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The gene predictions and accompanying functional assignments resulting from the sequencing and annotation of
a genome represent hypotheses that can be tested and used to develop a more complete understanding of the
organism and its biology. In the model plant Arabidopsis thaliana, we developed a novel approach to constructing
whole-genome microarrays based on PCR amplification of the 3’ ends of each predicted gene from genomic
DNA, and constructed an array representing more than 94% of the predicted genes and pseudogenes on
chromosome 2. With this array, we examined various tissues and physiological conditions, providing
expression-based validation for 84% of the gene predictions and providing clues as to the functions of many
predicted genes. Further, by examining the distribution of expression along the physical chromosome, we were
able to identify a region of repressed transcription that may represent a previously undescribed
heterochromatic region.

[The sequence data from this study have been submitted to ArrayExpress under accession nos.: For the Array
Design, A-TIGR-2. For the three subgroups of experiments: AbioticStress, E-TIGR-2; BioticStress, E-TIGR-3;

Tissues, E-TIGR-4.]

The sequencing of the whole Arabidopsis genome by an inter-
national consortium, Arabidopsis Genome Initiative (AGI), be-
gan in 1996. Chromosomes 2 and 4 were published in De-
cember 1999 (Lin et al. 1999; Mayer et al. 1999), and the
remainder of the genome, chromosomes 1, 3, and 5, was com-
pleted and published in the winter of 2000 (Arabidopsis Ge-
nome Initiative 2000; European Union Chromosome 3 Ara-
bidopsis Sequencing Consortium 2000; Kazusa DNA Research
Institute et al. 2000; Theologis et al. 2000). The goal of a
genome project is not the collection of the organism’s DNA
sequence, but rather the identification of the genes encoded
within. Consequently, as the Arabidopsis sequence became
available, significant effort was devoted to gene prediction
and sequence annotation. Gene identification in eukaryotes
remains a significant challenge; various existing gene predic-
tion programs frequently provide contradictory results, and
consequently, their predictions are best viewed as models that
must be confirmed by other data, including alignments to
EST, gene, or protein sequences. In Arabidopsis, <50% of the
annotated genes had strong EST support. Further, while
nearly 69% of the annotated genes were assigned putative
functions, only 9% had been previously characterized. Al-
though recent cDNA sequencing efforts have provided addi-
tional support for some predictions (Seki et al. 2002), many of
the annotated gene structures and functional assignments re-
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main hypotheses that must be tested to evaluate the quality of
the annotation and to refine annotation techniques.

Microarray expression analysis allows monitoring of
gene expression patterns on a global scale and provides an
opportunity to both validate the gene predictions and to de-
velop experimental evidence for functional assignments.
There are a number of approaches to constructing microar-
rays, including mechanical spotting of cDNA clones (Schena
et al. 19995) or long oligonucleotides (Kane et al. 2000; Call et
al. 2001) onto derivatized glass and the in situ synthesis of
short oligonucleotide probes directly on a glass microarray
surface (Chee et al. 1996). In Arabidopsis, however, each of
these approaches suffers significant limitations. Publicly
available cDNA clones even now represent <60% of the pre-
dicted genes (Seki et al. 2002), while oligomer-based ap-
proaches rely on accurate gene structure predictions to effec-
tively select target regions.

To circumvent these limitations, we developed a novel
approach in which we constructed arrays consisting of PCR-
amplified genomic segments representing nearly the entirety
of the annotated genes on Arabidopsis chromosome 2 spotted
onto aminosaline-coated microscope slides. Using these ar-
rays, we set out to evaluate the validity of genomic annota-
tion and to place the predicted genes in a biological context.
Our results demonstrate expression of at least 84% of the pre-
dicted genes under one or more of the conditions tested and
allow us to identify genes expressed in stress response and in
particular tissues. Further, we have identified a region that
appears to be transcriptionally repressed; the composition of
the genes in this region resembles known heterochromatic
regions in the chromosome 4 and in other plant chromo-
somes.
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RESULTS AND DISCUSSION

