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Abstract

We consider the high-dimensional discriminant analysis problem. For this problem, different 

methods have been proposed and justified by establishing exact convergence rates for the 

classification risk, as well as the ℓ2 convergence results to the discriminative rule. However, sharp 

theoretical analysis for the variable selection performance of these procedures have not been 

established, even though model interpretation is of fundamental importance in scientific data 

analysis. This paper bridges the gap by providing sharp sufficient conditions for consistent 

variable selection using the sparse discriminant analysis (Mai et al., 2012). Through careful 

analysis, we establish rates of convergence that are significantly faster than the best known results 

and admit an optimal scaling of the sample size n, dimensionality p, and sparsity level s in the 

high-dimensional setting. Sufficient conditions are complemented by the necessary information 

theoretic limits on the variable selection problem in the context of high-dimensional discriminant 

analysis. Exploiting a numerical equivalence result, our method also establish the optimal results 

for the ROAD estimator (Fan et al., 2012) and the sparse optimal scaling estimator (Clemmensen 

et al., 2011). Furthermore, we analyze an exhaustive search procedure, whose performance serves 

as a benchmark, and show that it is variable selection consistent under weaker conditions. 

Extensive simulations demonstrating the sharpness of the bounds are also provided.
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1 Introduction

We consider the problem of binary classification with high-dimensional features. More 

specifically, given n data points, {(xi, yi), i = 1, …, n}, sampled from a joint distribution of 

(X, Y) ∈ ℝp × {1, 2}, we want to determine the class label y for a new data point x ∈ ℝp.

Let p1(x) and p2(x) be the density functions of X given Y = 1 (class 1) and Y = 2 (class 2) 

respectively, and the prior probabilities π1 = (Y = 1), π2 = (Y = 2). Classical multivariate 

analysis theory shows that the Bayes rule classifies a new data point x to class 2 if and only 

if
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(1.1)

The Bayes rule usually serves as an oracle benchmark, since, in practical data analysis, the 

class conditional densities p2(x) and p1(x) are unknown and need to be estimated from the 

data.

Throughout the paper, we assume that the class conditional densities p1(x) and p2(x) are 

Gaussian. That is, we assume that

(1.2)

This assumption leads us to linear discriminant analysis (LDA) and the Bayes rule in (1.1) 

becomes

(1.3)

where μ = μ2 − μ1. Theoretical properties of the plug-in rule g(x; μ̂
1, μ̂

2, Σ̂), where (μ̂
1, μ̂

2, 

Σ̂) are sample estimates of (μ1, μ2, Σ), have been well studied when the dimension p is low 

(Anderson, 2003).

In high-dimensions, the standard plug-in rule works poorly and may even fail completely. 

For example, Bickel and Levina (2004) show that the classical low dimensional normal-

based linear discriminant analysis is asymptotically equivalent to random guessing when the 

dimension p increases at a rate comparable to the sample size n. To overcome this curse of 

dimensionality, it is common to impose certain sparsity assumptions on the model and then 

estimate the high-dimensional discriminant rule using plug-in estimators. The most popular 

approach is to assume that both Σ and μ are sparse. Under this assumption, Shao et al. 

(2011) propose to use a thresholding procedure to estimate Σ and μ and then plug them into 

the Bayes rule. In a more extreme case, Tibshirani et al. (2003), Wang and Zhu (2007), Fan 

and Fan (2008) assume that Σ = I and estimate μ using a shrinkage method. Another 

common approach is to assume that Σ−1 and μ are sparse. Under this assumption, Witten 

and Tibshirani (2009) propose the scout method which estimates Σ−1 using a shrunken 

estimator. Though these plug-in approaches are simple, they are not appropriate for 

conducting variable selection in the discriminant analysis setting. As has been elaborated in 

Cai et al. (2011) and Mai et al. (2012), for variable selection in high-dimensional 

discriminant analysis, we need to directly impose sparsity assumptions on the Bayes 

discriminant direction β = Σ−1μ instead of separately on Σ and μ. In particular, it is assumed 

that  for T = {1,…, s}. Their key observation comes from the fact that the 

Fisher’s discriminant rule depends on Σ and μ only through the product Σ−1μ. Furthermore, 

in the high-dimensional setting, it is scientifically meaningful that only a small set of 

variables are relevant to classification, which is equivalent to the assumption that β is sparse. 
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On a simple example of tumor classification, Mai et al. (2012) elaborate why it is 

scientifically more informative to directly impose sparsity assumption on β instead of on μ 
(For more details, see Section 2 of their paper). In addition, Cai et al. (2011) point out that 

the sparsity assumption on β is much weaker than imposing sparsity assumptions Σ−1 and μ 
separately. A number of authors have also studied classification in this setting (Wu et al., 

2009, Fan et al., 2012, Witten and Tibshirani, 2011, Clemmensen et al., 2011, Cai et al., 

2011, Mai et al., 2012).

