls have now been accumulated, leading to the detection of >3500 loci in 12 genomic 

regions that contribute to the disorder (Ripke et al., 2013). It is noteworthy, however, that 

even with such impressive sample sizes, the Ripke et al. (2013) landmark study (which is 

undergoing a further growth in sample size) acknowledged the lack of power to detect 

genotype relative risks less than 1.1.

Reasons to be Concerned about the Published cGxE Literature

The emerging genetics literature suggests that the small sample sizes (e.g., n<1000), typical 

of candidate gene studies to date, are likely to be grossly underpowered for detecting genetic 

influences with small effect sizes. (The reason that many, perhaps most, candidate gene 

studies report positive associations despite such lack of power is discussed below.) Some of 

the confusion about expected effect sizes and the sample sizes needed for cGxE studies may 

surround differences in the conceptualization of GxE effects across different fields (see 

Figure 2 for an illustration of this). Candidate GxE studies can be conceptualized in two 

ways: (1) as a genotype moderating the association between an environmental factor and an 
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outcome (i.e., increasing exposure to major stressful life events is more strongly associated 

with an increased risk for depression in the presence of the short allele of 5HTTLPR; often 

the default conceptualization for psychologists) or (2) as an environment moderating the 

association between a genotype and an outcome (i.e., the association between the short allele 

of 5HTTLPR and depression is strongest in individuals experiencing major stressful life 

events; often the default conceptualization for geneticists). Statistically, these are equivalent 

and indistinguishable, but they can lead to different interpretations of the same data and 

different expectations about the likelihood of detecting a gene-environment interaction 

effect. Conceptualizing GxE as a genetic effect (on an environment-behavior association) 

may lead one to assume small effect sizes based on the growing GWAS literature 

demonstrating that genetic effects on complex outcomes generally have very small effect 

sizes. Conceptualizing GxE as an environmental effect on a gene-behavior association may 

lead one to assume larger effects sizes. Nevertheless, under either interpretation, the effect 

size of the candidate gene is critical. Recognizing the modest main effect sizes produced by 

individual candidate gene polymorphisms, it may be overly optimistic to presume that the 

effect sizes associated with cGxE will be systematically larger. This is clearly a matter of 

some debate, as if certain types of cross-over interactions were prevalent, it would be 

possible. Nevertheless, the lessons we have learned from the history of gene finding 

underscore the need for researchers to be cognizant of the strong possibility that one is 

dealing with small effect sizes (or to provide strong justification for why larger effect sizes 

are expected), and to demonstrate that their samples are adequately powered.

In addition to what GWAS has taught us about genetic effect sizes, GWAS has also been 

informative as to the likelihood that a hypothesized candidate gene will be associated with 

the hypothesized outcome. Robust and replicable GWAS signals (e.g., CACNA1C for 

Schizophrenia; Ripke et al., 2013 and Bipolar Disorder; Ruderfer et al., 2013) have tended 

to be distinct from those that were routinely hypothesized in candidate gene studies (e.g., 

COMT, MAOA; Craddock, Dave, & Greening, 2001) casting considerable doubt regarding 

the burden of a priori evidence for these selections. With rare exceptions (e.g., rs16969968 

in the CHRNA5-CHRNA3-CHRNB4 cluster, associated at p < 10–70 across several GWAS 

was initially posited as a candidate gene; Tobacco_and_Genetics_Consortium, 2010), 

widely studied candidate genes were not found to be significant when studied systematically 

across the backdrop of the genome in well-powered studies (F. J. Bosker et al., 2011; Collins 

et al., 2012; Lasky-Su et al., 2008). In fact, some of the findings to emerge from GWAS 

studies in other areas, such as Crohn’s disease, have suggested new pathways that were not 

previously suspected to play a role in the disorder and that drastically changed the presumed 

understanding of the underlying biology of the disorder (Manolio & Collins, 2009). Past 

experience would suggest that best guesses for candidate genes affecting environmental 

sensitivity (i.e., cGxE) are unlikely to fare better than they have for other phenotypes 

investigated to date in GWAS. The combination of low prior likelihood of a given candidate 

being correct, compounded by likely small effect sizes and low power for any given truly 

associated variant, suggests that the false discovery rate—the proportion of “discoveries” in 

candidate gene main effect and cGxE studies that are actually false—may be unacceptably 

high (Duncan & Keller, 2011).
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In addition to the potential for low power and low prior probabilities associated with the 

study of candidate genes (Munafo, 2009), it is also likely that there is insufficient correction 

for and/or underreporting of multiple testing. Publication bias is also probable, whereby 

authors are more likely to submit, and editors are more likely to accept, cGxE findings that 

are statistically significant. A recent report notes that problems contributing to and a 

consequence of such bias are rampant in the cognitive sciences (J.P. Ioannidis, Munafo, 

Fusar-Poll, Nosek, & David, 2014) and there is similar evidence in the cGxE literature 

(Duncan & Keller, 2011). Specifically, the vast majority of first-reports of a given cGxE 

finding were positive, whereas a much lower proportion of attempted replications were 

positive. Ioannidis and colleagues (2014) refer to this as the “Proteus phenomenon” whereby 

the rapid publication of positive findings might temporarily create a halo in which negative 

findings might be more readily entertained by journals for a short period of time. 

Furthermore, and inconsistent with expectations based on statistical power, Duncan and 

Keller found that the larger the cGxE sample, the less likely it was to be significant. This 

trend would not be expected if cGxE findings were valid. These observations are consistent 

with widespread publication bias in the cGxE literature. Publication bias can arise when 

authors, editors, and reviewers believe that positive findings are more worthy of publication 

than are negative or null results. There are many uninteresting ways for an empirical test of a 

hypothesis to fail to support it---the hypothesis was implausible to start with, the power of 

the test is inadequate, the operationalization of the variables is not valid, etc. As a 

consequence, the greater interest in positive results is understandable, especially when they 

bring an insightful increment to, or even transformation of, our understanding. Yet, interest 

in positive findings is clearly misplaced if they are false, as they can (mis)guide research 

efforts and funding priorities.

These problems are not unique to the study of cGxE (J.P. Ioannidis et al., 2014; Spellman, 

2012). Concern about unacceptably high false positive rates in the social sciences has 

garnered growing attention over the past several years. In a provocative paper by Iaonnidis 

(J. P. Ioannidis, 2005) entitled “Why Most Published Research Findings are False,” a 

number of conditions are outlined that contribute to why a novel research finding ultimately 

may be in error. These conditions include smaller studies; smaller effect sizes; greater 

number and lesser preselection of tested relationships; greater flexibility in designs, 

definitions, outcomes, and analytic models; greater interests and prejudices surrounding the 

area of research; and situations in which there are more scientists in a field involved in chase 

of statistical significance. We believe that all of these conditions are likely to contribute to 

findings in the study of cGxE.

A more recent paper compellingly demonstrated how flexibility in data collection, analysis, 

and reporting can dramatically increase false positive rates (Simmons, Nelson, & 

Simonsohn, 2011). This recognition has led to a growing movement in the social sciences to 

adopt new practices to promote research integrity (Cumming, 2014), including 

prespecification of studies and hypotheses, avoidance of selection and other questionable 

data-analytic practices, complete reporting of analyses and variables, and encouragement of 

replication. A “new statistics” has been proposed that includes recommended statistical 

practices such as estimation based on effect sizes, confidence intervals, and meta-analyses 

(Cumming, 2014). These are practices that have already become more widespread in the 
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genetics field (A. Agrawal et al., 2012; Boraska et al., 2014; Ripke et al., 2013; Steinberg et 

al., 2014; Stephens et al., 2013; Thompson et al., 2014) where a plague of inconsistent and 

nonreplicable genetic main effects has led to the adoption of more rigorous statistical 

practices, which have proven successful in advancing the field (Corvin, Craddock, & 

Sullivan, 2010; P. F. Sullivan et al., 2012; van Assen, van Aert, Nuijten, & Wicherts, 2014). 

