1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny Yd-HIN

"% NIH Public Access
éf}}‘ Author Manuscript

2 Hepst

NATIG,

O

Published in final edited form as:
IEEE Trans Inf Theory. 2015 February ; 61(2): 1063-1083. doi:10.1109/T1T.2014.2381241.

Optimal Feature Selection in High-Dimensional Discriminant
Analysis

Mladen Kolar® and Han Liu®
Mladen Kolar: mladenk@cs.cmu.edu; Han Liu: hanliu@princeton.edu

*Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15217, USA

TDepartment of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA; Research supported by NSF Grant 11IS-1116730

Abstract

We consider the high-dimensional discriminant analysis problem. For this problem, different
methods have been proposed and justified by establishing exact convergence rates for the
classification risk, as well as the £, convergence results to the discriminative rule. However, sharp
theoretical analysis for the variable selection performance of these procedures have not been
established, even though model interpretation is of fundamental importance in scientific data
analysis. This paper bridges the gap by providing sharp sufficient conditions for consistent
variable selection using the sparse discriminant analysis (Mai et al., 2012). Through careful
analysis, we establish rates of convergence that are significantly faster than the best known results
and admit an optimal scaling of the sample size n, dimensionality p, and sparsity level s in the
high-dimensional setting. Sufficient conditions are complemented by the necessary information
theoretic limits on the variable selection problem in the context of high-dimensional discriminant
analysis. Exploiting a numerical equivalence result, our method also establish the optimal results
for the ROAD estimator (Fan et al., 2012) and the sparse optimal scaling estimator (Clemmensen
et al., 2011). Furthermore, we analyze an exhaustive search procedure, whose performance serves
as a benchmark, and show that it is variable selection consistent under weaker conditions.
Extensive simulations demonstrating the sharpness of the bounds are also provided.

Keywords
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1 Introduction

We consider the problem of binary classification with high-dimensional features. More
specifically, given n data points, {(x;, yi), i =1, ..., n}, sampled from a joint distribution of
(X,Y) € RP x {1, 2}, we want to determine the class label y for a new data point x € RP.

Let p1(x) and p,(x) be the density functions of X given Y =1 (class 1) and Y = 2 (class 2)
respectively, and the prior probabilities 4 = P (Y = 1), m» = P(Y = 2). Classical multivariate
analysis theory shows that the Bayes rule classifies a new data point x to class 2 if and only
if
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log <ijg3> +log (:—i) >0. (11)

The Bayes rule usually serves as an oracle benchmark, since, in practical data analysis, the
class conditional densities p,(x) and p1(x) are unknown and need to be estimated from the
data.

Throughout the paper, we assume that the class conditional densities p;(x) and p,(x) are
Gaussian. That is, we assume that

X[Y=1~A (1, ) ) and  X|Y=2~A (13, ) ). (12)

This assumption leads us to linear discriminant analysis (LDA) and the Bayes rule in (1.1)
becomes

g(w,ﬂmz);:{ 2 (x— () 2) X petlog (ma/m)>0

1 otherwise

where L = WMo — Wg. Theoretical properties of the plug-in rule g(x; ulj uzA, Ef, where (ulj lej
X)) are sample estimates of (1, Ho, X), have been well studied when the dimension p is low
(Anderson, 2003).

In high-dimensions, the standard plug-in rule works poorly and may even fail completely.
For example, Bickel and Levina (2004) show that the classical low dimensional normal-
based linear discriminant analysis is asymptotically equivalent to random guessing when the
dimension p increases at a rate comparable to the sample size n. To overcome this curse of
dimensionality, it is common to impose certain sparsity assumptions on the model and then
estimate the high-dimensional discriminant rule using plug-in estimators. The most popular
approach is to assume that both X and p are sparse. Under this assumption, Shao et al.
(2011) propose to use a thresholding procedure to estimate 3 and p and then plug them into
the Bayes rule. In a more extreme case, Tibshirani et al. (2003), Wang and Zhu (2007), Fan
and Fan (2008) assume that 3 = | and estimate [ using a shrinkage method. Another
common approach is to assume that £~1 and p are sparse. Under this assumption, Witten
and Tibshirani (2009) propose the scout method which estimates =1 using a shrunken
estimator. Though these plug-in approaches are simple, they are not appropriate for
conducting variable selection in the discriminant analysis setting. As has been elaborated in
Cai et al. (2011) and Mai et al. (2012), for variable selection in high-dimensional
discriminant analysis, we need to directly impose sparsity assumptions on the Bayes
discriminant direction #= X1 instead of separately on = and p. In particular, it is assumed

that B=(8.,, 0')/ for T ={1,..., s}. Their key observation comes from the fact that the
Fisher’s discriminant rule depends on X and p only through the product =~1p. Furthermore,
in the high-dimensional setting, it is scientifically meaningful that only a small set of
variables are relevant to classification, which is equivalent to the assumption that gis sparse.
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On a simple example of tumor classification, Mai et al. (2012) elaborate why it is
scientifically more informative to directly impose sparsity assumption on ginstead of on p
(For more details, see Section 2 of their paper). In addition, Cai et al. (2011) point out that
the sparsity assumption on #is much weaker than imposing sparsity assumptions £~1 and p
separately. A number of authors have also studied classification in this setting (Wu et al.,
2009, Fan et al., 2012, Witten and Tibshirani, 2011, Clemmensen et al., 2011, Cai et al.,
2011, Mai et al., 2012).

In this paper, we adopt the same assumption that £is sparse and focus on analyzing the SDA
(Sparse Discriminant Analysis) proposed by Mai et al. (2012). This method estimates the
discriminant direction g (More precisely, they estimate a quantity that is proportional to £5.)
and our focus will be on variable selection consistency, that is, whether this method can
recover the set T with high probability. In a recent work, Mai and Zou (2012) prove that the
SDA estimator is numerically equivalent to the ROAD estimator (Fan et al., 2012) and the
sparse optimal scaling estimator (Clemmensen et al., 2011). By exploiting this result, our
theoretical analysis provides a unified theoretical justification for all these three methods.

1.1 Main Results

Letny =[{i : yj = 1} and n, = n - ny. The SDA estimator is obtained by solving the
following least squares optimization problem

VERP 2 (n—2 Z (2= (Xl X)) +)\||v||1, (1.4)

€[n]

where [n] denotes the set {1,..., n}, x= n~1%; x; and the vector z € R" encodes the class
labels as z; = no/n if yj = 1 and z; = —nq/n if y; = 2. Here 1 > 0 is a regularization parameter.

The SDA estimator in (1.4) uses an ¢;-norm penalty to estimate a sparse v and avoid the
curse of dimensionality. Mai et al. (2012) studied its variable selection property under a
different encoding scheme of the response z;. However, as we show later, different coding
schemes do not affect the results. When the regularization parameter A is set to zero, the
SDA estimator reduces to the classical Fisher’s discriminant rule.

The main focus of the paper is to sharply characterize the variable selection performance of
the SDA estimator. From a theoretical perspective, unlike the high dimensional regression
setting where sharp theoretical results exist for prediction, estimation, and variable selection
consistency, most existing theories for high-dimensional discriminant analysis are either on
estimation consistency or risk consistency, but not on variable selection consistency (see, for
example, Fan et al., 2012, Cai et al., 2011, Shao et al., 2011). Mai et al. (2012) provide a
variable selection consistency result for the SDA estimator in (1.4). However, as we will
show later, their obtained scaling in terms of (n, p, s) is not optimal. Though some
theoretical analysis of the ¢;-norm penalized M-estimators exists (see Wainwright (2009a),
Negahban et al. (2012)), these techniques are not applicable to analyze the estimator given
in (1.4). In high-dimensional discriminant analysis the underlying statistical model is
fundamentally different from that of the regression analysis. At a high level, to establish
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variable selection consistency of the SDA estimator, we characterize the Karush-Kuhn-
Tucker (KKT) conditions for the optimization problem in (1.4). Unlike the ¢;-norm
penalized least squares regression, which directly estimates the regression coefficients, the
solution to (1.4) is a quantity that is only proportional to the Bayes rule’s direction

BZZTiNT. To analyze such scaled estimators, we need to resort to different techniques
and utilize sophisticated multivariate analysis results to characterize the sampling
distributions of the estimated quantities. More specifically, we provide sufficient conditions
under which the SDA estimator is variable selection consistent with a significantly improved
scaling compared to that obtained by Mai et al. (2012). In addition, we complement these
sufficient conditions with information theoretic limitations on recovery of the feature set T.
In particular, we provide lower bounds on the sample size and the signal level needed to
recover the set of relevant variables by any procedure. We identify the family of problems
for which the estimator (1.4) is variable selection optimal. To provide more insights into the
problem, we analyze an exhaustive search procedure, which requires weaker conditions to
consistently select relevant variables. This estimator, however, is not practical and serves
only as a benchmark. The obtained variable selection consistency result also enables us to
establish risk consistency for the SDA estimator. In addition, Mai and Zou (2012) show that
the SDA estimator is numerically equivalent to the ROAD estimator proposed by Wu et al.
(2009), Fan et al. (2012) and the sparse optimal scaling estimator proposed by Clemmensen
et al. (2011). Therefore, the results provided in this paper also apply to those estimators.
Some of the main results of this paper are summarized below.

Let vSPA denote the minimizer of (1.4). We show that if the sample size

nzC (maYS )AL, slos ((p-s)los(n). 1)

where C is a fixed constant which does not scale with n, p and s,

Ua|T=Uaa*ZQTZT;ZTu, and Apin(X) denotes the minimum eigenvalue of X, then the
estimated vector vSPA has the same sparsity pattern as the true 3, thus establishing variable
selection consistency (or sparsistency) for the SDA estimator. This is the first result that
proves that consistent variable selection in the discriminant analysis can be done under a
similar theoretical scaling as variable selection in the regression setting (in terms of n, p and
s). To prove (1.5), we impose conditions that minjet |/ is not too small and

||ZNTZTTISign(BT)||OO < 1= with ¢ € (0, 1), where N = [p]\T. The latter one is the
irrepresentable condition, which is commonly used in the ¢;-norm penalized least squares
regression problem (Zou, 2006, Meinshausen and Biihimann, 2006, Zhao and Yu, 2006,
Wainwright, 2009a). Let fnin be the magnitude of the smallest absolute value of the non-
zero component of £ Our analysis of information theoretic limitations reveals that,

whenever n<C} 5.2 log(p—s), No procedure can reliably recover the set T. In particular,
under certain regimes, we establish that the SDA estimator is optimal for the purpose of
variable selection. The analysis of the exhaustive search decoder reveals a similar result.