In this paper, we adopt the same assumption that β is sparse and focus on analyzing the SDA 

(Sparse Discriminant Analysis) proposed by Mai et al. (2012). This method estimates the 

discriminant direction β (More precisely, they estimate a quantity that is proportional to β.) 

and our focus will be on variable selection consistency, that is, whether this method can 

recover the set T with high probability. In a recent work, Mai and Zou (2012) prove that the 

SDA estimator is numerically equivalent to the ROAD estimator (Fan et al., 2012) and the 

sparse optimal scaling estimator (Clemmensen et al., 2011). By exploiting this result, our 

theoretical analysis provides a unified theoretical justification for all these three methods.

1.1 Main Results

Let n1 = |{i : yi = 1}| and n2 = n − n1. The SDA estimator is obtained by solving the 

following least squares optimization problem

(1.4)

where [n] denotes the set {1,…, n}, x̄ = n−1Σi xi and the vector z ∈ ℝn encodes the class 

labels as zi = n2/n if yi = 1 and zi = −n1/n if yi = 2. Here λ > 0 is a regularization parameter.

The SDA estimator in (1.4) uses an ℓ1-norm penalty to estimate a sparse v and avoid the 

curse of dimensionality. Mai et al. (2012) studied its variable selection property under a 

different encoding scheme of the response zi. However, as we show later, different coding 

schemes do not affect the results. When the regularization parameter λ is set to zero, the 

SDA estimator reduces to the classical Fisher’s discriminant rule.

The main focus of the paper is to sharply characterize the variable selection performance of 

the SDA estimator. From a theoretical perspective, unlike the high dimensional regression 

setting where sharp theoretical results exist for prediction, estimation, and variable selection 

consistency, most existing theories for high-dimensional discriminant analysis are either on 

estimation consistency or risk consistency, but not on variable selection consistency (see, for 

example, Fan et al., 2012, Cai et al., 2011, Shao et al., 2011). Mai et al. (2012) provide a 

variable selection consistency result for the SDA estimator in (1.4). However, as we will 

show later, their obtained scaling in terms of (n, p, s) is not optimal. Though some 

theoretical analysis of the ℓ1-norm penalized M-estimators exists (see Wainwright (2009a), 

Negahban et al. (2012)), these techniques are not applicable to analyze the estimator given 

in (1.4). In high-dimensional discriminant analysis the underlying statistical model is 

fundamentally different from that of the regression analysis. At a high level, to establish 
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variable selection consistency of the SDA estimator, we characterize the Karush-Kuhn-

Tucker (KKT) conditions for the optimization problem in (1.4). Unlike the ℓ1-norm 

penalized least squares regression, which directly estimates the regression coefficients, the 

solution to (1.4) is a quantity that is only proportional to the Bayes rule’s direction 

. To analyze such scaled estimators, we need to resort to different techniques 

and utilize sophisticated multivariate analysis results to characterize the sampling 

distributions of the estimated quantities. More specifically, we provide sufficient conditions 

under which the SDA estimator is variable selection consistent with a significantly improved 

scaling compared to that obtained by Mai et al. (2012). In addition, we complement these 

sufficient conditions with information theoretic limitations on recovery of the feature set T. 

In particular, we provide lower bounds on the sample size and the signal level needed to 

recover the set of relevant variables by any procedure. We identify the family of problems 

for which the estimator (1.4) is variable selection optimal. To provide more insights into the 

problem, we analyze an exhaustive search procedure, which requires weaker conditions to 

consistently select relevant variables. This estimator, however, is not practical and serves 

only as a benchmark. The obtained variable selection consistency result also enables us to 

establish risk consistency for the SDA estimator. In addition, Mai and Zou (2012) show that 

the SDA estimator is numerically equivalent to the ROAD estimator proposed by Wu et al. 

(2009), Fan et al. (2012) and the sparse optimal scaling estimator proposed by Clemmensen 

et al. (2011). Therefore, the results provided in this paper also apply to those estimators. 

Some of the main results of this paper are summarized below.