Following these guidelines would go a long way toward improving the quality and 

trustworthiness of the cGxE literature as well.

In the following sections, we focus on practical problems as they relate to cGxE. We focus 

this discussion on two major components of cGxE research – the core ingredients of the 

interaction (i.e., how G and E are measured) and the recipe for combining them (i.e., 

statistical problems with modeling their interaction).

The Ingredients of cGxE: The Choice of Genetic and Environmental Variables

In the enthusiasm surrounding the study of cGxE, many investigators have expanded their 

studies to include measures of G or E, when that was not the original focus of the study. 

This expansion into new areas has happened in both directions: researchers who have 

focused on carefully characterizing environmental effects have expanded their studies to 

include measured genes, and researchers who have focused on gene finding have expanded 

their studies to include measures of the environment. In theory this expansion of cross-

disciplinary science is a positive development; however, an unfortunate corollary has been 

that the added component does not always represent the state of the science in the other 

respective field.

The Choice of “G”—For example, the vast majority of the “G” that has been incorporated 

into cGxE studies consists of a handful of “usual suspect” candidate genes (Munafo, 2006; 

e.g., SLC6A4 [aka 5-HTT, MAOA, DRD2, COMT]), as discussed above. Often a single 

genetic marker is genotyped to represent the gene. Genotyping a single marker in a gene 

does not reflect the state of the science in genetics, which has moved toward more 

comprehensive approaches to gene finding. It may be appropriate to genotype a single 

genetic variant when that variant has a known functional impact on the gene, (i.e., it 

produces an observable alteration in the manner in which the gene encodes the protein 

product). However, over and above this simple annotation of function, the impact of a 

candidate polymorphism is very challenging to establish. At its simplest, even when 

modeling a single variant, the characterization of that variant (or its mode of inheritance) can 

profoundly impact detection of cGxE. For instance, which allele is assigned as a risk allele, 

and how many copies of this allele are required to quantify the diathesis, need to be 

determined. How to model a genotype becomes a particular concern with smaller samples, 

where homozygotes (individuals who carry two copies of a given allele) of the minor allele 

are often combined with heterozygotes (individuals who carry one copy of a given allele) in 

the interest of statistical power, potentially obfuscating the complexity underlying the 

genetic model. Consider the consequences if one applied this practice to other known 

genetic outcomes: for example, we know that two copies of one of several of the CFTR 

mutations are required for the diagnosis of cystic fibrosis (a disorder with a recessive mode 

of genetic inheritance), and that this is etiologically distinct from the one copy of the HTT 
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trinucelotide expansion required for a diagnosis of Huntington’s disease (a dominant 

disorder). Imagine the confusion if a prenatal genetic counselor were to ascribe the same 

degree of vulnerability to a fetus that tests positive for one copy (a carrier, unaffected with 

disease) versus two copies (will manifest the disease) of the CFTR mutation! Although the 

action of genetic variants on complex traits is not monogenic, the technical specification of 

their purported mode of action is still significant.

Large-scale gene finding efforts have moved to systematic screens of the genome (e.g., 

Sklar et al., 2011; Treutlein et al., 2009; Wray et al., 2012), pathway and network analysis 

(Weng et al., 2011), and integration with model organism genetics (Zhao et al., 2012) as 

new avenues for increasing the probability of identifying relevant genes. Further, when a 

gene of interest is being studied, genetic variants across the gene are usually genotyped in 

order to capture the many locations across that gene that could be involved2 in altering gene 

regulation or function and producing different effects on behavior. For example, many early 

studies genotyped the Taq1A1 polymorphism in DRD2 as a hypothesized biological 

candidate for a variety of outcomes related to reward deficiency, for which dopamine 

transmission was thought to play a role (Blum et al., 1990; Meyers et al., 2013; Young, 

Lawford, Nutting, & Noble, 2004). Subsequently, it was discovered that the polymorphism 

was actually located in the neighboring gene ANKK1 (Neville, Johnstone, & Walton, 2004). 

More systematic studies of genetic variation across the region containing ANKK1 and DRD2 

have found evidence that multiple genes may be involved (Gelernter et al., 2006; B.Z. Yang 

et al., 2007; B. Z. Yang et al., 2008). Differences in the way that individual genes, gene 

networks, and whole genomes are systematically studied has led to increasing distance 

between the gene finding world and studies of cGxE, which still focus largely on the “usual 

suspect” candidate polymorphisms. Clearly, better integration of these research areas is 

necessary.

The Choice of “E”—An equally important issue concerns the choice of E. The challenges 

within this area are illustrated in the literature examining life stress as an environmental risk 

factor for depression. In attempting to replicate the original cGxE results of Caspi and 

colleagues (2003) pertaining to life events, many investigators have incorporated a wide 

variety of ad hoc measures of life stress (Monroe & Reid, 2008). Almost any form of 

adversity or challenge, at any time in a person’s life, has been used as an alternative index of 

“stress.” For example, replication studies on this cGxE topic have included participant life 

stress occurring over a range of time, from one month through a lifetime. Other studies have 

adopted life event scales known to possess serious measurement deficiencies (Monroe, 

2008), or simply have employed unique measures never used previously. In one review of 

this literature, only 5 of 18 studies reported psychometric properties of the stress measures 

(Monroe & Reid, 2008). Finally, even when roughly common omnibus measures of life 

events were adopted, how the life events were combined (over time, severity, and type) for 

the final index of stress varied greatly across investigations (Uher & McGuffin, 2010).

2This is often called linkage disequilibrium/LD-tagging, and indicates that you can use information about the LD or correlation 
structure across variants within and across genes in order to know how many genetic variants you need to genotype to capture most of 
the variable locations in the gene that could be associated with outcome (see Text Box 1 for software).
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The use of measures of the environment with proven reliability, empirical precedent, and 

theoretical plausibility is critical for advancing the field. The elasticity and looseness of the 

environmental construct can present serious problems for measurement and for the 

likelihood of detecting a cGxE (Monroe & Reid, 2008). In the example of stress, it is highly 

likely that different types of “stress” are relevant for different types of cGxE interactions for 

particular kinds of disorder or disease. For example, chronic stress over years may be most 

relevant for conditions that develop over protracted periods of time (e.g., coronary heart 

disease), whereas acute, aversive life events may be most relevant for conditions that often 

appear to come on rather quickly (e.g., a major depressive episode). Additionally, the 

developmental timing of the stressor can be critical as the social and biological impact can 

be expected to vary as a function of stage of development. More specific theoretical 

dimensions associated with “stress” should accompany such temporal distinctions (e.g., loss 

or humiliation life events versus life events conveying threat and danger versus other types 

of adaptive challenges). In a very real sense, there should be candidate “stressors” proposed 

for particular conditions based on a theoretical understanding of the plausible underlying 

mechanisms. Viewed from an alternative perspective, no one would expect to find a ‘true’ 

cGxE interaction if the wrong gene was assessed for the particular outcome. In a similar 

manner, any potentially valid cGxE interaction will go undetected if the wrong form of 

environment is assessed, or if the right form of the environment is assessed poorly (Monroe 

& Reid, 2008).

Problems with the Recipe: Statistical Concerns in cGxE Research

There are a number of statistical considerations that influence the detection and 

interpretation of cGxE that have not received widespread attention in the literature. We 

highlight some of the most critical issues next, and many of our concerns are consistent with 

those of others who’ve recently written on this topic (e.g., Roisman et al., 2012; Zammit, 

Lewis, Dalman, & Allebeck, 2010; Zammit, Owen, & Lewis, 2010).