A Novel Approach to Construction of the Genomic
Amplicon Microarrays

The lack of cDNA clones representing the majority of the
predicted genes on chromosome 2, coupled with the inability
of ab initio gene prediction programs to accurately deduce
gene structures led us to develop a novel PCR-based approach
targeting the 3’ ends of the predicted genes (Fig. 1). Briefly,
starting at the 3’ end of the predicted transcribed region of
each gene (Lin et al. 1999; available through http://www.
tigr.org/tdb/e2k1/ath1/), we selected a 1000 base-pair region
immediately upstream of the predicted stop codon. If an an-
notated 3’ untranslated region (UTR) existed, we added the
complete UTR, otherwise, we included 150 base pairs of se-
quence downstream of the predicted stop. The selected target
sequences provided with a minimum of 1150 base pairs for all
predicted genes from which we designed PCR primers using
Primer 3.0 (Whitehead Institute, http://www-genome.wi.
mit.edu/genome_software) with optimized design parameters
that can be used to amplify >5/6 of the target. The resulting
PCR products are ~1 kb in length, which is large enough to
assure the presence of sufficient coding sequence in the target
genomic region for efficient hybridization, while small
enough not to contain multiple genes. Using this approach,
we were able to design primers for 4437 of the 4442 predicted
genes and pseudogenes identified on the chromosome 2 and
have successfully amplified 4180 (94.2%) from genomic DNA
using standardized amplification conditions, with approxi-
mately equal numbers either giving no clear amplification
product or showing multiple bands (see http://atarrays.tigr.
org/arabdata.shtml for primer sequences and amplification
data, as well as the perl script used for primer selection). It
should be noted that this represents a lower bound for repre-
sentation on the arrays, as some of the products that gave no
visible product on an agarose gel yielded good hybridization
data; subsequent reanalysis suggests that the majority of these
“undetected products” represent misloaded samples or
samples at low concentrations. Purified PCR amplicons were
spotted in duplicate at high density on aminosaline-coated
microscope slides and the resulting microarrays used to assess
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If 2 3' UTR exists,
| = useit; otherwise,
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I
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1 Select 1000 bp upstream of the stop codon. |

Select primers to amplify >5/6 of target region.

Figure 1 Primer design strategy for amplification of the 3’ ends of
the annotated genes identified on the chromosome 2. Starting at the
predicted stop codon of each annotated gene, we selected a region
1000 bp upstream and 150 bp, or the length of the annotated 3’
untranslated region if available and extracted it from the genomic
sequence. Primer 3.0.9 from the Whitehead Institute was used to
design primers spanning >5/6 the length of the selected region. Am-
plification success from genomic DNA was 94.2% using this ap-
proach.
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gene expression in a wide range of tissues and physiological
states.

Validation of the Gene Predictions on Arabidopsis
Chromosome 2

Of the 4437 genes for which we were able to design primers,
273 (6.2%) were previously known genes, 1807 (40.7%) were
assigned putative functions based on protein sequence ho-
mology, 866 (19.5%) were classified as encoding unknown
proteins as they shared similarity with other proteins of un-
known function, 1094 (24.7%) were annotated as hypotheti-
cal indicating that they encode novel proteins of unknown
function, and 397 (8.9%) were classified as pseudogenes.
While the chromosome 2 microarrays represent nearly the
entire complement of the genes on the chromosome, at any
particular instant in time, a given tissue or physiological state
is likely to express only a subset of the genes encoded within
the genome. Consequently, we chose to survey a broad range
of tissues and developmental stages, as well as plants chal-
lenged by biotic and abiotic stressors, in order to assess the
validity of the gene predictions (Fig. 2).