However, the exhaustive search decoder does not need the irrepresentable condition to be
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satisfied by the covariance matrix. Thorough numerical simulations are provided to
demonstrate the sharpness of our theoretical results.

In a preliminary work, Kolar and Liu (2013) present some variable selection consistency
results related to the ROAD estimator under the assumption that 74 = 7 = 1/2. However, it
is hard to directly compare their analysis with that of Mai et al. (2012) to understand why an
improved scaling is achievable, since the ROAD estimator is the solution to a constrained
optimization while the SDA estimator is the solution to an unconstrained optimization. This
paper analyzes the SDA estimator and is directly comparable with the result of Mai et al.
(2012). As we will discuss later, our analysis attains better scaling due to a more careful
characterization of the sampling distributions of several scaled statistics. In contrast, the
analysis in Mai et al. (2012) hinges on the sup-norm control of the deviation of the sample
mean and covariance to their population quantities, which is not sufficient to obtain the
optimal rate. Using the numerical equivalence between the SDA and the ROAD estimator,
the theoretical results of this paper also apply on the ROAD estimator. In addition, we also
study an exhaustive search decoder and information theoretic limits on the variable selection
in high-dimensional discriminant analysis. Furthermore, we provide discussions on risk
consistency and approximate sparsity, which shed light on future investigations.

The rest of this paper is organized as follows. In the rest of this section, we introduce some
more notation. In §2, we study sparsistency of the SDA estimator. An information theoretic
lower bound is given in 83. We characterize the behavior of the exhaustive search procedure
in 84. Consequences of our results are discussed in more details in §5. Numerical
simulations that illustrate our theoretical findings are given in 86. We conclude the paper
with a discussion and some results on the risk consistency and approximate sparsity in §7.
Technical results and proofs are deferred to the appendix.

1.2 Notation

We denote [n] to be the set {1,..., n}. Let T C [p] be an index set, we denote Fr to be the
subvector containing the entries of the vector gindexed by the set T, and X denotes the
submatrix containing the columns of X indexed by T. Similarly, we denote Ayt to be the
submatrix of A with rows and columns indexed by T. For a vector a € R", we denote
supp(a) = {j : aj # 0} to be the support set. We also use ||allq, g € [1, 00), to be the £;-norm
defined as |[allq = (Cie[n |aj|%)2/@ with the usual extensions for q € {0, oo}, that is, ||aljg = |
supp(a)| and ||allo, = Maxicn lail. For a matrix A € R™P, we denote [|A|llo = MaXicmZic[p]
|ajj| the ¢, operator norm. For a symmetric positive definite matrix A € RP*P we denote
Amin(A) and Anax(A) to be the smallest and largest eigenvalues, respectively. We also

represent the quadratic form ||a||2A:a'Aa for a symmetric positive definite matrix A. We
denote |, to be the n x n identity matrix and 1, to be the n x 1 vector with all components
equal to 1. For two sequences {an} and {b,}, we use a, = @(by) to denote that a, < Cby, for
some finite positive constant C. We also denote a, = @(by,) to be b, = a,. If a, = @(b,) and
b, = ©(a,), we denote it to be a, < b,. The notation a, = o(bp,) is used to denote that

anb, b — 0.
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2 Sparsistency of the SDA Estimator

In this section, we provide sharp sparsistency analysis for the SDA estimator defined in
(1.4). Our analysis decomposes into two parts: (i) We first analyze the population version of
the SDA estimator in which we assume that X, pq, and i, are known. The solution to the
population problem provides us insights on the variable selection problem and allows us to
write down sufficient conditions for consistent variable selection. (ii) We then extend the
analysis from the population problem to the sample version of the problem in (1.4). For this,
we need to replace X, 1, and i by their corresponding sample estimates E,Aplf and pzA. The
statement of the main result is provided in §2.2 with an outline of the proof in §2.3.

2.1 Population Version Analysis of the SDA Estimator

We first lay out conditions that characterize the solution to the population version of the
SDA optimization problem.

Let X1 € RN1*P be the matrix with rows containing data points from the first class and
similarly define X, € R"2*P to be the matrix with rows containing data points from the

second class. We denote HI:Im—n;lln1 1;11 and HQ:I,LQ—ngllml;l2 to be the centering
matrices. We define the following quantities

f=nit Y xi=ng XLy, fp=nyt Y x=ny  Xola,,
ny=1 1y =2
ﬂ:ﬂ2_ﬂla
81:(n1—1)71X/1H1X1, ng(n2—1)71X/2H2X2,
S=(n—2)"1((n1—1)8S14(n2—1)Sy).

With this notation, observe that the optimization problem in (1.4) can be rewritten as

. 1., ning . .1 ning AN
verr2 <S+n(n—2) NN) v_n(n—Z)v ANVl

where we have dropped terms that do not depend on v. Therefore, we define the population
version of the SDA optimization problem as

. 1 ’ ’
minow () +mmopp ) wommw ptAfwl, @)

Let w be the solution of (2.1). We are aiming to characterize conditions under which the
solution W recovers the sparsity pattern of #= 1. Recall that T = supp() = {1...., s}
denotes the true support set and N = [p]\T, under the sparsity assumption, we have

-1 -1
6T:ZTT”‘T and /J‘N:ZNTZTT/J‘T' @2)
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We define fin as

/Bmin:gg%l|ﬂa|- (2.3)

The following theorem characterizes the solution to the population version of the SDA
optimization problem in (2.1).

Theorem 1—Let a € (0, 1] be a constant and w be the solution to the problem in (2.1).
Under the assumptions that

-1
>, 22, sien(B)l < l-a @a

1+A]18, 4 -1

T min>)\ sign )

1 21+7717T2H5TH2 et ||ZTT g (5T)||OO 25)

TT
we have vAv:(vAV’T, 0') with
A8, 1

W, =TT —A sign .

T 1 21+771772||ﬁT”2 BT ZTT g (,BT) (2.6)

TT
Furthermore, we have sign(wr) = sign(fr).

Equations (2.4) and (2.5) provide sufficient conditions under which the solution to (2.1)
recovers the true support. The condition in (2.4) takes the same form as the irrepresentable
condition commonly used in the ¢;-penalized least squares regression problem (Zou, 2006,
Meinshausen and Buhlmann, 2006, Zhao and Yu, 2006, Wainwright, 2009a). Equation (2.5)
specifies that the smallest component of S should not be too small compared to the

o . A=Xo/ (14mms| 8,12
regularization parameter A. In particular, let >, forsome lo. Then
(2.5) suggests that w recovers the true support of fas long as

Brin = /\OHZTTISign(ﬂT)HOO. Equation (2.6) provides an explicit form for the solution W,
from which we see that the SDA optimization procedure estimates a scaled version of the
optimal discriminant direction. Whenever 1 # 0, W is a biased estimator. However, such
estimation bias does not affect the recovery of the support set T of #when 1 is small enough.

We present the proof of Theorem 1, as the analysis of the sample version of the SDA
estimator will follow the same lines. We start with the Karush-Kuhn-Tucker (KKT)
conditions for the optimization problem in (2.1):

(2—1—77171'2“;/) W—mTopu+A2=0 (2.7)

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 February 01.
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where Z € 0||w||1 is an element of the subdifferential of ||:||;.
Let wt be defined in (2.6). We need to show that there exists a Z such that the vector
w=(w_,0), paired with 2, satisfies the KKT conditions and sign() = sign(8r).

The explicit form of Wy is obtained as the solution to an oracle optimization problem,
specified in (2.8), where the solution is forced to be non-zero only on the set T. Under the
assumptions of Theorem 1, the solution w to the oracle optimization problem satisfies

sign(wt) = sign(Br). We complete the proof by showing that the vector (v?/T, O') satisfies the
KKT conditions for the full optimization procedure.

We define the oracle optimization problem to be

o1 ’ / o
min S w, (ZTT—I—Wlﬂ'guT,uT) W, —T1ToW_ p, +AW,_ sign(3,). (2.8)
T

The solution w7 to the oracle optimization problem (2.8) satisfies wt = Wt where wr is
given in (2.6). It is immediately clear that under the conditions of Theorem 1, sign (wt) =

sign(fr).

The next lemma shows that the vector (WIT, 0') is the solution to the optimization problem
in (2.1) under the assumptions of Theorem 1.

Lemma 2—Under the conditions of Theorem 1, we have that W:(W/T, 0/) is the solution to
the problem in (2.1), where @ is defined in (2.6).

This completes the proof of Theorem 1.

The next theorem shows that the irrepresentable condition in (2.4) is almost necessary for
sign consistency, even if the population quantities ¥ and p are known.

Theorem 3—Let w be the solution to the problem in (2.1). If we have sign(wr) = sign(4r),
Then, there must be

-1,
1>, 3 sien(B)|_ <1 @y

The proof of this theorem follows similar argument as in the regression settings in Zhao and
Yu (2006), Zou (2006).

2.2 Sample Version Analysis of the SDA Estimator

In this section, we analyze the variable selection performance of the sample version of the
SDA estimator v'= v3PA defined in (1.4). In particular, we will establish sufficient
conditions under which v'correctly recovers the support set of S (i.e., we will derive

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 February 01.
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conditions under which 0:(0;, O')/ and sign(vT) = sign(#r)). The proof construction follows
the same line of reasoning as the population version analysis. However, proving analogous
results in the sample version of the problem is much more challenging and requires careful
analysis of the sampling distribution of the scaled functionals of Gaussian random vectors.

The following theorem is the main result that characterizes the variable selection
consistency of the SDA estimator.