The importance of scale—First, evidence for interactions can depend on choice of scale 

as well as choice of statistical model. Despite one’s conviction in the presence or absence of 

cGxE, interactions are statistical phenomena and only have meaning in the context of a 

specific statistical and measurement model. However, many behavioral measures have no 

“true scale.” One might, for instance, argue that a construct like height has a true scale, and, 

moreover, a ratio scale with a meaningful zero point and equal intervals between data points 

(Stevens, 1946): a board of two feet is twice as long as a board one foot long. However, 

many, if not most of our constructs in the behavioral sciences, do not have meaningful zero 

points and, thus, are scaled somewhat arbitrarily. Quantitative scales without meaningful 

zero points can vary further as to whether they have meaningful intervals between 

measurement points or simply reflect differences in relative magnitude. This is true of 

measures of both behavioral outcomes (e.g., a depression score) and environments (e.g., 

family function, peer deviance, neighborhood disintegration). The scale of measurement 

matters profoundly in interaction research because evidence for an interaction can change 

solely depending upon arbitrary choice of scale (L. J. Eaves, 2006). For example, predictors 

that combine multiplicatively to influence the outcome variable will combine additively if 
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the outcome is log-transformed. In such situations, the significance of the interaction term 

depends on how the outcome is scaled which, in most behavioral research, is arbitrary.

The selection of model—As with choice of transformation, choice of how to model 

interactions can profoundly affect evidence for them. In particular, there has long been 

debate in epidemiology regarding the relative utility of risk differences versus risk ratios. 

That is, if the rate of illness is 10 and 50 per 10,000 in groups unexposed and exposed to 

some risk factor, are we more interested in the risk difference (40 new cases per 10,000) or 

the risk ratio of 5? From a practical perspective (e.g., public heath impact, focus for possible 

prevention, advice to patients), the risk difference approach has much to recommend it. 

However, the risk ratio approach is the more dominant in large part because it is easily 

implemented statistically in logistic regression. This distinction is critical because it defines 

the baseline model from which we assess interactions. In a risk difference framework, an 

interaction reflects a deviation from a model in which risk factors add together. In a risk 

ratio framework, an interaction reflects a deviation from a model in which risk effects 

multiply. Accordingly, the usage of logistic regression to study cGxE for binary outcomes of 

interest (such as presence/absence of a disorder) fundamentally changes the nature of the 

relationship between two variables: multiplication on the original scale of a variable 

conforms to addition on the logarithmic scale. Thus, an “interaction” on the original scale 

can ‘disappear’ or even be of opposite sign on the logarithmic scale, and vice-versa. We 

refer the reader to other sources (K. Kendler & Gardner, 2010; Zammit, Lewis, et al., 2010) 

for further discussion of these important issues.

The use of cross-product terms—Statistical tests of cGxE effects often rely on the 

modeling of a cross-product term in a regression-type model. Valid detection of true 

interactions in these models requires that factors that could produce spurious interactions be 

ruled out. For example, when predictors are correlated and quadratic terms are not modeled, 

the cross-product term can carry the variance of the unmodeled quadratic term and generate 

spurious interactions (Lubinski & Humphreys, 1990). Moreover, failure to include 

quadratics can also result in false negative findings of interactions or the reversal of sign of 

true interactions (Ganzach, 1997). More generally, if the underlying relationship between G 

and/or E and an outcome is nonlinear (e.g., a spline or higher-order polynomial), 

misspecification of the analysis by failing to include a term to model the nonlinearity can 

generate a significant interaction term in the absence of a true interaction.

The use of a cross-product term can be particularly problematic for modeling three-level, 

categorical genotypes. In the standard practice of assuming an additive genetic model, the 

use of a cross-product term will force the slope difference to be the same between all 

genotypic groups (e.g., the difference in slope between people carrying 0 versus 1 copies of 

the risk allele is constrained to be the same as the slope difference between individuals who 

carry 1 versus 2 copies of the risk allele). It also forces the lines for the three genotypic 

groups to all cross at the same point when an interaction exists. Accordingly, an interaction 

will only be accurately represented by the cross-product term when these conditions are met, 

and there is no a priori reason to assume that these constraints are sensible. This means that 

the regression lines implied by the use of a cross-product term may not accurately reflect the 
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interaction present in the data. Figure 3 illustrates the problem, and demonstrates how a 

reparameterization of the regression equation using parameters additional to the single cross-

product term can correct it (as further delineated in Aliev, Latendresse, Bacanu, Neale, & 

Dick, 2014).

The importance of covariates—Failure to properly control for potential confounds can 

also be problematic in cGxE research. In non-experimental research, researchers typically 

enter potential confounding variables (e.g., gender, ethnicity, socioeconomic status, 

genotype quality, etc.) into regression equations to control for their effects. However, this 

approach controls only for the additive effects of covariates; it does nothing to control for 

the potential confounding effects these covariates might have on the interaction itself 

(Keller, 2014; Yzerbyt, Muller, & Judd, 2004). To properly control for confounders in cGxE 

research, investigators must also evaluate all relevant gene-by-covariate and environment-

by-covariate interaction terms. To date, virtually no cGxE studies have appropriately 

controlled for all covariate interactions (Keller, 2014). This failure to include covariates is 

particularly concerning in mixed-ethnicity samples, where stratification can not only 

produce spurious genetic main effect association to be detected (Price, Zaitlen, Reich, & 

Patterson, 2010), but can also cause ethnicity-by-environment interactions to appear as 

spurious gene-by-environment interactions. This is because the frequency of alleles naturally 

varies across ethnic populations and, in the presence of a coincidental excess of affected 

individuals belonging to one ethnic group, spurious associations and interactions with 

polymorphisms of no functional consequence, except a degree of natural ethnic variation, 

may emerge.

Power to detect and characterize different types of interactions—Yet another 

concern is the low power to detect most plausible forms of interactions in the first place 

(McClelland & Judd, 1993) in observational field studies as compared to experimental 

studies where independent variables can be efficiently manipulated. Under many conditions, 

theoretically meaningful interactions are likely to be quite small, accounting for 1% of the 

outcome variance and the power to detect most plausible interactions will be quite limited 

without large N.

Further, even if an interaction is detected, discerning the true pattern of an interaction from 

observed results is even more tenuous. In recent years, there has been great interest in 

determining the form of the observed interaction in cGxE research since the interpretation of 

disordinal (i.e., “cross-over”) interactions theoretically differs from ordinal interactions. 

Specifically, cross-over interactions lend themselves to a differential susceptibility 

interpretation where a given “risk” or “malleable” allele is associated with both poorer 

outcomes in a “bad” environment but better outcomes in a “good” environment; ordinal 

interactions lend themselves to a diathesis-stress interpretation where it is the combination 

of a risk-conferring allele and a “bad” environment that exacerbates the likelihood of 

manifesting the outcome (e.g., Belsky, Bakermans-Kranenburg, & van Ijzendoorn, 2007; 

Belsky et al., 2009). However, simulations demonstrate that, conditional upon a Type 1 

error, the form of an ostensibly “significant” interaction is usually of a “cross-over” (i.e., 

disordinal) nature, especially when samples sizes are small (Sher & Steinley, 2013). 
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Boardman et al. (2014) recently made a similar observation in reference to the emerging 

genome-wide gene-by-environment (GWGEI) approach (Cornelis et al., 2012; Mukherjee, 

Ahn, Gruber, & Chatterjee, 2012; Thomas, Lewinger, Murcray, & Gauderman, 2012) by 

demonstrating that when many interaction tests are performed, the most significant p-values 

will come from disordinal interactions even when such interactions are generated from 

random data (J.D. Boardman et al., 2014). Boardman et al. note these findings “conform to 

the differential susceptibility model but will not tell us anything meaningful about the way 

in which environments systematically moderate genetic factors…because they will likely be 

a statistical artifact” (p. 123).

Moreover, even “true” ordinal interactions that are statistically significant can appear to be 

of a cross-over type (Sher & Steinley, 2013) due to random error. All linear interactions 

imply a cross over at some point, even if outside the range of observed values. This is not a 

trivial issue since a typical practice is to plot values +1 standard deviation (SD) and −1 SD 

above and below the mean of the moderator (Aiken & West, 1991). However, −1 SD can 

represent values that rarely or never exist in nature for skewed predictors. We note that some 

authors (Roisman et al., 2012) have recently recommended extending the Aiken & West 

(1991) guidelines to + 2 SDs, in order to provide 95% coverage of the observed values. 