In total, 40 cohybridization assays were performed, rep-
resenting 20 direct comparisons and dye-reversed replicas. As
each gene on the chromosome was printed in duplicate, each
pair of samples provides four opportunities to detect expres-
sion. We scored the genes “expressed” when they exhibited a
measurable signal above background in at least two of these
four replicas. Using this definition, we found 3720 (83.7%) of
the 4442 genes on the chromosome to be expressed in at least
one sample, providing transcriptional evidence for these pre-
dictions (Fig. 3A). We detected expression of 894 (81.7%) of
the 1094 annotated hypothetical genes and 783 (90.4%) of
the 866 genes encoding unknown proteins.

A total of 550 genes (12.4%) were detected as expressed
in all 40 hybridizations. These ubiquitously expressed genes
include many of the known genes, as well as those unknown
genes annotated based on their conservation in other species.
Only 36 of the hypothetical genes, which were annotated
solely on the basis of ab initio predictions, fell into this class.
Only 717 (16.2%) genes were undetected in any of the assays
performed; in this set, hypothetical genes were highly repre-
sented. Taken together, these data suggest, not surprisingly,
that gene predictions without supporting EST or protein
alignment evidence are most likely to be of questionable va-
lidity. These results are summarized in Figure 3; all expression
data from this study can be found at http://atarrays.tigr.org/
data/.

One interesting observation can be made by looking at
the representation of known genes in various subsets of the
data (Fig. 3B). For the entirety of chromosome 2, the known
genes represent only 6.5% of the total 4437 annotated genes.
However, when we examine the 550 genes that appear in all
of the conditions surveyed in this study, we find that the
known genes represent 20.2% of the total, while in the set of
717 genes that showed no discernable expression in any of
our assays, the known genes represent only 3.2% of the total.
What this suggests is subtle but profound for microarray stud-
ies. The “known genes” are likely known because they are
nearly ubiquitously expressed and consequently more likely
to be identified and assigned a functional role in standard
biological experiments. In contrast, many genes of unknown
function appear in only a small number of tissues or states or
in response to specific stressors. This observation is important
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abiotic stresses, heat, cold, and salt,
with response to salt stress mea-
sured 12 and 24 h after exposure. Of
the genes on chromosome 2, we
were able to identify 497 that were
differentially expressed at 95% con-
fidence under one or more of the
conditions. These included 43 that
had been previously characterized;
247 were genes coding for putative
functions, 106 genes encoded un-
known proteins, 83 were hypo-
thetical genes, and 18 had been an-
notated as pseudogenes. Figure 4
shows the 297 genes for which ex-
pression data were available in all
four conditions organized into 10
clusters using k-means clustering
with a Euclidean distance metric.
Among the known genes were
some previously associated with
abiotic stress-response in plants,
and these served as positive con-
trols for our analysis. For example, a
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Figure 2 Paired Arabidopsis samples surveyed with microarrays in this study. A total of 19 samples
were grouped into 20 hybridization pairs representing abiotic and biotic stressors and tissue-specific
sets; subsets of experiments are color-coded as in Figures 6 and 8. mRNA from each plant sample was
labeled with Cy3 or CyS5 fluorescent dye as indicated and the collection of hybridizations was replicated

with dye labels reversed.

for microarray construction where the goal is to elucidate pat-
terns of gene expression. Many people argue that arrays
should be limited to genes of known function to facilitate
interpretation of the data. This could, however, have the ef-
fect of eliminating from consideration the very genes that
may well be important for a particular response in favor of
genes that play a more general role in the cell.

Genes Responsive to Abiotic Stresses
Compared to validating expression of annotated genes, con-
firming functional role assignments for putative genes and
determining functions for hypothetical and unknown genes
is significantly more difficult. It often is not easy to find the
proper conditions under which those genes are significantly
regulated, and precise functional assignments generally re-
quire serial biochemical and genetic analyses to confirm a
gene product’s action. Nevertheless, microarray data provides
information on patterns of gene expression that can be used
to infer possible functions for these genes that can be further
tested in directed studies.