Theorem 4—We assume that the condition in (2.4) holds. Let the penalty parameter be

-1
A= 14+mm||B.. || Ao
( Y. with

log ((p—s)1
M=Ky,  |mim (gleagaaﬁ (1VIIBT||2Z ) & (7 Z) B (519
TT

where K, is a sufficiently large constant. Suppose that fnin = minaet |4 satisfies

log(slog(
Banin 2 K (maX(ZTT) ) (WlﬁTll2 ) ogslog(r)) \/AoHZ sign(A (21
aa ZTT
for a sufficiently large constant K. If
-1
nz K (mago,, ) Ak (0, slos (-s)log(n)) 212

for some constant K, then w=(w._,0) is the solution to the optimization problem in (1.4),
where

LAl
V= —AS_ 151 n and
=Rn-2) 1y 1 15, H B, gn(B,) 019
B, STTuT,

with probability at least 1 — © (log~1(n)). Furthermore, sign(v7) = sign(fr).

Theorem 4 is a sample version of Theorem 1 given in the previous section. Compared to the
population version result, in addition to the irrepresentable condition and a lower bound on
Lmin, We also need the sample size n to be large enough for the SDA procedure to recover
the true support set T with high probability.

At the first sight, the conditions of the theorem look complicated. To highlight the main
result, we consider a case where 0 < ¢ < Ayin(E77) and

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 February 01.
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(w V IIZ;Tlsign(BT)IOO) < Teoe

> for some constants c, C. In this case, it is
sufficient that the sample size scales as n < s log(p - s) and fnin = s~Y/2. This scaling is of
the same order as for the Lasso procedure, where n = s log(p — s) is needed for correct
recovery of the relevant variables under the same assumptions (see Theorem 3 in
Wainwright, 2009a). In 85, we provide more detailed explanation of this theorem and
complement it with the necessary conditions given by the information theoretic limits.

Variable selection consistency of the SDA estimator was studied by Mai et al. (2012). Let C
= Var(X) denote the marginal covariance matrix. Under the assumption that

[|CyrCrt ] o0 |HC;;|||OO and ||u| are bounded, Mai et al. (2012) show that the following
conditions
2] 2],
Z) lim S ng:O7 and ”) Bimin > &(ps)
n—oo N n

are sufficient for consistent support recovery of g. This is suboptimal compared to our
results. Inspection of the proof given in Mai et al. (2012) reveals that their result hinges on
uniform control of the elementwise deviation of € from C and pt from . These uniform
deviation controls are too rough to establish sharp results given in Theorem 4. In our proofs,

we use more sophisticated multivariate analysis tools to control the deviation of HT from gr,

that is, we focus on analyzing the quantity S;Tl i1, but instead of studying Sy and pTA
separately.

The optimization problem in (1.4) uses a particular scheme to encode class labels in the
vector z, though other choices are possible as well. For example, suppose that we choose z; =
zW ify; = 1 and z; = 2@ if y; = 2, with (1) and z(@ such that n1z®) + nyz(? = 0. The

’

optimality conditions for the vector \7:(\7;, 0/) to be a solution to (1.4) with the alternative
coding are

)
ning . . niz ~ N ~
(S~~+ o u_) W= f_—Xsign(w.) (214)

(1)
ning . . - niz N ~
I (S-.—f— ,uN,uT) L ,uN|| <A (215
[ee]

Now, choosing A=="» ), we obtain that wT, which satisfies (2.14) and (2.15), is

ng ~

proportional to wt with T = T. Therefore, the choice of different coding schemes of the
response variable z; does not effect the result.

The proof of Theorem 4 is outlined in the next subsection.

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 February 01.
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2.3 Proof of Sparsistency of the SDA Estimator

The proof of Theorem 4 follows the same strategy as the proof of Theorem 1. More
specifically, we only need to show that there exists a subdifferential of ||-||; such that the
solution vto the optimization problem in (1.4) satisfies the sample version KKT condition
with high probability. For this, we proceed in two steps. In the first step, we assume that the
true support set T is known and solve an oracle optimization problem to get ¥t which
exploits the knowledge of T. In the second step, we show that there exists a dual variable

from the subdifferential of ||||; such that the vector (v, ,0'), paired with (v, ,0') , satisfies
the KKT conditions for the original optimization problem given in (1.4). This proves that

V:(\”/T, 0/) is a global minimizer of the problem in (1.4). Finally, we show that v'is a
unigue solution to the optimization problem in (1.4) with high probability.

LetT = supp(v) be the support of a solution v to the optimization problem in (1.4) and T =
[PI\T. Any solution to (1.4) needs to satisfy the following Karush-Kuhn-Tucker (KKT)
conditions

) ¥, < siEn(3,). 210
T n( 2)’“” g ’ ( )

We construct a solution fr:(f/T, 0/) to (1.4) and show that it is unique with high probability.
First, we consider the following oracle optimization problem
1 o — W2 AV si
=arg VeR;migi](zz—V (%, r=X;)) +Avsign(B,). (21g

The optimization problem in (2.18) is related to the one in (1.4), however, the solution is

calculated only over the subset T and ||vt ||1 is replaced with v'T sign(3,.). The solution can
be computed in a closed form as

o= (Srot ity ity) (Gt Asen(s,)

§-1_ _mino St ll’LTI’LTST;" ( mn2_fy —Asign(3 ))
— _ ign
T A L SR Sy ) AT e =P ) 2.19)

_ _nmino 1Jr)‘”TSTTSI‘gn( )S 1A —A\S— 1s1gn(,6' ).

~n(n—2) 1+n(n 2)”TSTT[1‘T rrHr

The solution %7 is unique, since the matrix Syt is positive definite with probability 1.
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The following result establishes that the solution to the auxiliary oracle optimization
problem (2.18) satisfies sign(¥7) = sign(Fr) with high probability, under the conditions of
Theorem 4.

Lemma 5—Under the assumption that the conditions of Theorem 4 are satisfied, sign(¥r)
=sign(fr) and sign(,éT):sign(ﬁT) with probability at least 1 — ©(log=1(n)).

The proof Lemma 5 relies on a careful characterization of the deviation of the following
quantities 1, S- 11, 1. S sign(B,), S;Lix, and S !sign(8, ) from their expected
values.

Using Lemma 5, we have that 7 defined in (2.19) satisfies ¥t = vT. Next, we show that

A ~/

v=(v,,

0') is a solution to (1.4) under the conditions of Theorem 4.

Lemma 6—Assuming that the conditions of Theorem 4 are satisfied, we have that
¥=(v,,0') is a solution to (1.4) with probability at least 1 - ©(log™(n)).
The proof of Theorem 4 will be complete once we show that \7:(\7;, O/) is the unique

solution. We proceed as in the proof of Lemma 1 in Wainwright (2009a). Let v be another
solution to the optimization problem in (1.4) satisfying the KKT condition

ning . . - niny A
S — Aq=0
( +n<n—2>’“‘> MO L

for some subgradient g’ d||v][;. Given the subgradient g, any optimal solution needs to
satisfy the complementary slackness condition g’v= ||v[[3, which holds only if v;= 0 for all j
such that |gj[' < 1. In the proof of Lemma 6, we established that |gj[ < 1 for j € N. Therefore,
any solution to (1.4) has the same sparsity pattern as v, Uniqueness now follows since 7 is
the unique solution of (2.18) when constrained on the support set T.

3 Lower Bound

Theorem 4 provides sufficient conditions for the SDA estimator to reliably recover the true
set T of nonzero elements of the discriminant direction £. In this section, we provide results
that are of complementary nature. More specifically, we provide necessary conditions that
must be satisfied for any procedure to succeed in reliable estimation of the support set T.
Thus, we focus on the information theoretic limits in the context of high-dimensional
discriminant analysis.

We denote ¥ to be an estimator of the support set T, that is, any measurable function that
maps the data {X;, Yi}ic[n] to a subset of {1, ..., p}. Let 8= (1, Uz, X) be the problem
parameters and © be the parameter space. We define the maximum risk, corresponding to
the 0/1 loss, as
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R(Y, @)=§1€1g1?e (Wi, Yibicny) # T(O)]

where # denotes the joint distribution of {X;, Yi}ic[n] under the assumption that T=Ty=1
and T(6) = supp(f) (recall that B= X1 (uy — py)). Let M(s, 2) be the class of all subsets of
the set 2 of cardinality s. We consider the parameter space

_ _ B=" (),
6(277—? s)_wekﬂ%&[p]){g_(“l?,"’Z’Z)' ‘ﬁa‘ Z Tifa c w, ﬂazoﬂ:a ¢ w 9 (31)

where 7> 0 determines the signal strength. The minimax risk is defined as
qu}fR(\I', @(Z, T,8)).

In what follows we provide a lower bound on the minimax risk. Before stating the result, we
introduce the following three quantities that will be used to state Theorem 7

. 1
Pelose(D )=, o min =

Z <Zuu+2m _QZuv)’ (3:2)

ve[p\T

. 1 ,
‘pf”(z):Te%ﬁ[po 2 ) .
S

T' et (s, [p]\T) Tur’ TUT’ (3.3)

and

) log(p—s+1)
n@close(Z)

(3.4)

The first quantity measures the difficulty of distinguishing two close support sets T4 and T»
that differ in only one position. The second quantity measures the effect of a large number of
support sets that are far from the support set T. The quantity 7, is a threshold for the signal
strength. Our main result on minimax lower bound is presented in Theorem 7.

Theorem 7—For any 7 < 7yin, there exists some constant C > 0, such that
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inf sup Py [\I'({xi,yi}ie[n]) #T(0)] > C>0.
k 66@(2,7’,5)

Theorem 7 implies that for any estimating procedure, whenever 7 < zyin, there exists some
distribution parametrized by 8 € ©(X, 7, s) such that the probability of incorrectly
identifying the set T(6) is strictly bounded away from zero. To better understand the
quantities ¢gjose(2) and ¢xar(X), we consider a special case when X = 1. In this case both
quantities simplify a lot and we have ¢gjose(l) = 2 and ¢¢a(1) = 2. From Theorem 7 and
Theorem 4, we see that the SDA estimator is able to recover the true support set T using the
optimal number of samples (up to an absolute constant) over the parameter space

®(Z7Tn1in75) N {t9:||,8T||2Z < M}

TT

where M is a fixed constant and Apin(217) is bounded from below. This result will be
further illustrated by numerical simulations in 86.