Let v̂SDA denote the minimizer of (1.4). We show that if the sample size

(1.5)

where C is a fixed constant which does not scale with n, p and s, 

, and Λmin(Σ) denotes the minimum eigenvalue of Σ, then the 

estimated vector v̂SDA has the same sparsity pattern as the true β, thus establishing variable 

selection consistency (or sparsistency) for the SDA estimator. This is the first result that 

proves that consistent variable selection in the discriminant analysis can be done under a 

similar theoretical scaling as variable selection in the regression setting (in terms of n, p and 

s). To prove (1.5), we impose conditions that minj∈T |βj| is not too small and 

 with α ∈ (0, 1), where N = [p]\T. The latter one is the 

irrepresentable condition, which is commonly used in the ℓ1-norm penalized least squares 

regression problem (Zou, 2006, Meinshausen and Bühlmann, 2006, Zhao and Yu, 2006, 

Wainwright, 2009a). Let βmin be the magnitude of the smallest absolute value of the non-

zero component of β. Our analysis of information theoretic limitations reveals that, 

whenever , no procedure can reliably recover the set T. In particular, 

under certain regimes, we establish that the SDA estimator is optimal for the purpose of 

variable selection. The analysis of the exhaustive search decoder reveals a similar result. 

However, the exhaustive search decoder does not need the irrepresentable condition to be 
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satisfied by the covariance matrix. Thorough numerical simulations are provided to 

demonstrate the sharpness of our theoretical results.

In a preliminary work, Kolar and Liu (2013) present some variable selection consistency 

results related to the ROAD estimator under the assumption that π1 = π2 = 1/2. However, it 

is hard to directly compare their analysis with that of Mai et al. (2012) to understand why an 

improved scaling is achievable, since the ROAD estimator is the solution to a constrained 

optimization while the SDA estimator is the solution to an unconstrained optimization. This 

paper analyzes the SDA estimator and is directly comparable with the result of Mai et al. 

(2012). As we will discuss later, our analysis attains better scaling due to a more careful 

characterization of the sampling distributions of several scaled statistics. In contrast, the 

analysis in Mai et al. (2012) hinges on the sup-norm control of the deviation of the sample 

mean and covariance to their population quantities, which is not sufficient to obtain the 

optimal rate. Using the numerical equivalence between the SDA and the ROAD estimator, 

the theoretical results of this paper also apply on the ROAD estimator. In addition, we also 

study an exhaustive search decoder and information theoretic limits on the variable selection 

in high-dimensional discriminant analysis. Furthermore, we provide discussions on risk 

consistency and approximate sparsity, which shed light on future investigations.

The rest of this paper is organized as follows. In the rest of this section, we introduce some 

more notation. In §2, we study sparsistency of the SDA estimator. An information theoretic 

lower bound is given in §3. We characterize the behavior of the exhaustive search procedure 

in §4. Consequences of our results are discussed in more details in §5. Numerical 

simulations that illustrate our theoretical findings are given in §6. We conclude the paper 

with a discussion and some results on the risk consistency and approximate sparsity in §7. 

Technical results and proofs are deferred to the appendix.

1.2 Notation

We denote [n] to be the set {1,…, n}. Let T ⊆ [p] be an index set, we denote βT to be the 

subvector containing the entries of the vector β indexed by the set T, and XT denotes the 

submatrix containing the columns of X indexed by T. Similarly, we denote ATT to be the 

submatrix of A with rows and columns indexed by T. For a vector a ∈ ℝn, we denote 

supp(a) = {j : aj ≠ 0} to be the support set. We also use ||a||q, q ∈ [1, ∞), to be the ℓq-norm 

defined as ||a||q = (Σi∈[n] |ai|q)1/q with the usual extensions for q ∈ {0, ∞}, that is, ||a||0 = |

supp(a)| and ||a||∞ = maxi∈[n] |ai|. For a matrix A ∈ ℝn×p, we denote |||A|||∞ = maxi∈[n]Σj∈[p] 

|aij| the ℓ∞ operator norm. For a symmetric positive definite matrix A ∈ ℝp×p we denote 

Λmin(A) and Λmax(A) to be the smallest and largest eigenvalues, respectively. We also 

represent the quadratic form  for a symmetric positive definite matrix A. We 

denote In to be the n × n identity matrix and 1n to be the n × 1 vector with all components 

equal to 1. For two sequences {an} and {bn}, we use an = (bn) to denote that an < Cbn for 

some finite positive constant C. We also denote an = (bn) to be bn ≳ an. If an = (bn) and 

bn = (an), we denote it to be an ≍ bn. The notation an = o(bn) is used to denote that 

.
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2 Sparsistency of the SDA Estimator

In this section, we provide sharp sparsistency analysis for the SDA estimator defined in 

(1.4). Our analysis decomposes into two parts: (i) We first analyze the population version of 

the SDA estimator in which we assume that Σ, μ1, and μ2 are known. The solution to the 

population problem provides us insights on the variable selection problem and allows us to 

write down sufficient conditions for consistent variable selection. (ii) We then extend the 

analysis from the population problem to the sample version of the problem in (1.4). For this, 

we need to replace Σ, μ1, and μ2 by their corresponding sample estimates Σ̂, μ̂
1, and μ̂

2. The 

statement of the main result is provided in §2.2 with an outline of the proof in §2.3.