The conditions we surveyed included three independent

(At2g42530) were up-regulated in
response to cold stress, consistent
with the involvement of these pro-
teins in acclimation to cold stress
(Wilhem and Thomashow 1993;
Steponkus et al. 1998). Induction of
actin depolymerizing factor (ADF,
At2g16700) under cold stress is consistent with the previous
observation that low temperatures induce the accumulation
of an ADF protein in Gramineae species (Ouellet et al. 2001). A
change in the abundance of ADF proteins is believed to lead
to changes in the actin cytoskeletal architecture during low-
temperature acclimation, and these modifications may be re-
lated to cell survival under freezing conditions (Staiger et al.
1997; Lappaleinen et al. 1998; Aon et al. 2000). Delta-9 de-
saturase (At2g31360) was specifically up-regulated under cold
stress. Production of delta9 desaturase under cold stress may
be a way to acclimate to the cold conditions. Transgenic to-
bacco plants expressing cyanobacterial delta-9 desaturase
have been shown to have highly reduced level of saturated
fatty acid in membrane lipids and exhibited a significant
increase in chilling resistance (Ishizaki-Nishizawa et al.
1996). Delta-1-pyrroline S-carboxylase synthetase (P5CI;
At2g39800) was induced in response to cold and salt stresses.
This enzyme is required for the synthesis of proline, which is
known to play an important role as an osmoprotectant in
plants subjected to hyperosmotic stresses such as cold,
drought, and soil salinity (Delauney and Verma 1993; Hong et
al. 2000).
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duction pathways, and their pat-
terns of expression provide the first
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signments. For instance, a gene for
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At2g03760, which encodes a puta-
tive steroid sulfotransferase, was
also up-regulated. Steroid sulfo-
transferases are the enzymes that
inactivate steroid hormones and re-
cently have been shown induced by
salicylic acid in plant (Rouleau et al.
1999). These authors suggested that
plants might respond to stresses by
modulating steroid-dependent
growth and developmental pro-

Known genes (3.2%)

Figure 3 Validation of gene predictions by expression as detected by microarray analysis. (A) Various
levels of support can be inferred based on how often expression was detected in the 40 assays
performed. Of 4437 genes surveyed, 83.7% provides evidence of expression in at least one assay, while
12.4% are expressed in all assays. (B) Genes assigned to functional classes, shown for the chromosome
and for those genes that were expressed in every sample or that failed to be detected in any assay.
Genes of previously known function are relatively overrepresented among those ubiquitously ex-
pressed and underrepresented among those not detected, while “hypothetical” genes display the

opposite behavior.

Other genes with known and putative functions, which
were found to be differentially expressed, can be used to gen-
erate hypotheses regarding the mechanism of stress response.
Induction of a gene encoding a K* transporter (AKTI;
At2g26650) is intriguing because it is known that high con-
centrations of Na* caused by salt stresses can cause K* defi-
ciency in the cell (Hanegawa et al. 2000). AKT1 is predomi-
nantly expressed in root cortex and root epidermis, and is
responsible for inward rectifying K* currents in these cells
(Hirsch et al. 1998; Reintanz et al. 2002). Moreover, when 1
mM Na* was applied in the presence of 30 mM K* in the bath
solution, inward K* currents remained largely unaffected
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cesses. We observed the induction
of At2g47600 coding for a putative
Na*/Ca®* antiporter under salt
stress. Although this is not a sur-
prising response to the osmotic
pressure induced by high salt, to
our knowledge this is the first re-
port of salt-induced expression of
this transporter. Induction of puta-
tive amine oxidase (At2g43020) under salt stress suggests that
reactive oxygen species (ROS) signaling may also play a role in
the plant’s response. This hypothesis is consistent with the
induction of 12-oxophytodienoate-10, 11-reductase
(At2g06050), which is a key enzyme for jasmonate synthesis
and which is known to both be produced in response to ROS
and to play a role in modulating oxidative signaling (Schaller
et al. 1998; Rao et al. 2000). A putative inositol polyphosphate
5'-phosphatase (At2g43900) was also induced. These enzymes
are known to be involved in abscisic acid (ABA) signaling, and
it is known that ABA accumulates in vegetative cells in re-
sponse to water deficit, salinity, cold temperature, and light
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variation, and it is thought to act as a signal for the initiation
of acclimation to these stresses.