4 Exhaustive Search Decoder

In this section, we analyze an exhaustive search procedure, which evaluates every subset T~
of size s and outputs the one with the best score. Even though the procedure cannot be
implemented in practice, it is a useful benchmark to compare against and it provides deeper
theoretical insights into the problem.

For any subset T”C [p], we define

1

, min/ ﬁ.
Tl =i ST

f(T')= min {u S, wu p,lel}:

!
ueRlT" |

The exhaustive search procedure outputs the support set T that minimizes f(T% over all
subsets T”of size s,

A
A

T= argmin f(T,): arg max ﬂl/S_,l,NT,-
T'C[p):|T'|=s Ty |=s T T7T

Define g(T/)Zﬂ,T, S;lT i .. In order to show that the exhaustive search procedure identifies
the correct support set T, we need to show that with high probability g(T) > g(T) for any
other set T”of size s. The next result gives sufficient conditions for this to happen. We first
introduce some additional notation. Let A; =T N T/ Ay = T\T”and Az = TAT. We define the
following quantities
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’ ’ —1
Cl]_(T ):HAlelAluAl’
AN —1
a2(T/)_H/;42‘A1 ZAQAQ\Alll'Az\A17
ag,(T) !

_NA3\A1 Z:ASAS\Al HJAS\A1 ’

-1 -1
where Fayia, =Ha, _ZA2A1 ZAlAl H 4 and Z :ZAQAZ _ZAQA1 ZAlAl ZA2A1-

AgAglAy

The quantities pA3|A; and XAzAz|Aare defined similarly.

Theorem 8—Assuming that for all T/C [p] with [T{=sand T/# T the following holds

ag(T')— (1+01 ,/Fn,py&k) az(T') > Cs \/ (1V ay(T")) as(T' )T p s s+Cs (1Var (T ) T pokr (A1)

Ty s p=n"t1 p=s ° ) 8l
where [T’NT|=k, = """ "8 << 8—k> (k slog(n) and C4, C,, C are

constants independent of the problem parameters, we have #[T 2 T] = @(log~1(n)).

The condition in (4.1) allows the exhaustive search decoder to distinguish between the sets T
and T”with high probability. Note that the Mahalanobis distance decomposes as

-1

_A/ _1 N ! ~ ~ _ A -1 A~
g(T)_uAl S Fa, TH 4, SAQAzwAl Foyyia, Where By =H 84,4844, P4, and

_ -1 ..
SAQAQ\Al _SA2A2_SA2A1 SAlAl SAlAQl and Slmllarly

’ N —1 ~ ~! -1 ~ .
9(T )=, Sy By Fh, 4 S5 4 B, Therefore g(T) > g(T7) if

~! —1 ~ ~/ -1 ~ L s -
oS agiay Pagia, Z Py a, S ayagia, Fay a, With infinite amount of data, it would be

sufficient that ap(T?) > az(T*). However, in the finite-sample setting, condition (4.1) ensures
that the separation is big enough. If X and Xy are independent, then the expression (4.1)
can be simplified by dropping the second term on the left hand side.

Compared to the result of Theorem 4, the exhaustive search procedure does not require the
covariance matrix to satisfy the irrepresentable condition given in (2.4).

5 Implications of Our Results

In this section, we give some implications of our results. We start with the case when the
covariance matrix X = |. The same implications hold for other covariance matrices that
satisfy Amin(X) = C > 0 for some constant C independent of (n, p, s). We first illustrate a
regime where the SDA estimator is optimal for the problem of identifying the relevant
variables. This is done by comparing the results in Theorem 4 to those of Theorem 7. Next,
we point out a regime where there exists a gap between the sufficient and necessary
conditions of Theorem 7 for both the exhaustive search decoder and the SDA estimator.
Throughout the section, we assume that s = o(min(n, p)).

When X = |, we have that fr = . Let
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i —min .
Hmin “ T‘HT‘

log(p—s)

Hmin < .

If some components of the vector p are smaller in absolute value than pmin, N0 procedure
can reliably recover the support. We will compare this bound with sufficient conditions
given in Theorems 4 and 8.

First, we assume that || ., ||§:C’ for some constant C. Theorem 4 gives that ,,,;,, > 1/ lese=s)
is sufficient for the SDA estimator to consistently recover the relevant variables whenn > s
log(p - s). This effectively gives imin = 5™/, which is the same as the necessary condition
of Theorem 7.

Next, we investigate the condition in (4.1), which is sufficient for the exhaustive search
procedure to identify the set T. Let T”C [p] be a subset of size s. Then, using the notation of
Section 4,

/ 2 / 2 /
ar(T)=lpu, |- ax(T)=|p, | and as(T')=0.

Now, if [T”N T| =s — 1 and T”does not contain a smallest component of pt, (4.1) simplifies

10 pupnin 2 1/ 1oxt=2), since [l£2 ,, ||§ < ||, 3=C. This shows that both the SDA estimator
and the exhaustive search procedure can reliably detect signals at the information theoretic
limit in the case when the norm of the vector pi is bounded and pmin = s™%/2. However,
when the norm of the vector p is not bounded by a constant, for example, pmin = C”/for
some constant C/ Theorem 7 gives that at least n 2 log(p — s) data points are needed, while
n 2z s log(p - s) is sufficient for correct recovery of the support set T. This situation is
analogous to the known bounds on the support recovery in the sparse linear regression

setting (Wainwright, 2009b).

Next, we show that the largest eigenvalue of a covariance matrix X can diverge, without
affecting the sample size required for successful recovery of the support set T. Let
Z:(l—fy)Ipﬂ/lpl;, for y€ [0, 1). We have Amax(X) =1 + (p — 1)y, which diverges to
infinity for any fixed yas p — co. Let T = [s] and set fr = flt. This gives pr = A1 + As -
1))1r and py = y&1y. A simple application of the matrix inversion formula gives
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-1 1 5 ,
D Yy sy B

A lower bound on fis obtained from Theorem 7 as g > \/ T esle=s), This follows from a
simple calculation that establishes @gjose(Z) = 2(1 = 1) and gra(Z) = 25(1 — 7) + (25)%y.

Sufficient conditions for the SDA estimator follow from Theorem 4. A straightforward
calculation shows that

a.sm, () =17, |3 sien(8,)]|_=

I+7(s—1) 1+7( 1+9(s—1)

This gives that 3 > K , /% (for K large enough) is sufficient for recovering the set T,

: 18,12, =001) _ . . :
assuming that p- . This matches the lower bound, showing that the maximum
eigenvalue of the covariance matrix X does not play a role in characterizing the behavior of
the SDA estimator.

6 Simulation Results

In this section, we conduct several simulations to illustrate the finite-sample performance of
our results. Theorem 4 describes the sample size needed for the SDA estimator to recover
the set of relevant variables. We consider the following three scalings for the size of the set
T:

1. fractional power sparsity, where s = [2p04°]
2. sublinear sparsity, where s = [0.4p/log(0.4p)], and
3. linear sparsity, where s = [0.4p].

For all three scaling regimes, we set the sample size as
n=~0slog(p)

where @is a control parameter that is varied. We investigate how well can the SDA
estimator recovers the true support set T as the control parameter @ varies.

We set P[Y=1]=P[Y=2]=1L X|Y =1~ ~(y, X) and without loss of generality X|Y =2 ~ ~

(0, X). We specify the vector p1 by choosing the set T of size |T| = s randomly, and for each a
€ T setting |, equal to +1 or —1 with equal probability, and p, = O for all components a ¢ T.

We specify the covariance matrix X as
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so that B:Z_lu:(ﬁ;, 0/)/. We consider three cases for the block component X1t
1. identity matrix, where X7 = I,
2. Toeplitz matrix, where £11 = [Zaplapet and Zap = 022 with p= 0.1, and
3. equal correlation matrix, where X,y = pwhen a# b and gz5 = 1.

Finally, we set the penalty parameter A = Agpa as

Agpa=0.3 x (1 2 2 ) ls(p=s)
spa=0-3 X ( +Hf3THZ /4) < VﬁTlZTT> -

TT

for all cases. We also tried several different constants and found that our main results on
high dimensional scalings are insensitive to the choice of this constant. For this choice of A,
Theorem 4 predicts that the set T will be recovered correctly. For each setting, we report the
Hamming distance between the estimated set T and the true set T,

WT, T)=|(T\T) U (T\T)],

averaged over 200 independent simulation runs.

Figure 1 plots the Hamming distance against the control parameter 6, or the rescaled number
of samples. Here the Hamming distance between T and T is calculated by averaging 200
independent simulation runs. There are three subfigures corresponding to different sparsity
regimes (fractional power, sublinear and linear sparsity), each of them containing three
curves for different problem sizes p € {100, 200, 300}. Vertical line indicates a threshold
parameter @ at which the set T is correctly recovered. If the parameter is smaller than the
threshold value, the recovery is poor. Figure 2 and Figure 3 show results for two other cases,
with X7 being a Toeplitz matrix with parameter p = 0.1 and the equal correlation matrix
with p = 0.1. To illustrate the effect of correlation, we set p = 100 and generate the equal
correlation matrices with p € {0, 0.1, 0.3, 0.5, 0.7, 0.9}. Results are given in Figure 4.

7 Discussion

In this paper, we address the problem of variable selection in high-dimensional discriminant
analysis problem. The problem of reliable variable selection is important in many scientific
areas where simple models are needed to provide insights into complex systems. Existing
research has focused primarily on establishing results for prediction consistency, ignoring
feature selection. We bridge this gap, by analyzing the variable selection performance of the
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SDA estimator and an exhaustive search decoder. We establish sufficient conditions
required for successful recovery of the set of relevant variables for these procedures. This
analysis is complemented by analyzing the information theoretic limits, which provide
necessary conditions for variable selection in discriminant analysis. From these results, we
are able to identify the class of problems for which the computationally tractable procedures
are optimal. In this section, we discuss some implications and possible extensions of our
results.