2.1 Population Version Analysis of the SDA Estimator

We first lay out conditions that characterize the solution to the population version of the 

SDA optimization problem.

Let X1 ∈ ℝn1×p be the matrix with rows containing data points from the first class and 

similarly define X2 ∈ ℝn2×p to be the matrix with rows containing data points from the 

second class. We denote  and  to be the centering 

matrices. We define the following quantities

With this notation, observe that the optimization problem in (1.4) can be rewritten as

where we have dropped terms that do not depend on v. Therefore, we define the population 

version of the SDA optimization problem as

(2.1)

Let ŵ be the solution of (2.1). We are aiming to characterize conditions under which the 

solution ŵ recovers the sparsity pattern of β = Σ−1μ. Recall that T = supp(β) = {1,…, s} 

denotes the true support set and N = [p]\T, under the sparsity assumption, we have

(2.2)
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We define βmin as

(2.3)

The following theorem characterizes the solution to the population version of the SDA 

optimization problem in (2.1).

Theorem 1—Let α ∈ (0, 1] be a constant and ŵ be the solution to the problem in (2.1). 

Under the assumptions that

(2.4)

(2.5)

we have  with

(2.6)

Furthermore, we have sign(ŵT) = sign(βT).

Equations (2.4) and (2.5) provide sufficient conditions under which the solution to (2.1) 

recovers the true support. The condition in (2.4) takes the same form as the irrepresentable 

condition commonly used in the ℓ1-penalized least squares regression problem (Zou, 2006, 

Meinshausen and Bühlmann, 2006, Zhao and Yu, 2006, Wainwright, 2009a). Equation (2.5) 

specifies that the smallest component of βT should not be too small compared to the 

regularization parameter λ. In particular, let  for some λ0. Then 

(2.5) suggests that ŵT recovers the true support of β as long as 

. Equation (2.6) provides an explicit form for the solution ŵ, 

from which we see that the SDA optimization procedure estimates a scaled version of the 

optimal discriminant direction. Whenever λ ≠ 0, ŵ is a biased estimator. However, such 

estimation bias does not affect the recovery of the support set T of β when λ is small enough.

We present the proof of Theorem 1, as the analysis of the sample version of the SDA 

estimator will follow the same lines. We start with the Karush-Kuhn-Tucker (KKT) 

conditions for the optimization problem in (2.1):

(2.7)
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where ẑ ∈ ∂||ŵ||1 is an element of the subdifferential of ||·||1.

Let ŵT be defined in (2.6). We need to show that there exists a ẑ such that the vector 

, paired with ẑ, satisfies the KKT conditions and sign(ŵT) = sign(βT).

The explicit form of ŵT is obtained as the solution to an oracle optimization problem, 

specified in (2.8), where the solution is forced to be non-zero only on the set T. Under the 

assumptions of Theorem 1, the solution ŵT to the oracle optimization problem satisfies 

sign(ŵT) = sign(βT). We complete the proof by showing that the vector  satisfies the 

KKT conditions for the full optimization procedure.

We define the oracle optimization problem to be

(2.8)

The solution w̃T to the oracle optimization problem (2.8) satisfies w̃T = ŵT where ŵT is 

given in (2.6). It is immediately clear that under the conditions of Theorem 1, sign (w̃T) = 

sign(βT).

The next lemma shows that the vector  is the solution to the optimization problem 

in (2.1) under the assumptions of Theorem 1.

Lemma 2—Under the conditions of Theorem 1, we have that  is the solution to 

the problem in (2.1), where ŵT is defined in (2.6).

This completes the proof of Theorem 1.

The next theorem shows that the irrepresentable condition in (2.4) is almost necessary for 

sign consistency, even if the population quantities Σ and μ are known.

Theorem 3—Let ŵ be the solution to the problem in (2.1). If we have sign(ŵT) = sign(βT), 

Then, there must be

(2.9)

The proof of this theorem follows similar argument as in the regression settings in Zhao and 

Yu (2006), Zou (2006).