We also found 83 hypothetical and 106 “unknown”
genes to be differentially regulated in response to abiotic
stresses. This suggests that these genes may play a role in stress
response, although with these limited data it is not possible to
deduce precise functions. A more comprehensive expression
analysis of stress response in combination with traditional
genetic studies would help to refine the roles that these un-
known genes might play.

Response to Biotic Stress

We also investigated plant response to bacterial infection. For
this, we infiltrated Arabidopsis rosette leaves with buffer sus-
pensions of Pseudomonas syringae pv. tomato (Pst) strain DC
3000 (Staskawicz et al. 1987) carrying either the avirulent
gene avrRpt2 (Whalen et al. 1991; Mudgett and Staskawicz
1999; Chen et al. 2000) or the vector control (pLAFR3) for the
gene construct (Staskawicz et al. 1987). The avrRpt2 gene en-
codes a virulence factor that is quickly detected by the Arabi-
dopsis surveillance system and induces an avirulence response
(Mudgett and Staskawicz 1999; Chen et al. 2000). We also
challenged plants with Xanthomonas campestris pv. campestris,
which causes black rot disease in both crucifers and some
noncrucifers including Arabidopsis (Bent et al. 1992). Buffer
without bacteria was used as a negative control.

A total of 344 genes showed a significant response to at
least one treatment (Fig. 5), of which 12 are of previously
known function and some of which can serve as positive con-
trols for our assays. At2g37040 codes for phenylalanine am-
monia lyase (PALI) was up-regulated in response to infiltra-
tion with P. syringae DC 3000 (avrRpt2), P. syringae DC 3000
(vector control), and buffer alone. This is consistent with the
fact that PAL1 has been implicated in pathogen and wound
response in plants (Logemann et al. 1995; Weisshaar and Jen-
kins 1998). Induction of At2g40940 coding for ethylene re-
sponse sensor (ERS) and At2g06050 coding for 12-
oxophytodienoate-10, 11-reductase, a key enzyme for jasmo-
nate biosynthesis, is consistent with published observations
that ethylene and jasmonate are involved in pathogen-
responsive interactions (Pieterse and van Loon 1999).
At2g14580, which encodes pathogenesis-related PR-1-like
protein, was strongly induced in response to P. syringae DC
3000 (avrRpt2) but only weakly to P. syringae DC 3000 (vector
control), suggesting the protein is expressed in response to the
avrRpt2 product.

Of the 344 response genes we found to be differentially
expressed in response to at least one treatment, 228 had mea-
surable expression in all four. These were clustered using k-
means (k =6, Euclidean distance; Fig. 5). Clusters A and B
contain genes that are highly up-regulated in response to P.
syringae DC 3000 (avrRpt2) relative to other treatments. It is
possible that many of these may be involved in avirulence
responses to the avrRpt2 gene product. Clusters C and D in-
clude genes specifically down-regulated by X. campestris in-
fection. Many of these are involved in gene expression and
signal transduction and were up-regulated in response to salt
and other abiotic stresses. This suggests that X. campestris may
have a strategy to suppress host defense systems to effectively
establish pathogenesis. Finally, we found 167 putative, 59 hy-
pothetical, and 85 unknown genes significantly regulated in
these biotic stress-response experiments, suggesting potential
roles for these genes.