7.1 Theoretical Justification of the ROAD and Sparse Optimal Scaling Estimators

In a recent work, Mai and Zou (2012) show that the SDA estimator is numerically
equivalent to the ROAD estimator proposed by Wu et al. (2009), Fan et al. (2012) and the
sparse optimal scaling estimator proposed by Clemmensen et al. (2011). More specifically,
all these three methods have the same regularization paths up to a constant scaling. This
result allows us to apply the theoretical results in this paper to simultaneously justify the
optimal variable selection performance of the ROAD and sparse optimal scaling estimators.

7.2 Risk Consistency

The results of Theorem 4 can be used to establish risk consistency of the SDA estimator.
Consider the following classification rule

(7.1

y(x):{ 1 ifg(x9)=1

2 otherwise

where g(x; vi = I[V"(x - (p1A+ p23/2) > 0] with v’= v3PA, Under the assumption that #=
(B, 'Y, the risk (or the error rate) of the Bayes rule defined in (1.1) is

-1
Ro =0 - ! 2 R . . . .
pt ( V MTZTT“T/ ) where @ is the cumulative distribution function of a

standard Normal distribution. We will compare the risk of the SDA estimator against this
Bayes risk.

Recall the setting introduced in 81.1, conditioning on the data points {Xi, Yi}ic[n), the
conditional error rate is

=l 0 (—v (=) =% a/Z)_ -

ie{1,2} \/0,2\7

Let rp, = A||Frll1 and qn, = sign(Br)’ X1t sign(Br). We have the following result on risk
consistency.

Corollary 9—Let v= v3PA We assume that the conditions of Theorem 4 hold with
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n= () (mao,, ) Ah(Y )slog ((p-9)log(m)), @9

: : 18,112, =c>0
where K(n) could potentially scale with n, and p . Furthermore, we assume

that, =%, (. Then

18l
R(W) :(I) _ QZTT (1+ﬁP (Tn))
1+0, |rnV WTAHSZ#
T

=0 K(n)s Amin
First, notethat”ﬁTHl/”BT”ZTT (\/ (n)s/ (ZTT))

Under the conditions of Theorem 9, we have that

||6T||2Z J(N3)=0 (K (n)s/(Auin(Y__ )an))=0 (K (n))

TT

is sufficient for ,, 7=, .

. Therefore, if K'(n) 2=2% oo

n S 2 i 2
N K(n)>C ||3T||Z [Amin Q- IB,17)

T
o we have

18|

and R(W) = Ropt —p 0. If in addition

18111, 1=o (\xms/AmE ).

T

then R(W)/Ropt —p 1, using Lemma 1 in Shao et al. (2011).

The above discussion shows that the conditions of Theorem 4 are sufficient for establishing
risk consistency. We conjecture that substantially less restrictive conditions are needed to
establish risk consistency results. Exploring such weaker conditions is beyond the scope of
this paper.
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7.3 Approximate sparsity

Thus far, we were discussing estimation of discriminant directions that are exactly sparse.
However, in many applications it may be the case that the discriminant direction

’ N -1 . . R . -
B=(B, ,B,) :Z w is only approximately sparse, that is, By is not equal to zero, but is
small. In this section, we briefly discuss the issue of variable selection in this context.

In the approximately sparse setting, since By # 0, a simple calculation gives

~1 -1
6T :ZTT Hr 7ZTT ZTN 'BN (74)

and

Py :ZNT Z;;HT—’_(ZNN _ZNTZ;;“ZTN) 'BN' (75)

In what follows, we provide conditions under which the solution to the population version of
the SDA estimator, given in (2.1), correctly recovers the support of large entries T. Let

! / - -
Ww=(W,,0) where r is given as

. 1+A]18, ~ -1
W, =717 —— ﬁT—)\ZTTS%n(ﬁT)
1+ |8, ||

T

—~ -1
with 5T:ZTTNT. We will show that & is the solution to (2.1).

We again define finin = minge|fs]- Following a similar argument as the proof of Theorem 1,

we have that sign(W.)=sign (BVT) holds if 3, satisfies

1+A[B, Il
2 — 2
L4mima |8,

Buin>AY_ sien (B,)

(7.6)

TT

-1
In the approximate sparsity setting, it is reasonable to assume that ZTTZTNBN is small

compared to 3_, which would imply that sign(3,.)=sign (ET) using (7.4). Therefore, under
suitable assumptions we have sign(wT) = sign(fr). Next, we need conditions under which &
is the solution to (2.1).

Following a similar analysis as in Lemma 2, the optimality condition
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||(ZNT+7717T2MNHT) W, =TTl ||oo <A

1B,
= — 3
1+7T1772||[3T\|Z

needs to hold. Let o Using (7.5), the above display becomes

I, 3, B -mmA (D, <X, 35 DB, <A

Therefore, using the triangle inequality, the following assumption

my I, -3 YIS )8l <a,

in addition to (2.4) and (7.6), is sufficient for w to recover the set of important variables T.

The above discussion could be made more precise and extended to the sample SDA
estimator in (1.4), by following the proof of Theorem 4. This is beyond the scope of the
current paper and will be left as a future investigation.
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A Proofs Of Main Results

In this section, we collect proofs of results given in the main text. We will use C, Cq, Co, ...
to denote generic constants that do not depend on problem parameters. Their values may
change from line to line.

Let

d=6E,N & (log H(n)) N &(log ™ (n)) N&(log™ (n)) N &(log ™ (n), (A1)

where ¢. is defined in (C.1), & in Lemma 10, ¢ in Lemma 11, & in (C.8), and ¢: in (C.9).
We have that P[ 4] =1 - © log~1(n)).

A.1 Proofs of Results in Section 2
Proof of Lemma 2

From the KKT conditions given in (2.7), we have that v?/:(\fv/T, 0/) is a solution to the
problem in (2.1) if and only if

(O Fmimap, ,u’T) W, —m1mop, +Asign(W,)=0
<A (A2)

(2 ptmimape p) W —mimap |

By construction, wy satisfy the first equation. Therefore, we need to show that the second
one is also satisfied. Plugging in the explicit form of w into the second equation and using
(2.2), after some algebra we obtain that

1,3 sien(8,)_ <1

needs to be satisfied. The above display is satisfied with strict inequality under the
assumption in (2.4).

Proof of Lemma5

Throughout the proof, we will work on the event A defined in (A.1).

Let a € T be such that ¥, > 0, noting that the case when ¥, < 0 can be handled in a similar
way. Let
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br=f, Sprsign(B,)—p, Xy sign(B,),  82=,S i —e, 2 ki
53=e,S_Lsign(B,)—e, > lsign(B,), du=f, S 1in. B, | , and

) i TT
55: ’nr(L;LT—LZQ) —T1T2.
Furthermore, let
- ning 1+/\i:l’;~S;:[1~SIgn(IBT) _ 7T1772(1+)\||18T||1)
n(n=2) 1+ p S 1, 1+mmsB, |

TT

For sufficiently large n, on the event 4, together with Lemma 12, Lemma 16, and Lemma
13, we have that y= ©(1 - o(1)) > /2 and

’

e:LS;;sign(ﬁT)ze;Z;Tl sign(8,.) (14+0(1)) < geaz;;sign(ﬁT) with probability at least
1 - © (log™1(n). Then

B0 > 3(Bat62)—3Ae, X, sign(B,)
. mm RIS ) (Ba—102])=320llY__ sian(B)Il_
= 21+mim|IB, 012 ) ’

TT

so that sign(7,) = sign(f,) if

-1
(148, 1) (Ba—182)-3% ] 'sign(8,)]_>0. (a3

Lemma 15 gives a bound on |&|, for each fixed a € T, as

n

e O e

Therefore assumption (2.11), with Kz sufficiently large, and a union bound over alla € T
implies (A.3).

Lemma 15 gives sign(&r) = sign(Br) with probability 1 - © (log~1(n)).
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Proof of Lemma 6

Throughout the proof, we will work on the event 4 defined in (A.1). By construction, the

vector \7:(\7;, 0') satisfies the condition in (2.16). Therefore, to show that it is a solution to
(1.4), we need to show that it also satisfies (2.17).

To simplify notation, let

A8,
C=S+ ning Nua ,y_ ning
n(n—2) n(n—2) 1+n7(1711n22 ”:BT”STT
dy T (1B LIl
an _—.
Lmimal|8, )12

TT

Recall that f/T—'ySTTuT /\S;Tlsign(,BT).

Let U € R(-2*P be a matrix with each row u; “ (0, > ") such that (n - 2)S=U'U. Fora
€ N, we have

(n—2) Sa,T :(UT Z;Tl ZTa +Ua-7‘ ) UT :ZQT Z;; U/T UT +U;,.TUT

where UQATM/V< an2 g 1, 2>is independent of U, and

S n(n-2) 2 a|T

A~ _1 A A~
=Y > bt

where i ~.A (0 ) is independent of uTA. Therefore,

n
) ning Ua\T

1 C,, SuTti’(;”’“g)#aM )
=2 20 Sy +(n 27U Uyt i iy
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CaT~T_ﬁ/Z,,TZ;71"ﬂT+7n(n 2) (“T TT“T)'U
Y (ZQTZTTagn(B n?,i”é>|\5 I, - ua)
+(n-2)7'U U, %
= (3 + i1, S L i, — ;g;”a 18,1,) S Sita
) —AL,, ZTT81gn(6)
+(n=2)""U U, v,y )(NTSTTNT)#
—An’&"é Hﬂ [Py
n(n %ZaTZTT“T )\ZQTZTTSIgn(ﬁ )
+( ) U U Vpt+y T(Zn )(“’TSTTH’T)'ua.T

n?711n22 Hﬁ Hl aT’

and finally

~ ning
C _
o VT n(n—2)

First, we deal with the term

(n—2)’1U;'TUT\7T——U U, S 'p A U LU,S Lsign(B,).