Given the highly skewed nature of many environmental exposures, attention to the 

underlying distribution of all study constructs is necessary so as not to generate misleading 

regression plots covering regions of sparse or imaginary data.

Recently, techniques for estimating the standard error of the cross-over point have been 

proposed which could, in principle, allow stronger inferences about the actual form of the 

interaction (Widaman et al., 2012). Alternatively, establishing regions of significance 

around each regression line using standing approaches (e.g., Johnson & Neyman, 1936) to 

characterize where two slopes overlap and where they do not could also be used to increase 

confidence that an ostensible cross-over shows a desired degree of statistical differentiation 

from an ordinal interaction. Such approaches, in principle, could provide greater confidence 

in believing a true “cross-over” has been detected. Consistent with the other points made 

above, such approaches are dependent upon being confident that the interaction is not an 

artifact of scaling, is not caused by (unmodeled) nonlinearity, and is not a Type 1 error.

cGxE versus gene-environment correlation (rGE)—Gene-environment correlation, 

or rGE, refers to instances where exposure to environment is non-random and correlated 

with genetic vulnerability3, whether through passive, active or evocative processes4. For 

instance, in classical behavior genetics, rGE is represented by genetic factors that influence 

the outcome (e.g. alcohol and tobacco use) and the environment (e.g. peer relationships; 

3Mendelian randomization is a related and novel conceptualization of genotype representing environmental exposure propensity and 
might explain cGxE in the presence of rGE. We refer the reader to (Smith, 2010) to learn more.
4Passive rGE is more common during childhood and adolescence and refers to an individual being differentially exposed to an 
environment without their own initiative, most likely because aspects of their environment are provided by their parents with whom 
they also share genetic variance. For instance, antisocial parents may pass on a genetic liability to antisociality and expose their 
children to an abusive environment. Evocative rGE refers to environments that an individual elicits/evokes from others based on their 
genetic predisposition. For instance, an antisocial adolescent may evoke harsher parenting. Finally, as an individual matures into 
adulthood, the importance of active rGE increases. Here, an individual actively selects their environment, or niche, based on 
characteristics of their genetic predisposition. For example, antisocial youth may select into high risk neighborhoods or affiliate with 
deviant peers.
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Harden et al., 2008) as indexed by a genetic correlation. Similarly, in measured gene studies, 

presence of rGE is indexed by variations in genotype or allelic frequency as a function of the 

environmental exposure. For instance, Salvatore and colleagues report an association 

between a polygenic score for alcohol problems and peer deviance (Salvatore et al., 2014), 

indicating that individuals who are at genetic risk for alcohol problems are also more likely 

to have deviant peer groups. It is likely that for many outcomes both rGE and cGxE may be 

important; however, the presence of rGE can complicates the interpretation of cGxE. 

Behavioral genetic and twin models implement several statistical approaches to account for 

and even explicitly model rGE (e.g., L. Eaves & Erkanil, 2003; Purcell, 2002; van der Sluis, 

Posthuma, & Dolan, 2012). In measured gene studies, the first step in testing for potential 

rGE involves estimation of a correlation between genotype and environment. In the absence 

of such a correlation, as has been noted for 5-HTTLPR and stressful life events, cGxE 

testing can proceed without concern. If the correlation is solely attributable to outliers in the 

environmental measure, removal or winsorization may eliminate rGE (e.g., Bogdan, 

Williamson, & Hariri, 2012). A modest correlation between genotype and environment may 

require more careful consideration. For instance, in revisiting the interaction between a 

polymorphism in the monoamine oxidase A (MAOA) gene and exposure to childhood 

physical abuse in the development of antisocial behaviors (Caspi et al., 2002), Kim-Cohen 

and colleagues examined whether MAOA genotype was correlated with not only exposure 

to abuse (i.e. evocative rGE) but also, maternal antisocial behavior (i.e. passive rGE) with 

the latter being a key correlate of transmission of risk for antisociality and for increased 

likelihood of exposure to abuse (Kim-Cohen et al., 2006). There was evidence for the latter, 

whereby maternal antisocial behavior was correlated with offspring exposure to abuse, 

however the effect of the interaction persisted even after accounting for this effect. 

Alternatively, Salvatore and colleagues accounted for rGE by residualizing both their 

polygenic score and their environmental measures (parental knowledge and peer deviance) 

for each other prior to testing for cGxE in the etiology of alcohol use problems (Salvatore et 

al., 2014). The interaction between parental knowledge and the polygenic scores remained 

significant; however, the interaction with peer deviance was no longer significant, indicating 

the possibility of both rGE and cGxE for the former but rGE alone for the latter. Therefore, 

while both mechanisms of gene-environment interplay (rGE and GxE) may be at work, 

testing for rGE is necessary before conclusions regarding GxE are made. When rGE is 

presented, methods to account for it should be implemented. In some instances, relevant data 

may not be available (e.g. availability of parental phenotypes to test for passive rGE) or the 

correlation may be complex and mediated by other unmeasured factors. In such instances, 

the possibility that rGE may contribute to the relationship between genotype and 

environment should be acknowledged.

In summary, although the statistical approaches for modeling interactions are well 

established, having confidence in the statistical validity of an interaction requires due 

diligence on the part of the investigator. These include attention to scaling issues, 

characterizing the underlying linearity of the relationships under investigation and 

determining whether nonlinear models are necessary, controlling for relevant confounders 

including various forms of rG-E, and insuring plotted results are not unduly influenced by 

the constraints imposed for rendering an easy-to-interpret graph. Perhaps the greatest 
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challenge is to minimize the likelihood that an observed interaction is not a Type 1 error 

given that various data sets have a large number of candidate Gs and candidate Es, there is 

considerable flexibility in approach to analysis, and under most plausible conditions, power 

to detect GxE is likely to be low. Many of the issues described above (as well as some 

others) are described by Roismann et al. (2012) who provide a list of thoughtful guidelines 

for addressing various issues such as characterizing whether an obtained interaction is of a 

cross-over type (and to the extent the magnitude of the cross-over is meaningful), the 

problem of nonlinearity, and Type 1 errors.

Recommendations

Although the list of challenges associated with characterizing cGxE is long, many of these 

can be addressed by adopting a handful of rigorous research practices. Below we delineate a 

series of recommendations that we believe will help advance the study of GxE and ensure 

that the literature provides meaningful progress for science. We focus at greatest length on 

the issues pertaining to the G (genetics) in GxE, under the assumption that this will be most 

unfamiliar to social scientists. Many of the other concerns, reviewed in less detail below, are 

not specific to the study of cGxE, but complement the broader discussion (Cumming, 2014; 

J. P. Ioannidis, 2005; Lakens & Evers, 2014; Simmons et al., 2011) in the social sciences 

about how to produce robust, replicable findings that advance science. The 

recommendations below are reviewed in Figure 4.