Gene Expression Profiles in Tissue Samples

We also surveyed gene expression in a variety of paired tissues
and whole seedlings (Fig. 2). We identified 738 genes differ-
entially expressed in at least one pair of samples, of which 179
had measurable expression in all assays. Patterns of expres-
sion are shown in Figure 6. Although direct comparison be-
tween all assays are difficult because different reference
samples were used for each pair, the dataset allows interesting
observations to be made. For example, in comparison of flow-
ers, stems, and leaves with whole aerial tissue, we observe
distinct patterns of expression for each tissue. Among genes
down-regulated in flowers are those associated with photo-
synthesis. A gene (At2g37040) encoding phenylalanine am-
monia lyase (PALI) (Weisshaar and Jenkins 1998) was up-
regulated in stem but significantly down-regulated in leaves
and flowers, implying the rapid cell wall synthesis (growth) in
the stem. These suggest that our array approach coupled with
detailed tissue and developmental sampling of tissues can
lead to a better understanding of the genes that are specifi-
cally expressed in various tissues and in tissue differentiation.

Functional Distribution of Differentially

Expressed Genes

If one examines the functional distribution of genes differen-
tially expressed in all three subsets of the samples we analyzed
(Fig. 7A), it is apparent that hypothetical and pseudogenes are
significantly underrepresented relative to the functional dis-
tribution of genes on the chromosome. While it is possible
that the conditions that we surveyed are those in which these
genes are not expressed, it is more likely that the pseudogenes
are simply not expressed because of loss of their promoter
sequences, and that many of the hypotheticals, predicted
without support from ESTs or known proteins, are not real
genes or are rarely transcribed and consequently do not ap-
pear in our assays.

One other interesting observation is that there are a
number of genes that are transcriptionally regulated in re-
sponse to both biotic and abiotic stressors, as well as in a
tissue-specific fashion (Fig. 7B). Many stress-responsive genes
are known to be involved in normal physiology in plants.
Moreover, it is not surprising that a range of stressors activate
the same repair and protective mechanisms and signaling
pathways. Many stressors also cause oxidative damage
(Bowler and Fluhr 2000) and these result in production of
antioxidants and scavenging enzymes, as we have seen induc-
tion of the GST genes.

Despite considerable overlap between many stress signal-
ing pathways, our data also provides clear evidence for stress-
specific responses. Examples include the Na*/Ca®* antiporter
and K* channel we observed up-regulated in response to salt
stress (Fig. 4). These can be important for the salt stress re-
sponse, however may not be as important for other stresses
that do not involve ionic stress.

Chromosomal Organization and Gene Expression

One particular application of gene expression analysis that is
not possible without a comprehensive survey of the genome
of an organism (or its chromosomes) is the analysis of chro-
mosomal position effects on patterns of gene expression (Fig.
8). While it has been known that such effects exist (Fransz et
al. 2000; McCombie et al. 2000), the whole chromosome 2 Ara-
bidopsis microarray represents the first opportunity to directly
study this in a comprehensive way in a higher eukaryote.
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Gene Expression in Arabidopsis Chromosome 2
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chromatin stability can change dur-
ing development (Preuss 1999;
Meyer 2000) and that some activa-
tors are known to overcome hetero-
chromatin silencing (Ahmad and
Henikoff 2001).

Finally, one should note that
there are additional regions on the
long arm of chromosome 2 that
also appear to be transcriptionally
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Figure 7 A comparison of genes found to be significantly regulated in the various experimental
subsets. (A) Distribution of role categories for each of the biotic, abiotic, and tissue classes of assays. (B).
Venn diagram analysis showing the number of significantly regulated genes overlapping between sets.

Our expression data reveals a region near the centro-
mere, delimited approximately by At2g06400 and At2g14850,
containing more than 600 genes (~14% of the total), where
gene expression appears generally repressed relative to other
regions. In this region, only plants subject to salt stress and
seedling tissue demonstrate any significant expression. As re-
ported previously (Copenhaver et al. 1999), this region con-
tains a relatively large number of genes (~300) associated with
transposons, retroelements, and retroelement-like pseudo-
genes. These repetitive DNA elements are consistent with het-
erochromatic regions described in Arabidopsis chromosome 4
(Fransz et al. 2000; McCombie et al. 2000), suggesting this

repressed. Extensive analysis of the
genes in these regions, including
their functional roles, GC content,
and the presence of repetitive se-
quences, failed to yield any clues as
to what sets these regions apart.
The apparent silencing of these re-
gions remains an open question
that must be further validated and
explored.