TTTT T=T1T

Tl,a TZ,a

Conditional on {yi}ic[n and X7, we have that

22
n1n2 B —1x
TLGN*/V (0’ n(n_2) a\Tn QMTSTT'U’T)

and

£2
ning vy
max|Tyq| < \/ 2n(n_2) (I&%“a\T) uTSTTuTlog((p—S)log(n))

with probability at least 1 — log™1(n). On the event 4, we have that

maxlTial < (Lhol1) 2mimn? (mayo, ) 18, 7, el

:(1+0(1)) \/5771772(14—)\“,67, ||1) Kxo 'TT
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Since

18,1, < V318, 1,=vaISS PS8, < [sanh(SD )IB, I

T

and

Ao \/sA;L(ETT)nﬁTn?E

)\”ﬁ || _ AO”B ” T
T lmim|B,, H2 - I+mim2l8,.
TT TT
(wmﬁz ) HﬂT\FZ
< K)\O \ T g TT < KXO
- K 1<‘r7T17l'2HﬂTH2 I ) \/E’

TT

we have that
_ -1
I%%(|T1’a| < (140(1)) V2 <K)T01+<7T1772 \/K) ) A<(a/3)A

by taking both K, and K sufficiently large.
Similarly, conditional on {y;}ic[n) and Xy, we have that

ning

Ty g~ N |0, ———
2 ( n(n—2) “‘T

2
——5sien(B, )'S, sign(B, ))

which, on the event 4, gives

I(flea]‘\)](‘TQ,a| < (1+0(1))/\ \/277171'2 (]glea]‘\);aam> mln(ZTT)MS)Iog(n))

< (1+0(1)) \/2A<(a/3)A

with probability at least 1 — log~1(n) for sufficiently large K.

Next, let

T3,a:n(n_2) (FY“T TTII’T AHﬁ ||1 ) a<T'
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Simple algebra shows that

1+A]8, [l
1+77(77 2y NTS

PY“T TT”’T )‘H'B ” —1==

TTHT

Therefore conditional on {y;}icnj and Xy, we have that

A 2
1+A
Ty q~N |0, e ”IB ” i Our |
n(n=2) T+ i S,y ) s

which, on the event 4, gives

1+/\H5 Il log ((p—s)log(n
! < o Al W
i Taal < o) o o5 e \/27T17T2 (lgle%”a‘T> "
ESY
< (1+0(1)) V2 T L A<(a/3)A

1+7T1772H/3TH2 Ky, 1VH5TH2
T T

with probability at least 1 — log=%(n) when Ky and K are chosen sufficiently large.

Piecing all these results together, we have that

7L1’fl2

n(n—2

max|C .V, — P <1.

aeN

A.2 Proof of Theorem 7

The theorem will be shown using standard tools described in Tsybakov (2009). First, in
order to provide a lower bound on the minimax risk, we will construct a finite subset of ©(XZ,
7, S), which contains the most difficult instances of the estimation problem so that estimation
over the subset is as difficult as estimation over the whole family. Let ©; C O(%, 7, S), be a
set with finite number of elements, so that

nqufR(\I!,@(Z,T, s) > lfq}f%"’é}ipe[\l’({xu%}ze[n]) #T(0))

To further lower bound the right hand side of the display above, we will use Theorem 2.5 in
Tsybakov (2009). Suppose that ©1 = {&, &, ..., Gy} where T (&) #T (8,) and
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1 M

3 KL(Bg,[By,) < alog(M), a€(0,1/3) (ag
T a=1

then

. \/M 2a

Without loss of generality, we will consider &, = (15, 0, X). Denote o the joint distributions
of {Xj, Yi}ie[n]- Under "., we have Py, (Y;=1)=Pg, (Y;=2)=1 XilYi =1~ ~(0, £) and X;j|Y;
=2~ N (Mg X). Denote f (x; 4, ) the density function of a multivariate Normal
distribution. With this we have

dp
K L(Pg, [P, )=Eq,log 7,>
Hie[n]dpoo[xiln]%o[n]
logHiG['rL]dpea[Xil}/i]]PEG(;D/i]
_ F(Xijto, (A.5)
E"Oi:%:;ogf(xz;uwZ)
Eg,n [
== (o~ 1a) X7 (Ho— o)
:%(/60_1611) 2(60_6a)

:EGO

where £, = 27 1u,. We proceed to construct different finite collections for which (A.4) holds.

Consider a collection ©1 = {6, &, ..., G-s}, with 6, = (L, 0), that contains instances whose
supports differ in only one component. Vectors {, }7_¢ are constructed indirectly through
{8, )" using the relationship f; = ~~1p,. Note that this construction is possible, since X is
a full rank matrix. For every a, all s non-zero elements of the vector 3, are equal to 7. Let T
be the support and u(T) an element of the support T for which (3.2) is minimized. Set £ so
that supp(f) = T. The remaining p-s parameter vectors {3, }-] are constructed so that the
support of g, contains all s — 1 element in T\u(T) and then one more element from [p]\T.
With this, (A.5) gives

nr2
KL(PGO ‘Pe,,, )= 4 (Zu,ﬁzw _QZ’UXU)

and (3.2) gives

nTt

> KL(Pgy[Bo,)=0ciose(D)-

p_sa:1

1 pP—s 2

It follows from the display above that if
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4 log(p—s+1)
< . (A6
T \/(Pclose(z) n ( )

then (A.4) holds with o = 1/16.

(")
Next, we consider another collection ©, = {&), &, ..., &u}, where 5 and the
Hamming distance between T (&) and T (&) is equal to 2s. As before, &, = (45, 0) and

vectors { ﬂa}a;o are constructed so that £, = £~ p, with s non-zero components equal to .
Let T be the support set for which the minimum in (3.3) is attained. Set the vector & so that

supp(f) = T. The remaining vectors {ﬁa}gil are set so that their support contains s
elements from the set [p]\T. Now, (A.5) gives

TZT
KL(Pg,|Pg, ——12 1.

T(80)UT(84a).T(80)UT(8a)

Using (3.3), if

p—s
10g< s ) (A7)

Pfar (Z) n ’

T

then (A.4) holds with a = 1/16.

Combining (A.6) and (A.7), by taking the larger 5 between the two, we obtain the result.

A.3 Proof of Theorem 8
Forafixed T, let A(T) =f(T) = f(T)and 7 ={T/C [p]: [T{=s, T’# T}. Then

P, [T # T)=P B[ U {AT <oy < Y p[A
T T

Partition f1=(j1}, i) , where L1 contains the variables in T N T/ and = fs) .
Similarly, we can partition the covariance matrix Syt and Sy~ Then,

Q(T):fhSf11ﬂ1+ﬁ2|1sg21\1[‘2\1
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where ;12|1:ﬂ2—82181‘11ﬂ1 and 822‘12822—82181*11812 (see Section 3.6.2 in Mardia et al.,
1979). Furthermore, we have that

’

~ ! —1 ~ ~/ —1 ~
A(T ):.U2|1Szg|1ﬂ2\1—ﬂs|1sgg|1ﬂs\1- (A.8)

The two terms are correlated, but we will ignore this correlation and use the union bound to
lower bound the first term and upper bound the second term. We start with analyzing

ﬂ/2|15521|1ﬂ2\1, noting that the result for the second term will follow in the same way. By
Theorem 3.4.5 in Mardia et al. (1979), we have that

Sooii~ W
207

((n—z)*lzm'l, n—2—|TNT)

and independent of (Sy2, $11, p).ATherefore Spo)1 is independent of p2|~1 and Theorem 3.2.12
in Muirhead (1982) gives us that

o 1 -
:“2|1222|1/‘2I1 2

~7 1 ~ n—1-—s*
Hoj1999|1 H2|1

(n=2)

As in Lemma 10, we can show that

Sl el ~
log(n~1) _ Py Soo)1 o)

1—-Cy 21T
n P12 0s)1 2|1

< 14Cy

log(n—1)
—

For p2|~1, we have
N N 1A N -1, —1nA
o1 =f12—S21S1] N1:N2|1+§ 01211 1 —S2181; 1,

A - -~ 1
where foj1~A ()15 ﬁzzm)' independent of g, and Mo =tz =) _, > | .
Conditioning on pq and S;, we have that

— A 71 A
S2IS111N1:Z21211 p+Z,

1A' a—1n -~ ~
where 2~ (0, (n=2)"" 1,81, “1222‘1). Since )1 is independent of (Syp, Sy1, Hy), we
have that
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- N n 1A' a—1n
Bop|fry, S11~A (M2|1> (R‘F(TL—Q) 1811 M1) Zzzﬂ) :

1 vy Then

Let aq=-n
ning

Ly -1
“‘2\1222|1u’2|1 |N1’SHN X|T\T\ <a N2|1222|1“‘2\1>-

Therefore, conditioned on (plj S11),

a1 ~
Ho1 9291 H21
> (1_01 log( D)

X ((u'z|12521|1u2|1+alT\T'\) —2 \/(2au;|12521|1u2u+02\T\T’) 108;(77‘1)>

with probability 1 — 27. Similarly,

! 1 ~
He3)193311 131
< (1 1Oy (1l >)

((“3I123%|1N3I1+Q|T \T| \/ 2““%|1223I1M3|1+a2|T \T) log(n~ 1)+2a10g(77_1)>

’ —1 _
with probability 1 — 27. Finally, Lemma 12 gives that|a| < C (1 V “1211 1) 7" with
probability 1 — 27

= p=s 5 slog(n) -
set " \\ s—k ) \ k)78 .Forany T/C [p], where [T{=sand [T’n T| =k,
we have that

PO T el - I 1 I
,J'Zl]_SZQ‘lll'Qll_l“l'3|]_S,33‘ll‘l'3|1 > (1_0(1))M2|1222|1/~"2\1_(1+O(1))N3|1Z33|1N3|1
—C \/(1 VB ) N/2|122_21|1N2\1Fn,p78;k
—C(1V 7 1) T

The right hand side in the above display is bounded away from zero with probability

-1
1-0 ((( i:z ) < 2 >slog(n)) )
under the assumptions. Therefore,
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s—1
A / c
P.T+T|< P.[A(T < —
T # ]—go:, E:, 7 [A( )<0]_1Og(n),
=0T e7:|TNT" |=k

which completes the proof.