Selection of genes

Given the prevailing skepticism surrounding candidate gene research, the burden of proof 

for the selection of a candidate gene is high. Such a rationale should be convincingly 

articulated in a manner specific to the phenotype and environment under study. The crux of 

the argument for selection of a particular gene to study lies in the statistical priors for the 

gene, i.e., based on prior evidence and the quality of the source of that evidence, how likely 

is it that this is a robust candidate. There is nothing inherently wrong with studying 

candidate genes, though the very idea of “candidate gene research” has fallen out of favor 

due to the historical issues with studying hypothesized biological candidates that have not 

held up in more systematic well-powered studies, as reviewed above. There are notable 

cases where hypothesized biological candidates have shown robust associations with 

outcome. For instance, rs1229984 in alcohol dehydrogenase (ADH1B) gene was one of the 

earliest candidate gene variants proposed in the etiology of alcoholism, particularly in 

Asians (A Agrawal & Bierut, 2012)5. The variant, which is rather rare in European-

American populations, has recently been identified in adequately powered genome-wide 

association studies as well (Bierut et al., 2012). Similarly, early candidate gene and 

experimental studies implicated a SNP in a nicotinic receptor (rs16969968 in CHRNA5) as a 

5The ADH1B polymorphism (rs1229984) has been implicated in Asian populations to afford protection against the development of 
alcoholism, putatively via flushing (facial reddening due to accelerated conversion of ethanol to acetaldehyde). Rs1229984 was not 
originally detected in GWAS in European-American populations. The minor allele frequency of this variant in European-Americans is 
low (<5%) and, commercial GWAS arrays rely on common variation. Accordingly, the SNP was neither genotyped on these arrays 
nor could it be reliably imputed. However, genotyping this polymorphism resulted in genome-wide significant association signals 
(Bierut et al., 2012), and with the advent of more recent arrays that target this variant better, there is now evidence in a GWAS of an 
association between rs1229984 and alcoholism at p=1.2×10−31 (Gelernter et al., 2014). In this instance, GWAS did not initially guide 
identification of a logical and validated candidate gene, highlighting that all techniques have their strengths and weaknesses.
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risk factor for tobacco smoking and nicotine dependence, but the role of this variant in 

cigarette smoking was not widely accepted until it was identified in multiple meta-analyses 

of cigarettes smoked per day, the largest of which had a sample size exceeding 70,000 (J. Z. 

Liu et al., 2010; Thorgeirsson et al., 2010; Tobacco_and_Genetics_Consortium, 2010).

Knowing that the prior for a candidate gene selected on hypothesized biological rationale is 

low, there are a variety of other methods for selecting candidate genes for study that should 

produce more robust and reliable findings, including focusing on genes with either large 

main effects or stronger a priori evidence. For the latter, methods of gene selection that have 

a greater likelihood of producing meaningful cGxE results include focusing on candidates 

suggested by well-powered GWAS or meta-analysis, or by model organism work, ideally 

with replication. Identification of genotypes of substantial main effect is challenging and 

limited. For example, the ε2/ ε3/ ε4 polymorphism at the APOE locus is a known and 

important risk factor for Alzheimer’s and coronary heart disease (Corder et al., 1993; Ward 

et al., 2009). Such large-effect polymorphisms seem to be particularly compelling 

candidates for cGxE research because the genetic effect is already known; only an 

environmental modification of this effect is required for evidence for an interaction.

A systematic strategy of gene identification followed by efforts to characterize moderation 

of the effect associated with that gene can be found in the example of GABRA2, and 

moderation by parental monitoring. GABRA2 was originally identified by the Collaborative 

Study on the Genetics of Alcoholism, the largest gene identification project in the area of 

alcohol dependence (Begleiter et al., 1995), by systematically interrogating GABA receptor 

genes with evidence for involvement in ethanol related response (Harris, 1999) that were 

located in a region of linkage identified with both clinical alcohol dependence phenotypes 

and electrophysiological endophenotypes (Ghosh et al., 2003; Porjesz et al., 2002; Reich et 

al., 1998). Association between GABRA2 and alcohol dependence was subsequently 

reported (Edenberg et al., 2004) and replicated by multiple independent research groups 

around the world using a variety of research designs (Covault, Gelernter, Hesselbrock, 

Nellissery, & Kranzler, 2004; Enoch, Schwartz, Albaugh, Virkkunen, & Goldman, 2006; 

Fehr et al., 2006; Lappalainen et al., 2005; Olfson & Bierut, 2012; Soyka et al., 2008). 

Although there have been failures to replicate (Covault, Gelernter, Jensen, Anton, & 

Kranzler, 2008; Drgon, D'Addario, & Uhl, 2006; Matthews, Hoffman, Zezza, Stiffler, & 

Hill, 2007) a recent meta-analysis confirms the evidence for association (Li et al., 2014). In 

addition, translational research has found the role of GABRA2 in rodent drinking (Dixon, 

Walker, King, & Stephens, 2012; J. Liu et al., 2011) and in the brain’s response to alcohol-

related (Kareken et al., 2010) and monetary reward cues (Villafuerte et al., 2012). While 

GABRA2 SNPs have not been identified via GWAS, they typically have the lowest p-values 

of candidate polymorphisms extracted from GWAS data (Olfson & Bierut, 2012). 

Interaction between GABRA2 and parental monitoring was tested based on the twin 

literature suggesting that parental monitoring moderates the relative importance of overall 

genetic effects (as inferred based on comparisons of twins, not using measured genotypes) 

on substance use outcomes in adolescence (Dick, Pagan, Viken, et al., 2007; Dick, Viken, et 

al., 2007); genetic effects assumed greater importance under conditions of lower parental 

monitoring, presumably because adolescents with lower monitoring have more access to the 
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substance and opportunity to express their genetic predisposition. An interaction between 

GABRA2 and parental monitoring was tested in an independent sample; a stronger 

association between the gene and trajectories of externalizing behavior was found under 

conditions of lower parental monitoring, as was hypothesized based on the twin findings 

(Dick, Latendresse, et al., 2009). This series of studies illustrates how different literatures 

and study designs (linkage and association studies, twin studies, and longitudinal, 

developmental studies) were integrated to characterize a cGxE effect. In this case, the 

candidate gene under study was selected based on a series of converging pieces of evidence 

that indicated involvement in alcohol and externalizing outcomes before it was studied in the 

context of cGxE.

In short, not all candidate genes are created equal nor is there a single pathway to 

determining their viability in a cGxE study. The burden is on the researcher to provide a 

compelling argument for the study of a particular candidate. And we suggest that bar should 

be much higher than the field has insisted upon to date.

Selection of genetic variants

In addition to strong justification for the selection of the gene under study, a second area that 

should be justified is the genotyping strategy: if only a select number of polymorphisms in a 

gene are being genotyped, how and why were those selected? There are several methods for 

selecting polymorphisms – one can utilize SNP content from a preexisting GWAS array or 

genotype custom content individually or en masse (e.g., as offered by the Illumina Golden 

Gate technology; Hodgkinson et al., 2008). Prices for GWAS arrays, especially those 

designed to include custom content, have dropped considerably, and often it is far more 

expensive and less cost-efficient to genotype a small number of polymorphisms than to 

genotype in large scale. In some cases, the technology required to genotype a particular 

variant, especially one that is not a SNP (e.g., a variable number of tandem repeats) is 

specialized and may entail unique requirements as most commercial arrays and custom 

genotyping platforms may not include this. Nonetheless, if only a few SNPs can be 

genotyped, tagging a gene may be preferable to simply pursuing the “usual suspects”. 

Tagging refers to identifying all variation, regardless of function, that captures variation 

across the gene. This includes important regulatory regions, such as promoters and 

enhancers which are increasingly recognized as key contributors (Zannas & Binder, 2014). 

Reliance on simple annotation of “function” (i.e., typically, a nonsynonymous exonic 

variant, meaning that the location is known to be in a part of the gene that produces an 

alteration in the gene’s protein product) is short-sighted as modern annotations available via 

the identification of epigenetic marks along the genome suggest that even intronic variants 

can have a profound impact on genomic action (e.g., Ziller et al., 2013). An exciting and 

upcoming possibility is a highly cost efficient chip being designed by the Psychiatric 

Genomics Consortium (PGC) that will include custom common and rare variation and will 

be based on SNPs nominated by expert consensus and validated via meta-analytic methods.