Conclusions

The sequencing and annotation of
a genome is a starting point for a
holistic analysis of the organism
under study. However, the gene
predictions and their functional as-
signments represent hypotheses
that must be experimentally tested.
We developed a novel approach to
constructing whole chromosome
arrays using genomic DNA ampli-
cons and have demonstrated their
utility in providing validation for the gene predictions and
their potential for shedding light on important biological pro-
cesses and genome-scale patterns of expression. The gene ex-
pression profiles we have observed in this study are consistent
with previous observations and suggest new relationships be-
tween genes that can be tested with further directed analyses.
In addition, we have provided additional validation for puta-
tive functional assignments by demonstrating that many of
these predicted genes behave as one might expect based on
sequence homology. We have also provided clues as to po-
tential functions for many genes annotated as hypothetical or
unknown. Our discovery of spatial effects in the patterns of

Figure 6 Gene expression in various tissues. A total of 179 genes that showed significant differences in expression compared to corresponding
reference samples were subjected to average linkage hierarchical clustering with a Euclidean distance metric. Predicted role categories are denoted
by color-coded squares; genes also found to be significantly regulated in response to both abiotic and biotic stresses are denoted with blue circles.
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Figure 8 Spatial distribution of expressed genes along the chromosome for those genes detected in all assays as well as those significantly up-
or down-regulated in particular assays. In each graph, genes are arranged in the order they appear along the chromosome starting from the
nucleolar organizer region on the short arm. Also shown is a plot of the average GC content 1 kb upstream of each gene. Note that gene expression
appears repressed in the region of the centromere and telomeres, areas in which the average GC content increases. Note that a similar increase

is not observed in the other repressed regions apparent on the long arm.

gene expression further suggests that whole chromosome
analysis, and ultimately whole-genome analysis, may reveal
new features and provide new insights on gene regulation in
higher eukaryotes. Based on the successful demonstration of
the utility of this amplicon array approach, we have expanded
our efforts to the creation of a whole-genome microarray rep-
resenting the entire nuclear, chloroplast, and mitochondrial

338 Genome Research
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genomes of Arabidopsis and anticipate the first results from
expression analysis using those arrays to be available shortly.
All data from this study and validated primer pair sequences
for chromosome 2 and the entire nuclear, chloroplast, and
mitochondrial genomes are available at http://atarrays.tigr.
org. We hope that this approach and these reagents become a
valuable research tool for the community.
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METHODS

Microarray Construction

The protocols used for this study were adapted from those we
developed for the analysis of human microarrays (Hegde et al.
2000) with minor modifications (see http://atarrays.tigr.org/
protocols.shtml). Briefly, PCR amplicons were purified using
Millipore 96 well size exclusion vacuum filter plates. Purified
products were resuspended in water and combined 1:1 with
DMSO for microarray spotting. These products were spotted
in duplicate at high density on Telechem Superamine
aminosilane coated microscope slides using a high precision
spotting robot developed by Intelligent Automation Systems.
Spotted samples were allowed to dry at room temperature and
bound to the slides by ultraviolet crosslinking at 450 mJ in a
Stratalinker (Stratagene). Slides were stored in a bench-top
dessicator until use.