B Proof of Risk Consistency

Page 34

In this section, we give a proof of Corollary 9. From Theorem 4 we have that 0:(0;, 0')

with vT defined in (2.13). Define

. n(n=2) nmne 1 o4 )
= 1 VIS Ty 1 00 I
M ning ( +n(n—2) HrBerhr | Ve

To obtain a bound on the risk, we need to control

_{,T ('U’L',T _’Al’i,T)_‘Npr’T/2

E— (B.1)
VT ZTT VT

for i € {1, 2}. Define the following quantities

t5/1=ﬂ;5;;81gn(6§)—||[3T||1, 53251/\\/[3TH1£
52=ﬂTS;71~aﬂT—H,3TH , and  02=0d2/||B,.||

T T

Under the assumptions, we have that

$ Amin(ZTT)”ﬁT "22

Ao=0 K(n)s 1,
r.o=0 Mf”l -0 Hﬁ”l‘ilTHl Amin((ngT) and
" 18,1l . K(n)s ;
zTT ZTT
80— loglog(n) sVloglog(n)
2=0r no Vg e n

TT

The last equation follows from Lemma 12. Note that 52~= O(rp). From Lemma 13, we have

that & = op(1).
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We have )\,uTSTTs1gn( 2=AIB (140, (61))=0,(ry), since Lemma 13 glvesé‘l—
0p(1), and

n(n—2) —1nA
n17122 +MTSTTHT _ﬁ (1)
L+mima 8,12

T
Therefore v, =(14+0,,(r,))S L v, — 0, (1) XS, sign(B3,.). With this, we have

Vb, =140, (r) (10, (0:) 18,112, =0, (1) (1+6,(60))olIB,

TT

XollB |l
=8,112 1+ﬁp(rn)—ﬁp(1)#— (B.2)

TT

= 2 Op(Tn s
HﬁTHZ (140, (r2)]

TT

TT

MBIl = Aol B lly /18112

TT"

where the last line follows from Next

1<2um i, ) STTHT”
< IS72(wty — i, I, IS7E 2 |,

< (146, (Vs/n)A m}f(zTT)f\mm—umnmnm||z V1+6,,(52)

T

=8l Op (/A (32,)sloglog(n) /n)

and similarly

(1, i, ) Shsian(8,)= V30, (([AL(S, )sloglog(m)/n) .

Combining these two estimates, we have

Vo (=2, )]
=1B,1, (=2 V@ /1B, )0y (/A () sloglog () /n) 05
I8, Is- (JAH,,H (32 )sloglog(n)/n)

TT

From (B.2) and (B.3), we have that
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||BT||2Z
! ~ PN B4
(Vo =, )Vl 2= (140, (). Y

Finally, a simple calculation gives,

{’/ ZTTN
< Ama.x ( 1/22TTST71"/2>
% (146, (ra)) i, S 1 o +0, (1) \3sign(B,) S Lsign(8,.)
—0,(1) o1, Sy lsign(8,))

(B.5)

_ 2 an
_||5T||Z 1+0, T"\/62\/Hﬁ k \/\/’

TT

2 A2gn
— 140 Y — L
18, +0, | v

TT

Combining the equation (B.4) and (B.5), we have that

, o B,
_{/T(Ml,T_ﬂl,T)_vTuT/Q_ ” HZTT (1+ﬁp (rn))

VS, W 2

T T

2
1+6. | r. v —2odn
TOp | TV 18112

TT

This completes the proof.

C Technical Results

We provide some technical lemmas which are useful for proving the main results. Without
loss of generality, 7 = 7» = 1/2 in model (1.2). Define

P { < <3n}m{n< <3n}
R IR =" €D

where nq, n, are defined in 81. Observe that n; ~ Binomial(n, 1/2), which gives F[{n; <
n/4}] < exp(—3n/64) and F[{nq = 3n/4}] < exp(—3n/64) using standard tail bound for
binomial random variable (Devroye et al., 1996, p. 130). Therefore

P[&,] > 1—4exp(—3n/64). (C.2)
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The analysis is performed by conditioning on y and, in particular, we will perform analysis
on the event .. Note that on ¢, 16/9n™1 < n/(nyn,) < 16n~1. In our analysis, we do not strive
to obtain the sharpest possible constants.

C.1 Deviation of the Quadratic Scaling Term

Lemma 10

Lemma 11

In this section, we collect lemmas that will help us deal with bounding the deviation of

“’T TT”TfromuTz 'uT

Define the event

log(n—1 S L [log(n—1
&1(n)= {1—01 Og(;z ) = ZITZTT 0 < 14+Cqy %} y (C.3)
T T

for some constants Cq, C, > 0. Assume that s = o(n), then P[ & (7)] = 1 — nfor n sufficiently
large.

Proof of Lemma 10—Using Theorem 3.2.12 in Muirhead (1982)

NG 1A
1389 Dy 1
(n_2) AT SZYA = NXiflfs
T TT" T
(D.4) gives
n—2 1 < .S L, n—2 1
n—1— S14 lgﬁ(lzg S) ZTT“T ~ n—1-s 1— 136(123;'({1::))

with probability at least 1 — 7. Since s = o(n), the above display becomes

10g("771) < 'U’TSTT“’T <14Cy IOg(nil) (C4)
1A n '

1-C;
n f Yt by

for n sufficiently large.

Define the event
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log(r-1) 18,12 log(n~1)
N -1, S og\n NG -1,
=1y iy < IIBT\I2Z +C v t Mgy hg > IIBTH2Z —Cy

n n
TT TT

Assume that fSpin = cn~Y2, then [ £(7)] 2 1 - 27 for n sufficiently large.

Proof of Lemma 11—Recall that &~ (.., ﬁZTT) Therefore

ning ./ -1, 2 / -1
g
2> el (B2 Y ny).

Using (D.5), we have that

I D e e [ o (S+Z%I6Tll2 )1og<n1)+,3;321og(n—1)

TT T

2)18,,.1I7
o -1
= HﬁTHz +%+32 Hp—— I 1Og(7]—1)+321 3757) ) .

TT 6)

IIBTH%: log(n~1)
1 —1
< I8, 1Z. +Ci |5V Iz v lestn™) |
Z:TT

with probability 1 — 7. The second inequality follows since we are working on the event ¢,
and the third inequality follows from the fact that Sy, = cn~12. A lower bound follows from
(D.6),

Xy 2 B2, = (SH%ﬁTll2 >10g(771)
TT

TT

218,
> 18,012, +82-32 | [ H+——=TT | log(n~?)

n

(S0)]

T

HﬁTHZZ log(n~")
> I8, ~Co |5V \———

Z n

T

with probability 1 — 7.

Lemma 12

On the event (1) N £(7) the following holds
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- -1
S5 — 2 <C : log(n—") v 3 Vlog(n~) .
Jrs ||5T||ZTT| < <(||5T||ZTT ||[3T||Z W= o

TT

Proof of Lemma 12—On the event (7)) N (1), using Lemma 10 and Lemma 11, we

have that
A =1~
NTSTTH’T
_ NTST;‘”T P it P
e 13 Sy 1)
TzTT T T4~1T T
/.L S-1p [L S-1p N 1A ’ _
= “’TZTTH’T /TZT—Tl . (”TZT’}"”T_HTZT’}““T)
T T T T T
18,12 log(n~1)
2 2 /1 -1 Viog(n~! >
S HﬂT” +C]_H,6TH Og( )+C S 0%757] )\/ \j TZL‘
ZTT ZTT

A lower bound is obtained in the same way.

C.2 Other Results

Let the event ¢(7) be defined as

-1 og(sn~—!
ae[s]{ZTTHT Z MT _\/ (ZTT)aa%}. (C8)

-1 L. -1
Since ZTT“T is a multivariate normal " we have

PLam]zl- g

Furthermore, define the event €:(7) as

@‘1(77)—{I(ﬂT—uT)'Z;;sign(BT)l < \/ 32AIH3H(ZTT)%}- 9

-1

Since ﬂ;z;;sign(ﬁT)NJV (u;z;;sign(ﬁ )y 2 T sign(B,. )/Z sign(,BT)), we have

Fla@mlz1-n.

TT

, ’ -1
The next result gives a deviation of 1, S_'sign(3, ) from HTZTTSIgH(ﬁT).

Lemma 13

The following inequality
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i, S tsign(B,)— . > tsign(B,)|
<cC A;%n@n)s(lvnmnz )vanl Loglog(n)
ZTT

(C.10)

holds with probability at least 1 — ©(log=(n)).

Proof—Using the triangle inequality

|uTSTT151gn(,3 )— u/T/Z;Tlsign(BTﬂ
< | Sy sign(B,) i, X psign(B,)| - (©y)
+lfry Y rsign(B,)—p, X, sign(B,)].

For the first term, we write

|fr, S rsign(B,)—j, 3 sign(B, )| 1
S Glgn(,@ ) i 27 sign(ﬂ )
< S P TT _ T
sign(3,. ) TTslgn(ﬁ )‘qlgnﬁ )'Srrsign(8,.) sign(B,, )Z sign(B)
sign(B )/Z_ 51gn(,8 ) /‘TZTTSIgn(B ) ‘

sign(8,.)'Sypsign(8..) sign(8,,)' > sign(8,)

(C.12)

—I—sign(ﬁT)/ 51gn(,@ )

Let

:< o S by fr, > Lsign(8,) )
sign(8,) Y7 i, sign(B,)> 7 Lsign(8,)

and

c-( Sy, v, S, sign(B,) )
Sign(,@ )S INT sagn(BT) TTSJgn(ﬁT)

Using Theorem 3 of Bodnar and Okhrin (2008), we compute the density of 2Q:G12G;21
conditional on p and obtain that

n—s ( i, S*lsign(ﬁ ) [L;Z;;sign(,@T) ) ot
sign(3,) S, sign(B,) sign(B,)'Y, Lsign(B,) ”’S’

where
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. 2_1_2;;sign(BT) sien(Br) Y i /
TATTT e Y senB) " 7 Sy
9= . T ~—1 . = 7 T —~—1 . :
sign(8,.) > .sign(8,.) sign(8,.) > .-sign(B,.)