Modeling genes

Another consideration is that how genotype is coded implies a biological model, as reviewed 

above, and, as such, the model should be specified and justified (or explicitly stated as 
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exploratory, with appropriate corrections for multiple testing). Genotypes should not be 

collapsed purely to increase power and if they are, then effects should be described across 

all genotype groups for completeness. With increasing recognition that individual genetic 

polymorphisms on their own are likely to have very small effects, there should be 

justification provided if single polymorphisms are being studied in isolation. Further, with 

growing knowledge about gene networks and integrated functional pathways, there is 

opportunity to think more broadly about the potential for incorporating gene networks or 

pathways into tests of GxE, allowing one to go beyond focusing on a single gene and instead 

focus on sets of genes that interact biologically. This brings its own set of complications, as 

decisions must be made about the nature of genetic effects across the pathway or network: is 

a mutation in any of the genes in the network sufficient? Are all variations within the 

network expected to have an equal effect on outcome? Are mutations across multiple genes 

in the network acting cumulatively to affect outcome? Similar questions can be asked about 

multiple variants within any given gene of interest. Should polygenic risk scores that capture 

risk across the genome be used? The answer to these questions depends on the investigator’s 

theory behind how the environment is operating: does the investigator believe that all genes 

involved in outcome should be moderated by that environment in a parallel fashion or only 

subsets of the relevant genes? There is no straightforward answer to these questions, but 

what is clear is that deeper thought must be given to these issues in order to move the study 

of cGxE forward. Justification for the choices made in any given GxE study should be 

included in the publication. Because it is challenging to keep up with advances in the field of 

genetics, we suggest that this is an area where collaborations between geneticists and 

psychologists can be particularly fruitful, as connection to the latest findings from statistical 

and psychiatric genetics about our rapidly evolving knowledge of the underlying genetic 

basis for a given outcome of interest can ensure that the genetics being integrated into 

psychological science represents the latest advances from the field of genetics. The annual 

meetings of the Behavior Genetics Association (www.bga.org) and the International Society 

for Psychiatric Genetics (www.ispg.net) are opportunities to learn about the latest advances 

in psychiatric and behavioral genetics and to potentially develop collaborations with 

scientists working directly in those areas. In addition, Text Box 1 of this review lists a 

variety of genetics resources that may be useful to investigators in the social sciences that 

are interested in adding an informed genotyping component to their study.

Selection of the environment

Investigators should provide theoretical rationale for the selection of the environmental 

factor under study. Why is there reason to believe this aspect of the environment will have a 

moderating effect? Does the investigator believe this is an environmental factor with a time-

limited or enduring effect? Justification for the scale of measurement of the environment 

should be provided, as well as reporting of results on biologically defensible transformations 

of the independent and dependent variables. The environmental measure should reflect the 

“state of the art” method for measuring the particular feature of the environment. If it does 

not, justification for why this particular measure should be relevant/adequate should be 

included, as well as traditional supportive psychometric information.
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Accurate reporting of multiple testing

Researchers should explicitly detail how many total polymorphisms were available to them, 

how many were tested, and what type of guarding against inflation of type-I errors were 

made. In an identical vein, researchers should explicitly detail how many environmental 

variables, and how many different methods of operationalizing these environmental 

variables, were considered, as well as transformations of such, and selection of models. 

These types of procedures for genes are now routine in GWAS but are rare in cGxE studies. 

Such explicit disclosures will help increase confidence in positive findings that survived 

proper multiple testing corrections.

Power and small samples

Investigators should demonstrate that the sample being employed has adequate power to 

detect an interaction effect for the variables under study. Power computations should be 

presented regardless of the nature of the finding. In other words, studies with positive 

findings should be encouraged to present power computations as well (K. S. Button et al., 

2013). Computations should be specific to the statistical technique, distributions of the 

variables under investigation, and the hypothesized form of the interaction. Power analyses 

should assume realistic cGxE effect sizes. GWAS suggest that main effects are typically of a 

small magnitude, most accounting for less than 1% of the variance in a psychiatric 

phenotype. If the investigator has reason to believe that a larger effect size is likely for their 

study this should be clearly spelled out and justified. For instance, one might hypothesize 

that genes exert stronger effects on endophenotypes (e.g., neuroimaging outcomes) that are, 

arguably, more proximal to their action (though see Flint & Munafo, 2007; Munafo & Flint, 

2009). Or, it is possible that the use of a phenotypic measure thought to be of much greater 

reliability and validity than existing clinical phenotypes could enhance power. Finally, 

investigators should use

A question that sometimes arises is what can and should be done with studies whose small 

sample size is necessitated by the prohibitive costs associated with measurement of the 

phenotype, for example, with behavioral or neuroimaging studies, multi-wave longitudinal 

studies or studies of special populations. Regardless of the nature of the variables (e.g., self-

report vs. neuroimaging), a small sample size nearly always implies reduced power. In fact, 

Button and colleagues (K.S. Button et al., 2013) reported that the median statistical power 

across 49 meta-analyses of neuroscience studies was typically less than 20%, with the 

estimate plummeting to 8% when examining neuroimaging studies alone -- and that is 

without estimation of G or GxE! Some have argued that genotypic effect sizes associated 

with endophenotypes (such as neuroimaging outcomes) are likely to be higher because the 

outcome is more proximal to the biological substrate (E. J. Rose & Donohoe, 2013), yet 

there is no demonstrable evidence that we understand the genetic underpinnings of threat-

related amygdala reactivity and habituation, any better than we do the etiology of depression 

and anxiety. In other words, endophenotypes may be as polygenic as self-report measures 

(Flint & Munafo, 2007).

Replication is key for findings based on small samples, but, as Button and colleagues note, 

the winner’s curse often inflates initial results and unless the replication sample is 
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substantially better powered, the ceiling placed on average sample size likely perpetuates 

false positive findings until enough samples have been amassed to conduct a meta-analysis. 

Meta-analysis and/or integrative data analysis (Hussong, Curran, & Bauer, 2013) are 

particularly attractive techniques to combine data across multiple studies so that small scale 

research can contribute to more definitive results. In instances where that is impossible, 

perhaps because the sample is rare and unique, the outcome under study is highly novel or 

because the environmental factors have been measured using superior assessments that other 

studies do not include, we recommend that these studies acknowledge their limitations and 

present a candid account of power in the study, even if it implies that their findings might be 

spurious. Importantly, readers of this literature should carefully consider the caveats of such 

small sized studies so as not to perpetuate a series of cGxE emerging from and replicated in 

small samples.

Manipulation/Presentation of Data

The statistical properties that surround the detection of the interaction should be specified 

and discussed. Is the interaction significant on an additive or multiplicative scale? 

Investigators should provide evidence that detected interaction effects are robust to 

transformation of scale and/or provide a strong defense of the scaling employed. If it is not 

robust to transformation, the implications of this should be discussed. Common artifacts 

associated with nonlinearity should also be evaluated and ruled out. Similarly, if the 

interaction is detected under some conditions or using some measures of the environment 

but not others, this should be reported and incorporated into the theory behind what the 

findings contribute to the literature. Perhaps most importantly, the raw data along with 95% 

confidence intervals should always be plotted and reported in the publication, not just the 

model-derived regression lines, which can be misleading, especially when some 

combinations of the independent variable have small sample sizes and when control 

covariates are included in the model. Because apparent cGxE effects can be due to 

stratification, genotyping artifacts, and even gender (Keller, 2014), careful attention must be 

paid to the variables under study in order to bolster confidence that the moderation effect is 

due to the specific gene/environment under study. For example, if whites are more sensitive 

to environmental trauma, leading to Posttraumatic Stress Disorder (PTSD), in a mixed 

ethnicity sample examining environmental trauma-by-gene interactions, any SNP that 

differentiates whites from blacks will also show an apparent cGxE interaction. In this case, 

the gene isn't the true moderator - race is - the gene was merely correlated with race. To 

increase confidence in cGxE findings and to eliminate alternative explanations for them, 

researchers need to include all relevant gene-by-covariate and environment-by-covariate 

interaction terms in their models. Researchers should consider including quadratic 

transformations of the environmental term as well as covariates, as these may change the 

interpretation of the interaction depending on multicollinearity. Finally, the assumptions that 

are imposed by modeling interactions using cross-product terms in linear regression and/or 

by the use of logistic regression (as discussed above) should be acknowledged and, when 

appropriate, justified.
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Addressing Publication Bias

In circumstances where the proportion of false findings is high, as we suspect is the case for 

candidate gene main effect and cGxE studies, the issue of publication bias should be 

considered by both authors and editors. Authors, journal editors, and reviewers should 

understand that novel positive findings may often be false, and so should set higher 

standards of evidence, including stricter standards of significance testing, full accounting for 

all sources of multiple testing, and direct independent replication prior to publication. 