2.2 Sample Version Analysis of the SDA Estimator

In this section, we analyze the variable selection performance of the sample version of the 

SDA estimator v̂ = v̂SDA defined in (1.4). In particular, we will establish sufficient 

conditions under which v̂ correctly recovers the support set of β (i.e., we will derive 
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conditions under which  and sign(v̂T) = sign(βT)). The proof construction follows 

the same line of reasoning as the population version analysis. However, proving analogous 

results in the sample version of the problem is much more challenging and requires careful 

analysis of the sampling distribution of the scaled functionals of Gaussian random vectors.

The following theorem is the main result that characterizes the variable selection 

consistency of the SDA estimator.

Theorem 4—We assume that the condition in (2.4) holds. Let the penalty parameter be 

 with

(2.10)

where Kλ0 is a sufficiently large constant. Suppose that βmin = mina∈T |βa| satisfies

(2.11)

for a sufficiently large constant Kβ. If

(2.12)

for some constant K, then  is the solution to the optimization problem in (1.4), 

where

(2.13)

with probability at least 1 −  (log−1(n)). Furthermore, sign(v̂T) = sign(βT).

Theorem 4 is a sample version of Theorem 1 given in the previous section. Compared to the 

population version result, in addition to the irrepresentable condition and a lower bound on 

βmin, we also need the sample size n to be large enough for the SDA procedure to recover 

the true support set T with high probability.

At the first sight, the conditions of the theorem look complicated. To highlight the main 

result, we consider a case where 0 < c ≤ Λmin(ΣTT) and 
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 for some constants c, C̄. In this case, it is 

sufficient that the sample size scales as n ≍ s log(p − s) and βmin ≳ s−1/2. This scaling is of 

the same order as for the Lasso procedure, where n ≳ s log(p − s) is needed for correct 

recovery of the relevant variables under the same assumptions (see Theorem 3 in 

Wainwright, 2009a). In §5, we provide more detailed explanation of this theorem and 

complement it with the necessary conditions given by the information theoretic limits.

Variable selection consistency of the SDA estimator was studied by Mai et al. (2012). Let C 
= Var(X) denote the marginal covariance matrix. Under the assumption that 

 and ||μ||∞ are bounded, Mai et al. (2012) show that the following 

conditions

are sufficient for consistent support recovery of β. This is suboptimal compared to our 

results. Inspection of the proof given in Mai et al. (2012) reveals that their result hinges on 

uniform control of the elementwise deviation of Ĉ from C and μ̂ from μ. These uniform 

deviation controls are too rough to establish sharp results given in Theorem 4. In our proofs, 

we use more sophisticated multivariate analysis tools to control the deviation of  from βT, 

that is, we focus on analyzing the quantity  but instead of studying STT and μ̂
T 

separately.

The optimization problem in (1.4) uses a particular scheme to encode class labels in the 

vector z, though other choices are possible as well. For example, suppose that we choose zi = 

z(1) if yi = 1 and zi = z(2) if yi = 2, with z(1) and z(2) such that n1z(1) + n2z(2) = 0. The 

optimality conditions for the vector  to be a solution to (1.4) with the alternative 

coding are

(2.14)

(2.15)

Now, choosing , we obtain that w̃T̃, which satisfies (2.14) and (2.15), is 

proportional to ŵT with T̃ = T. Therefore, the choice of different coding schemes of the 

response variable zi does not effect the result.

The proof of Theorem 4 is outlined in the next subsection.
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2.3 Proof of Sparsistency of the SDA Estimator

The proof of Theorem 4 follows the same strategy as the proof of Theorem 1. More 

specifically, we only need to show that there exists a subdifferential of ||·||1 such that the 

solution v̂ to the optimization problem in (1.4) satisfies the sample version KKT condition 

with high probability. For this, we proceed in two steps. In the first step, we assume that the 

true support set T is known and solve an oracle optimization problem to get ṽT which 

exploits the knowledge of T. In the second step, we show that there exists a dual variable 

from the subdifferential of ||·||1 such that the vector , paired with , satisfies 

the KKT conditions for the original optimization problem given in (1.4). This proves that 

 is a global minimizer of the problem in (1.4). Finally, we show that v̂ is a 

unique solution to the optimization problem in (1.4) with high probability.

Let T̂ = supp(v̂) be the support of a solution v̂ to the optimization problem in (1.4) and T̂ = 

[p]\T̂. Any solution to (1.4) needs to satisfy the following Karush-Kuhn-Tucker (KKT) 

conditions

(2.16)

(2.17)

We construct a solution  to (1.4) and show that it is unique with high probability.