Lemma 20 gives

)

pSpysien(B,)  ppYsien(8) | _ fp Yty loglog(r2)
sign(,BT),S;Tlsign(ﬁT) sign(,@T)/Z;;sign(BT) o sign(ﬁT)/Z;;sign(ﬂT) n

with probability at least 1 — log™1(n). Combining with Lemma 14, Lemma 11, and (C.9), we
obtain an upper bound on the RHS of (C.12) as

— loglog(n C.
‘:U’TSTTSlgn(ﬁ TZ Slgn | =¢ ( Amiln(ZTT)sHﬁTHzX: ! ”ﬁTl) g ng( ) (
TT

13)

with probability at least 1 — ©(log™1(n)).

The second term in (C.11) can be bounded using (C.9) with 7 = log=1(n). Therefore,

combining with (C.13), we obtain
loglog(n) (C.
) Vgl | e

A a—1 - -1 _
1,8 bsign(8,)— i, Y 'sien(8,)| <€ | AL )s (wnwZ

TT
with probability at least 1 — ©(log~1(n)), as desired.

Lemma 14

There exist constants Cq, Cy, C3, and Cy4 such that each of the following inequalities hold
with probability at least 1 — log=1(n):

’ -1 1 sl
¢S te, < Ciey e, (Hﬁ ( M)) , YaeT (cus)

n

% 1<02 M VaeT (C.16)
e, S le, - n ' '
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sign(3,,. ) Y rsign(8,) B
sign(BT)/ S 1sign(B3,.)

< C3y|————=, and (C17)

c.

n 18)

sign(8,)'S; Lsien(8,) < Cisign(8,)'Y_ sign(8,) <1+ﬁ ( —1°g1°g(”))) .

Proof—Theorem 3.2.12. in Muirhead (1982) states that

-1
eaZTTea

Q-1
eaSTT e,

(n—2) NXifsfl'

Using Equation (D.4),

n—2 e;z;;ea 1 < 16log(2slog(n))
n—s—1 e,S"le, - 3(n—s—1)

with probability 1 - (2s log(n))~1. Rearranging terms in the display above, we have that

' F 1 log(slog(n))
N

and

11
e‘szT €a —1l<cC log(sk)g(n)) .
e, S le, - n

A union bound gives (C.15) and (C.16).

Equations (C.17) and (C.18) are shown similarly.

There exist constants C1, C, > 0 such that the following inequality
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F el F =1 -1 log(slog(n)) R
Ya € T:\eaST;NT—eaZTTHH < (ZTT)aa (1 \% ||5T||22: ) T—I—CﬂeaZTTNH
T

holds with probability at least 1 — ©(log™(n)).

Proof—Using the triangle inequality, we have

/ -1, / -1, / -1
|e STTl’l’T Z l’l’T‘ — ‘e STTI'I’T eaZTTuT‘+‘eaZTTMT_eaZTTMT"

For the first term, we write

—1 .
I =1 n 1 eSTT“T ZTTHT
|e STTNT eHZTTN’T| — e STT a | o STTea ME*l €
P—— T (C.21)
e, || [y
e e T e

As in the proof of Lemma C.10, we can show that

—1aA
n—s e STT”’T e, ZTT“T |,ll ~t
7 — n—s»
w \eSjen ey,re, )

where

T
_
= 2 1
i o e:"ZTTea i 'U‘TZTTN’T

9a= 1 > .
€. 1€ €, rea

Lemma 20 and an application of union bound gives

1A
e STlelT aZTTuT

1
aSTT €a GZTT €q

< ¢ | PrZorbs logllog) -, g
‘IZTT n

with probability at least 1 — ©(log~1(n)). Combining Lemma 11, Lemma 14 and Equation

(C.8) with 7= log=1(n), we can bound the right hand side of (C.21) as
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e A F -1, -1 2 log(slog log(slog(n)) (c.
leaSrrft,—€a) it < Cl\J(ZTT)aaﬁTZ s Z on

TT
with probability at least 1 - ©(log™1(n)).

The second term in (C.20) is handled by (C.8) with 7= log=1(n). Combining with (C.22), we
obtain

log(slog(n)) =1 log(slog(n)) (C.
)7n +Cole,> ., —

fa—1 A / -1 -1 2
|eaSTT“T_eaZTTMT| <G (ZTT)(MZ <1 v ||I3T||Z

TT
with probability at least 1 — ©(log~(n)). This completes the proof.

Lemma 16

The probability of the event

a€ls]

! {"*“S?i-i;bsignw»l <0 (), A, )0 v 16X, (s, M}

is at least 1 — 2log™1(n) for n sufficiently large.

Proof—Write

|ea TTs1gn(/6 )— e Z;Tlsign(,@Tﬂ

/ -1 .
1g eaSTTk.lgn(ﬁ ) e ZTTSlgn(ﬂT)
< e STT a /57 7 -1
€.Srrea aZ ea (C.24)
/1
f a1 EG'ZTTEU' GZ 51gn
+eaSTTe g1 -
€. prea QZTT

As in the proof of Lemma C.10, we can show that

eaSTTlmgn(ﬁT) B e;Z;Tl sign(3,.) iy
9a eaST%ea e;Z;Tl e, s

where
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sign(8,) (z;;—{-,Lem) sign(8,)

9a= T——1

Therefore,

e, S;;sign(ﬁ ) e ZTT&gn(

1
aSTT ea e ZTT €,

“ log(slzg(n)) €25

with probability 1 - (s log(n))~1. Combining Lemma 14 and (C.25), we can bound the right
hand side of Equation (C.24) as

|ea TT31gn(,3 )—e/ Eilsign(,BTﬂ

log(slog(n
= Ty aavq—a VeSS tsign(B, )]) |/ REieEel
=¢ ( mlln(zTT)S v |eaZTTSlgn(ﬁT)|) @

where the second inequality follows from

a< (X)) (8, tsen(8,) < (X1 AL s

An application of the union bound gives the desired result.

D Tail Bounds For Certain Random Variables

In this section, we collect useful results on tail bounds of various random quantities used
throughout the paper. We start by stating a lower and upper bound on the survival function
of the standard normal random variable. Let Z ~ ~'(0, 1) be a standard normal random
variable. Then fort>0

\/_t2+1exp( _£2/9) < B(Z>t) < \/12_7rlexp( —£2/2). o1

Next, we collect results concerning tail bounds for central 2 random variables.

Lemma 17 (Laurent and Massart (2000))

Let X~y2. Forall x>0,
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P[X—d > 2Vdx+2z] < exp(—z) (D.2)

P[X—d < —2Vdz] < exp(—z). (D.3)

Lemma 18 (Johnstone and Lu (2009))
Let X ~y2 then
1 3, 1
P[ldT"X-1| >z]| < exp(—Ed:c ), =zme€ [0,5). (D.4)

The following result provides a tail bound for non-central 32 random variable with non-
centrality parameter v.

Lemma 19 (Birgé (2001))

Let X ~x?2(»), then for all x>0

P[X > (d4+v)+24/(d+2v)z+22] < exp(—z) (D.5)

P[X < (d+v)—24/(d+2v)z] < exp(—z). (D.6)

The following Lemma gives a tail bound for a t-distributed random variable.

Lemma 20

Let X be a random variable distributed as
X~od 2y,
where tq denotes a t-distribution with d degrees of freedom. Then
|X| < Cy/o2d log(4n~1)

with probability at least 1 — 7.

Proof

Let Y ~ A°(0, 1) and Z~x? be two independent random variables. Then X is equal in
distribution to
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od=12y
Vd1Z

Using (D.1),

lod=Y2y| < ad™ Y2\ /log(4n~1)

with probability at least 1 - 7/2. (D.4) gives
16
—1 > 1— 1
d "X >1 —3d10g(2n )

with probability at least 1 — 7/2. Therefore, for sufficiently large d,

|X| < Cy/o2dtog(4n~1).
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Figure 1.

(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming
distance between T and T for identity covariance matrix X = I, (averaged over 200
simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p €
{100, 200, 300}. The first subfigure corresponds to the fractional power sparsity regime, s =
2pP-45, the second subfigure corresponds to the sublinear sparsity regime s = 0.4p/log(0.4p),
and the third ssubfigure corresponds to the linear sparsity regime s = 0.4p. Vertical lines
denote a scaled sample size at which the support set T is recovered correctly.
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Figure2.
(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming

distance between T and T for the Toeplitz covariance matrix X1t with p= 0.1 (averaged over
200 simulation runs). Each subfigure shows three curves, corresponding to the problem sizes
p € {100, 200, 300}. The first subfigure corresponds to the fractional power sparsity regime,
s = 2p%45, the second subfigure corresponds to the sublinear sparsity regime s = 0.4p/
log(0.4p), and the third subfiguren corresponds to the linear sparsity regime s = 0.4p.
Vertical lines denote a scaled sample size at which the support set T is recovered correctly.
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Figure 3.

(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming
distance between T and T for equal correlation matrix X1t with p=0.1 (averaged over 200
simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p €
{100, 200, 300%}. The first subfigure corresponds to the fractional power sparsity regime, s =
2pP45, the second subfigure corresponds to the sublinear sparsity regime s = 0.4p/log(0.4p),
and the third subfigure corresponds to the linear sparsity regime s = 0.4p. Vertical lines
denote a scaled sample size at which the support set T is recovered correctly.
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(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming
distance between T and T for equal correlation matrix X7 with p € {0, 0.1, 0.3, 0.5, 0.7,
0.9} (averaged over 200 simulation runs). The ambient dimension is set as p = 100. The first
subfigure corresponds to the fractional power sparsity regime, s = 2p%4° and the second
subfigure corresponds to the sublinear sparsity regime s = 0.4p/log(0.4p).
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