Equally, investigators should strive to submit, and editors to publish, adequately powered, 

independent direct replication attempts, irrespective of the outcome -- positive, negative, or 

null. Meta- or mega-analyses that combine data across multiple studies while accounting for 

across-study heterogeneity, allow smaller sized studies to contribute to hypotheses 

necessitating larger samples, such as cGxE. Such collaborative research should be 

encouraged. These kinds of recommendations, aimed at reducing the role of publication and 

other biases, are being adopted by journals that have an interest in cGxE; some recent 

examples are Behavior Genetics (Hewitt, 2012), the Journal of Abnormal Child Psychology 

(Johnston, Lahey, & Matthys, 2013) and Drug and Alcohol Dependence (Munafo & Gage, 

2013). We would recommend that other journals dealing with substance abuse, psychiatry, 

and related fields adopt similar policies.

Conclusions

Studying how genetic predispositions and environmental circumstances come together to 

contribute to complex behavioral outcomes has great potential for advancing our 

understanding of the development of psychopathology. It represents a clear theoretical 

advance over studying these factors in isolation. However, research at the intersection of 

multiple fields creates many challenges. Studying cGxE requires appropriate understanding 

of genetic mechanisms, appropriate measurement of the environment, a conceptual 

framework for integrating the two with respect to a specific outcome of interest and, 

critically, of the statistical principles that underpin cGxE studies. It is not likely, or expected, 

that every investigator conducting cGxE research will have the requisite expertise in all of 

these areas; accordingly, we encourage cGxE studies that are collaborative efforts involving 

individuals with common interests but diverse expertise.

The National Institutes of Health has initiatives aimed at addressing challenges associated 

with genotypic research, many of which are also relevant to the study of cGxE. For example, 

in recognition of the fact that gene identification requires large numbers, but one of the 

challenges that is often encountered as researchers attempt to pool their samples is the use of 

different measures across studies, the PhenX initiative was launched (www.phenX.org) 

(Hamilton et al., 2011). PhenX brought together panels of experts across a variety of 

research areas to come up with recommended consensus measures (including both outcome 

and environmental measures) for inclusion in genetics studies to encourage the use of 

common measures to facilitate cross-study comparisons and analyses. There are limitations 

to this approach: brief, low burden measures were preferentially selected to encourage more 

widespread uptake, which may result in less precise or comprehensive assessments in the 

case of some constructs. However, it represents a step toward facilitating collaborative 
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efforts in genetics research. The use of standardized measures across studies could also help 

advance the cGxE field, with greater emphasis placed on replication and combined analyses 

across research groups to enhance sample size and corresponding power. The Office of 

Behavioral and Social Sciences Research (OBSSR) at NIH also has resources on its website 

[http://obssr.od.nih.gov/] to help social scientists with the incorporation of genetic 

information into their studies. Many of these issues are not specific to the study of 

psychopathology. A recent paper on gene-environment interactions in cancer epidemiology, 

coming out of a National Cancer Institute think tank, described similar challenges (Hutter, 

Mechanic, Chatterjee, Kraft, & Gillanders, 2013).

As investigators who have explored cGxE hypotheses ourselves, with some of our own work 

not meeting the standards delineated in this review, we were compelled to ask: how can we 

do better? We hope we have outlined some such strategies. Through greater awareness of 

the challenges in conducting cGxE research, resources available to aid in conducting high 

quality cGxE studies, and proactive efforts to move cGxE studies in this direction, it is our 

hope that this growing area of research will eventually reach its potential to deeply inform to 

our understanding of complex behavioral outcomes.
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Glossary*

additive a genetic model where each increasing copy of an allele (AA vs 

AG vs GG) is associated with a corresponding incremental change 

in association with the outcome.

allele alternate version of a DNA sequence or variant (e.g. SNP 

rs1229984 has two alleles, A and G)

carrier an individual who is heterozygous for the risk conferring allele of a 

variant or mutation with a recessive pattern of inheritance. Carriers 

do not express recessive phenotypes but can transmit a copy of the 

recessive allele on to their children.

common variants typically, single nucleotide polymorphisms where the less common 

allele is present in ≥5% of the population under study; e.g. the less 

common allele in the widely studied Val66Met polymorphism 

rs6265 in BDNF (brain derived neurotrophic factor) is seen in 19–
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27% of those of Caucasian European descent making it a common 

variant.

Cross-product 
term

In a regression, the coefficient/term that captures the interaction 

between two variables (e.g. GxE)

dominant an allele that is expressed when present in one copy. For alleles that 

follow Mendelian inheritance patterns, individuals who have one or 

two copies of the dominant allele will express the phenotype

effect size the magnitude or strength of the relationship between two 

variables, such as genotype and phenotype; can be reflected by a 

regression coefficient, an odds-ratio etc.

enhancers a sequence of DNA that represses or increases the rate of 

transcription of a gene

epigenetic inherited or de novo changes in gene, expression that are not 

directly related to a change in DNA sequence

exonic a genetic variant that lies within coding region of a gene, meaning a 

sequence of DNA that is translated into a protein product

functional (SNP) a single nucleotide polymorphism that changes the protein product 

or expression of a gene

genetic marker a sequence of DNA that maps to a particular (known) chromosomal 

location

genomics the study of genomes (a complete set of DNA sequence 

information for an organism)

genotype relative 
risks

the ratio of penetrance parameters where penetrance refers to the 

likelihood of being affected given a certain genotype.

GWAS Genome-wide association study; an unbiased study looking for 

allele frequency differences across the genome between individuals 

who vary in a phenotype of interest

Genome-wide 
significance

when investigators perform genome-wide association studies, the 

traditional p-value cut-off for significance (p<=0.05) is no longer 

valid as nearly one million tests are being preformed. A genome-

wide significance threshold accounts for multiple testing via a 

Bonferroni correction for a million tests (0.05/1,000,000), shifting 

the significance level to 5×10–8 (usually)

Heritability the proportion of observable differences in a trait between 

individuals within a population that is due to genetic differences

heterozygote an individual who has two different alleles (i.e. one copy of each 

AG) at a particular locus (location on a chromosome)
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homozygote an individual who has two copies of the same allele at a particular 

chromosomal location(i.e. AA or GG). Individuals can be 

homozygous dominant (two copies of the dominant allele at a 

locus) or homozygous recessive (two copies of the recessive allele 

at a locus).