First, we consider the following oracle optimization problem

(2.18)

The optimization problem in (2.18) is related to the one in (1.4), however, the solution is 

calculated only over the subset T and ||vT ||1 is replaced with . The solution can 

be computed in a closed form as

(2.19)

The solution ṽT is unique, since the matrix STT is positive definite with probability 1.
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The following result establishes that the solution to the auxiliary oracle optimization 

problem (2.18) satisfies sign(ṽT) = sign(βT) with high probability, under the conditions of 

Theorem 4.

Lemma 5—Under the assumption that the conditions of Theorem 4 are satisfied, sign(ṽT) 

= sign(βT) and  with probability at least 1 − (log−1(n)).

The proof Lemma 5 relies on a careful characterization of the deviation of the following 

quantities  and  from their expected 

values.

Using Lemma 5, we have that ṽT defined in (2.19) satisfies ṽT = v̂T. Next, we show that 

 is a solution to (1.4) under the conditions of Theorem 4.

Lemma 6—Assuming that the conditions of Theorem 4 are satisfied, we have that 

 is a solution to (1.4) with probability at least 1 − (log−1(n)).

The proof of Theorem 4 will be complete once we show that  is the unique 

solution. We proceed as in the proof of Lemma 1 in Wainwright (2009a). Let v̌ be another 

solution to the optimization problem in (1.4) satisfying the KKT condition

for some subgradient q̂ ∈ ∂||v̌||1. Given the subgradient q̂, any optimal solution needs to 

satisfy the complementary slackness condition q̂′v̌ = ||v̌||1, which holds only if v̌j = 0 for all j 

such that |q̂j| < 1. In the proof of Lemma 6, we established that |q̂j| < 1 for j ∈ N. Therefore, 

any solution to (1.4) has the same sparsity pattern as v̂. Uniqueness now follows since ṽT is 

the unique solution of (2.18) when constrained on the support set T.

3 Lower Bound

Theorem 4 provides sufficient conditions for the SDA estimator to reliably recover the true 

set T of nonzero elements of the discriminant direction β. In this section, we provide results 

that are of complementary nature. More specifically, we provide necessary conditions that 

must be satisfied for any procedure to succeed in reliable estimation of the support set T. 

Thus, we focus on the information theoretic limits in the context of high-dimensional 

discriminant analysis.

We denote Ψ to be an estimator of the support set T, that is, any measurable function that 

maps the data {xi, yi}i∈[n] to a subset of {1, …, p}. Let θ = (μ1, μ2, Σ) be the problem 

parameters and Θ be the parameter space. We define the maximum risk, corresponding to 

the 0/1 loss, as
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where  denotes the joint distribution of {xi, yi}i∈[n] under the assumption that , 

and T(θ) = supp(β) (recall that β = Σ−1 (μ2 − μ1)). Let (s, ) be the class of all subsets of 

the set  of cardinality s. We consider the parameter space

(3.1)

where τ > 0 determines the signal strength. The minimax risk is defined as

In what follows we provide a lower bound on the minimax risk. Before stating the result, we 

introduce the following three quantities that will be used to state Theorem 7

(3.2)

(3.3)

and

(3.4)

The first quantity measures the difficulty of distinguishing two close support sets T1 and T2 

that differ in only one position. The second quantity measures the effect of a large number of 

support sets that are far from the support set T. The quantity τmin is a threshold for the signal 

strength. Our main result on minimax lower bound is presented in Theorem 7.

Theorem 7—For any τ < τmin, there exists some constant C > 0, such that
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Theorem 7 implies that for any estimating procedure, whenever τ < τmin, there exists some 

distribution parametrized by θ ∈ Θ(Σ, τ, s) such that the probability of incorrectly 

identifying the set T(θ) is strictly bounded away from zero. To better understand the 

quantities φclose(Σ) and φfar(Σ), we consider a special case when Σ = I. In this case both 

quantities simplify a lot and we have φclose(I) = 2 and φfar(I) = 2s. From Theorem 7 and 

Theorem 4, we see that the SDA estimator is able to recover the true support set T using the 

optimal number of samples (up to an absolute constant) over the parameter space

where M is a fixed constant and Λmin(ΣTT) is bounded from below. This result will be 

further illustrated by numerical simulations in §6.

4 Exhaustive Search Decoder

In this section, we analyze an exhaustive search procedure, which evaluates every subset T′ 

of size s and outputs the one with the best score. Even though the procedure cannot be 

implemented in practice, it is a useful benchmark to compare against and it provides deeper 

theoretical insights into the problem.