Plant Culture and Stress Treatments

A. thaliana Columbia plants were grown at 23°C under con-
stant blue-white light either in liquid media or in soil. Liquid
cultured plants or callus tissues (see Fig. 2) were grown in 100
mL of 0.5X Murashige and Skoog (MS), pH 5.7 (Murashige
and Skoog 1962), or Gamborg’s B5 medium (Gamborg et al.
1968) for 7-days or 14-days with constant shaking at 100 rpm.
For salt stress treatments, NaCl was added to the flasks of
plant cultures to the final concentration of 150 mM, and
whole plants were collected after 12 and 24 hours. Plants were
grown in soil to the preaerial stage (8-12 leaves) for bacterial
infection experiment. P. syringae DC3000 (avrRpt2) (Whalen
et al. 1991; Mudgett and Staskawicz 1999; Chen et al. 2000),
P. syringae DC3000 (pLAFR3) (Staskawicz et al. 1987), and X.
campestris (Bent et al. 1992) were applied to the underside of
leaves in a KHPO, buffer using a syringe, and leaf samples
were collected after 12 h. Temperature-stressed leaves were
collected after 18 h of exposure to 4°C (cold) or to 37°C (heat).
For young and mature leaf comparisons, young leaves were
determined as the ones =3 cm and the mature ones as =4.5
cm. To obtain the aerial tissues including flowers, plants were
grown more than a month.

RNA Preparation and Labeling

Tissues from plant samples of interest were flash frozen in liquid
nitrogen and powdered using a cold mortar and pestle. Total
RNA was extracted using Trizol (Invitrogen Corp.), and poly(A+)
RNA was prepared using Dynabeads oligo (dT),s (Dynal Biotech
Inc.) following the manufacturer’s protocol. Fluorescently la-
beled probes were prepared by direct incorporation of Cy3- or
CyS5-labeled dUTP (Amersham-Pharmacia) during oligo(dT) (In-
vitrogen Corp.) primed first-strand cDNA synthesis using Super-
script II reverse transcriptase (Invitrogen Corp.). Probes were
cleaned using GFX columns (Amersham-Pharmacia) using the
instructions provided by the manufacturer.

Slide Hybridization, Scanning, and Image Analysis

To block nonspecific background during hybridization, slides
were first prehybridized in 5xSSC, 0.1% SDS, and 1% bovine
serum albumin at 42°C for 45 min. as previously described
(Hegde et al. 2000). Slides were then washed in water and
isopropanol (Sigma) and dried before hybridization. Fluores-
cent probes were dried after purification and resuspended in
hybridization buffer containing 50% formamide, 5 X SSC, and
0.1% SDS. Cy-3 and Cy-5 labeled probes were combined and
hybridized to the slides overnight at 42°C in a humid cham-
ber. Following hybridization, slides were washed sequentially
in 2xSSC and 0.1% SDS at 42°C for 5 min., in 0.1 XSSC and
0.1% SDS at room temperature for 5 min., and twice in
0.1 xSSC at room temperature for 2.5 min., and air dried.
Hybridized slides were scanned using the Axon GenePix 4000

microarray scannet, and the independent TIFF images from
each channel were analyzed using TIGR Spotfinder (http://
www.tigr.org/softlab, TIGR) to assess relative expression lev-
els. Data from TIGR Spotfinder were stored in AGED, a relational
database designed to effectively capture microarray data.

Data Normalization and Analysis

Normalization is necessary to adjust for differences in labeling
and detection efficiencies of the fluorescent labels and for
differences in the quantity of starting RNA. Data was normal-
ized using a local regression technique, LOWESS (LOcally
WEighted Scatterplot Smoothing), using the MIDAS software
tool (http://www.tigr.org/softlab, TIGR), and the resulting
data were averaged over duplicate genes on each array and
over duplicate arrays for each experiment.

All calculated gene expression ratios were log,-trans-
formed, and differentially expressed genes at the 95% con-
fidence level for each reference set were determined by
assuming the log, ratios for each data set form a normal
distribution, and selecting genes with log, (ratio) values >1.96
standard deviations from the mean. This filtration of the sig-
nificantly expressed genes was conducted using MIDAS, and
the resulting lists of the genes were examined further by cross
comparison between experiments using TIGR MeV (http://
www.tigr.org/softlab, TIGR).

Data Availability

All data generated by this project, including PCR primer se-
quences and amplification data, as well as all primary and
normalized hybridization intensities and specific gene lists
can be found at http://atarrays.tigr.org/data/.
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