Imputation probabilistic inference of genotype of an untyped variant in the 

vicinity of a typed variant, based on curated data that estimate the 

extent to which the typed variant is typically correlated with the 

untyped variant.

intronic a genetic variant that lies within a noncoding region of a gene, 

which is a sequence of DNA that is not translated into a protein

linkage 
disequilibrium

the correlated nature of adjacent variants such that knowledge 

about genotype at one location can result in high accuracy of 

prediction of genotype at the other location. This is due to the 

nonrandom association of alleles in a population resulting from 

historical recombination events

Minor allele 
frequency (MAF)

in a particular population, the frequency of the minor (least 

common) allele (variant) at a particular locus

Mendelian 
disorder

a single gene disorder that follows a Mendelian inheritance pattern 

(i.e. dominant or recessive) where there is a direct correspondence 

between carrying the disease-conferring genotype and expressing 

the disorder.

monogenic a phenotype or disorder that is caused by one gene

mutation a DNA sequence change that results in observed differences in 

phenotype

nonsynonomous a DNA sequence change that results in an amino acid change in the 

gene’s protein product (see also missense)

pleiotropy where one gene influences multiple outcomes that may be 

unrelated

polygenic risk 
scores

the summation of multiple alleles that are putatively associated 

with a phenotype to create a single index of genetic vulnerability

polymorphism a DNA sequence change, i.e. a location in the genome that can 

come in multiple forms

population 
genetics

the study of allelic variation in a population characterized by 

certain evolutionary influences.

power in statistics, the probability of detecting an effect, if an effect truly 

exists
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Priors/prior 
probabilities

the probability of an event before statistical evidence from other 

studies/observations that favor/disprove a hypothesis is taken into 

account. For instance, the prior probability that a newborn in the 

Caucasian population has cystic fibrosis is 1/2500 but this 

probability is higher (25%) if both parents are carriers.

promoter a region of DNA that regulates transcription of a gene

recessive an allele that is only expressed when present in two copies. For 

alleles that follow Mendelian inheritance patterns, only an 

individual who has the homozygous recessive genotype will 

express the recessive phenotype

reference panel genomic data regarding the physical location, gene assignment and 

other features of a variant based on a select group of genotyped 

individuals (e.g. for Whites, residents of Utah of Western and 

Northern European descent were selected by the Centre d'Etude du 

Polymorphisme Humain (CEPH) – this constitutes the CEU 

reference panel).

risk allele the allele associated with increasing vulnerability to the phenotype.

SNP single nucleotide polymorphism a single base pair change in the 

DNA sequence

Stratification naturally occurring variation in the frequency of the minor allele of 

SNPs across different ethnic groups. When unaccounted for, 

stratification can lead to false positive associations if the outcome 

is correlated with ethnicity.

Tandem repeats DNA sequence repeats that occur side by side, e.g., a repeating 

pattern of the nucleotides ACGACG would be a trinucleotide 

tandem repeat.

Variant alternative DNA sequence

(*)Note: This glossary is not meant to be exhaustive or serve as a substitute for a genetics 

textbook. Rather, we provide a brief overview of key genetic phenomena here to assist the 

reader with the interpretation of this paper.
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Text Box 1

Genetics resources

dbGAP

All federally funded studies with genome wide association study (GWAS) data are 

required to deposit genotypes and a select set of phenotypes in dbGAP. Investigators can 

follow procedures to access these data for analyses, including cGxE.

http://www.ncbi.nlm.nih.gov/gap

dbSNP

Repository of genetic variation.

http://www.ncbi.nlm.nih.gov/SNP/

Epigenome browser (Zhou et al., 2013)

Annotation of epigenetic marks in human genome.

http://epigenomegateway.wustl.edu/

GCTA (Yang, Lee, Goddard, & Visscher, 2011)

Uses plink-format files above to estimate the total genetic variance explained in a 

phenotype by GWAS data; can be used for GxE using all GWAS variants.

http://www.complextraitgenomics.com/software/gcta/

HapMap

Includes reference data on allele frequencies, gene assignment and linkage disequilibrium 

for common variants in sample populations.

http://hapmap.ncbi.nlm.nih.gov/

Linkage disequilibrium (LD) estimation and plotting software

The following software packages offer investigators the ability to compute LD in their 

own data and in reference datasets.

Reference data: http://www.broadinstitute.org/mpg/snap/

Own data with Haploview (Barrett, Fry, Maller, & Daly, 2005):

http://www.broadinstitute.org/scientific-community/science/programs/medical-and-

population-genetics/haploview/haploview

Identify tagging SNPs: http://www.broadinstitute.org/mpg/tagger/

Regional association plots with LD (Johnson et al., 2008; Prium et al., 2010):

http://www.broadinstitute.org/mpg/snap/

http://csg.sph.umich.edu/locuszoom/

PGC (Psychiatric Genomics Consortium)
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Conducts some of the largest meta-analyses of psychopathology. Results (effect sizes) 

are available for developing cGxE hypotheses based on strong priors. Free lectures by 

genetics experts available to view.

http://www.med.unc.edu/pgc

PLINK (Purcell et al., 2007)

Free and user-friendly software for analysis of measured and imputed genomic 

association, creation of polygenic risk scores, meta-analysis, cGxE and GWAS analyses. 

Allows for easy transformation of genomic data.

http://pngu.mgh.harvard.edu/~purcell/plink/

Power computations for genetic main effects and GxE

These user-friendly power calculators are useful in determining power given sample size 

and genetic model.

For a variety of study designs and genetic models (Purcell, Cherny, & Sham, 2003):

http://pngu.mgh.harvard.edu/~purcell/gpc/

More restrictive range of genetic models, includes GxE models (Gauderman, 2002):

http://biostats.usc.edu/Quanto.html

Primarily for case control association (Skol, Scott, Abecasis, & Boehnke, 2006):

http://www.sph.umich.edu/csg/abecasis/CaTS/

UCSC Genome Browser/ENCODE

Detailed annotation of variation and features of the human genome, including expression, 

cross-species conservation and epigenomic marks via the Encyclopedia of DNA 

Elements.

http://genome.ucsc.edu/
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Figure 1. 
Overview of common gene finding strategies.

Results of a linkage analysis are often depicted using a Logarithm of Odds (LOD) score plot 

that depicts the genomic region(s) (measured in genetic distance, or centiMorgans, where 

1cM roughly equals 1,000,000 base pairs) with the linkage peak(s), or the highest LOD 

scores. The LOD is the ratio of the likelihood that there is excess allele sharing to the null 

hypothesis of no excess allele sharing. The adjacent diagram illustrates these results for one 

chromosome. Elevated LOD scores indicate that the genomic region is shared by affected 
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relative pairs more often than expected by chance alone, suggesting there is a gene in the 

region contributing to the outcome under study.

Results from a classical candidate gene study are illustrated. The prevalence of 

psychopathology increases in an additive fashion with increasing copies of the risk allele 

“G”.

The adjacent figure illustrates the results of a genome-wide association study (GWAS). Each 

dot represents the negative logarithm (base 10) of the p-value for an individual association 

test (usually hundreds of thousands or millions of SNPs tested across the genome). 

Therefore, a p-value of 5 × 10−8, or the threshold for genome-wide significance, as denoted 

by the horizontal solid line, is noted at the midway point between 7 and 8. The dotted line 

reflects a p-value of 1 × 10−5, indicating SNPs of interest. The x-axis denotes physical 

positions (in base pairs) across each of the 22 autosomal chromosomes. In the hypothetical 

example, there are three “hits” (SNPs) that surpass the genome-wide significance threshold, 

and many more SNPs that are suggestive.
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Figure 2. 
Alternative portrayals of a candidate genotype (in this example a single nucleotide 

polymorphism, SNP) × environment (in this example high versus low adversity) interaction. 

Panel A emphasizes that the strongest impact of high adversity on psychopathology is found 

for individuals with the GG genotype. Alternatively, Panel B emphasizes that the strongest 

association of the genotype with psychopathology is among those experiencing high 

adversity. These are alternate presentations of the same interaction.
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Figure 3. 
The figure presents simulated phenotypic data for three genotypic groups (G=0, 1, 2, 

indicating groups of individuals who carry 0, 1, or 2 copies of a particular allele) each 

shown in a different color. The four parameter model corresponds to the case where the 

interaction term is modeled by a cross-product term only. Although a significant interaction 

is detected, the corresponding linear regression lines do not match the data points and the 

slopes are incorrectly ordered from 0 to 1 to 2, based on the constraints imposed by the use 

of the cross-product term to model the interaction. Thus, although the model would produce 

a “significant interaction”, the regression lines implied by the model inaccurately represent 

the data and would be misleading as to the nature of the interaction. The data can be 

accurately reproduced by an extended parameterization of the regression model (six 

parameter model) as detailed in (Aliev, Latendresse, Bacanu, Neale, & Dick, 2014).
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Figure 4. 
Recommendations for rigorous GxE research practices.

Dick et al. Page 41

Perspect Psychol Sci. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