For any subset T′ ⊂ [p], we define

The exhaustive search procedure outputs the support set T̂ that minimizes f(T′) over all 

subsets T′ of size s,

Define . In order to show that the exhaustive search procedure identifies 

the correct support set T, we need to show that with high probability g(T) > g(T′) for any 

other set T′ of size s. The next result gives sufficient conditions for this to happen. We first 

introduce some additional notation. Let A1 = T ∩ T′, A2 = T\T′ and A3 = T′\T. We define the 

following quantities
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where  and . 

The quantities μA3|A1 and ΣA3A3|A1are defined similarly.

Theorem 8—Assuming that for all T′ ⊆ [p] with |T′| = s and T′ ≠ T the following holds

(4.1)

where |T′ ∩ T| = k,  and C1, C2, C3 are 

constants independent of the problem parameters, we have [T̂ ≠ T] = (log−1(n)).

The condition in (4.1) allows the exhaustive search decoder to distinguish between the sets T 

and T′ with high probability. Note that the Mahalanobis distance decomposes as 

 where  and 

, and similarly 

. Therefore g(T) > g(T′) if 

. With infinite amount of data, it would be 

sufficient that a2(T′) > a3(T′). However, in the finite-sample setting, condition (4.1) ensures 

that the separation is big enough. If XT and XN are independent, then the expression (4.1) 

can be simplified by dropping the second term on the left hand side.

Compared to the result of Theorem 4, the exhaustive search procedure does not require the 

covariance matrix to satisfy the irrepresentable condition given in (2.4).

5 Implications of Our Results

In this section, we give some implications of our results. We start with the case when the 

covariance matrix Σ = I. The same implications hold for other covariance matrices that 

satisfy Λmin(Σ) ≥ C > 0 for some constant C independent of (n, p, s). We first illustrate a 

regime where the SDA estimator is optimal for the problem of identifying the relevant 

variables. This is done by comparing the results in Theorem 4 to those of Theorem 7. Next, 

we point out a regime where there exists a gap between the sufficient and necessary 

conditions of Theorem 7 for both the exhaustive search decoder and the SDA estimator. 

Throughout the section, we assume that s = o(min(n, p)).

When Σ = I, we have that βT = μT. Let
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Theorem 7 gives a lower bound on μmin as

If some components of the vector μT are smaller in absolute value than μmin, no procedure 

can reliably recover the support. We will compare this bound with sufficient conditions 

given in Theorems 4 and 8.

First, we assume that  for some constant C. Theorem 4 gives that 

is sufficient for the SDA estimator to consistently recover the relevant variables when n ≳ s 

log(p − s). This effectively gives μmin ≳ s−1/2, which is the same as the necessary condition 

of Theorem 7.

Next, we investigate the condition in (4.1), which is sufficient for the exhaustive search 

procedure to identify the set T. Let T′ ⊂ [p] be a subset of size s. Then, using the notation of 

Section 4,

Now, if |T′ ∩ T| = s − 1 and T′ does not contain a smallest component of μT, (4.1) simplifies 

to , since . This shows that both the SDA estimator 

and the exhaustive search procedure can reliably detect signals at the information theoretic 

limit in the case when the norm of the vector μT is bounded and μmin ≳ s−1/2. However, 

when the norm of the vector μT is not bounded by a constant, for example, μmin = C′ for 

some constant C′, Theorem 7 gives that at least n ≳ log(p − s) data points are needed, while 

n ≳ s log(p − s) is sufficient for correct recovery of the support set T. This situation is 

analogous to the known bounds on the support recovery in the sparse linear regression 

setting (Wainwright, 2009b).

Next, we show that the largest eigenvalue of a covariance matrix Σ can diverge, without 

affecting the sample size required for successful recovery of the support set T. Let 

 for γ ∈ [0, 1). We have Λmax(Σ) = 1 + (p − 1)γ, which diverges to 

infinity for any fixed γ as p → ∞. Let T = [s] and set βT = β1T. This gives μT = β(1 + γ(s − 

1))1T and μN = γβs1N. A simple application of the matrix inversion formula gives
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A lower bound on β is obtained from Theorem 7 as . This follows from a 

simple calculation that establishes φclose(Σ) = 2(1 − γ) and φfar(Σ) = 2s(1 − γ) + (2s)2γ.

Sufficient conditions for the SDA estimator follow from Theorem 4. A straightforward 

calculation shows that

This gives that  (for K large enough) is sufficient for recovering the set T, 

assuming that . This matches the lower bound, showing that the maximum 

eigenvalue of the covariance matrix Σ does not play a role in characterizing the behavior of 

the SDA estimator.

6 Simulation Results

In this section, we conduct several simulations to illustrate the finite-sample performance of 

our results. Theorem 4 describes the sample size needed for the SDA estimator to recover 

the set of relevant variables. We consider the following three scalings for the size of the set 

T:

1. fractional power sparsity, where s = ⌈2p0.45⌉

2. sublinear sparsity, where s = ⌈0.4p/log(0.4p)⌉, and

3. linear sparsity, where s = ⌈0.4p⌉.

For all three scaling regimes, we set the sample size as

where θ is a control parameter that is varied. We investigate how well can the SDA 

estimator recovers the true support set T as the control parameter θ varies.

We set , X|Y = 1 ~ (μ, Σ) and without loss of generality X|Y = 2 ~ 

(0, Σ). We specify the vector μ by choosing the set T of size |T| = s randomly, and for each a 

∈ T setting μa equal to +1 or −1 with equal probability, and μa = 0 for all components a ∉ T. 

We specify the covariance matrix Σ as
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so that . We consider three cases for the block component ΣTT:

1. identity matrix, where ΣTT = Is,

2. Toeplitz matrix, where ΣTT = [Σab]a,b∈T and Σab = ρ|a−b| with ρ = 0.1, and

3. equal correlation matrix, where Σab = ρ when a ≠ b and σaa = 1.

Finally, we set the penalty parameter λ = λSDA as

for all cases. We also tried several different constants and found that our main results on 

high dimensional scalings are insensitive to the choice of this constant. For this choice of λ, 

Theorem 4 predicts that the set T will be recovered correctly. For each setting, we report the 

Hamming distance between the estimated set T̂ and the true set T,

averaged over 200 independent simulation runs.

Figure 1 plots the Hamming distance against the control parameter θ, or the rescaled number 

of samples. Here the Hamming distance between T̂ and T is calculated by averaging 200 

independent simulation runs. There are three subfigures corresponding to different sparsity 

regimes (fractional power, sublinear and linear sparsity), each of them containing three 

curves for different problem sizes p ∈ {100, 200, 300}. Vertical line indicates a threshold 

parameter θ at which the set T is correctly recovered. If the parameter is smaller than the 

threshold value, the recovery is poor. Figure 2 and Figure 3 show results for two other cases, 

with ΣTT being a Toeplitz matrix with parameter ρ = 0.1 and the equal correlation matrix 

with ρ = 0.1. To illustrate the effect of correlation, we set p = 100 and generate the equal 

correlation matrices with ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}. Results are given in Figure 4.

7 Discussion

In this paper, we address the problem of variable selection in high-dimensional discriminant 

analysis problem. The problem of reliable variable selection is important in many scientific 

areas where simple models are needed to provide insights into complex systems. Existing 

research has focused primarily on establishing results for prediction consistency, ignoring 

feature selection. We bridge this gap, by analyzing the variable selection performance of the 

Kolar and Liu Page 18

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SDA estimator and an exhaustive search decoder. We establish sufficient conditions 

required for successful recovery of the set of relevant variables for these procedures. This 

analysis is complemented by analyzing the information theoretic limits, which provide 

necessary conditions for variable selection in discriminant analysis. From these results, we 

are able to identify the class of problems for which the computationally tractable procedures 

are optimal. In this section, we discuss some implications and possible extensions of our 

results.

7.1 Theoretical Justification of the ROAD and Sparse Optimal Scaling Estimators

In a recent work, Mai and Zou (2012) show that the SDA estimator is numerically 

equivalent to the ROAD estimator proposed by Wu et al. (2009), Fan et al. (2012) and the 

sparse optimal scaling estimator proposed by Clemmensen et al. (2011). More specifically, 

all these three methods have the same regularization paths up to a constant scaling. This 

result allows us to apply the theoretical results in this paper to simultaneously justify the 

optimal variable selection performance of the ROAD and sparse optimal scaling estimators.

7.2 Risk Consistency

The results of Theorem 4 can be used to establish risk consistency of the SDA estimator. 

Consider the following classification rule

(7.1)

where g(x; v̂) = I[v̂′ (x − (μ̂
1 + μ̂

2)/2) > 0] with v̂ = v̂SDA. Under the assumption that β = 

(βT′, 0′)′, the risk (or the error rate) of the Bayes rule defined in (1.1) is 

, where Φ is the cumulative distribution function of a 

standard Normal distribution. We will compare the risk of the SDA estimator against this 

Bayes risk.

Recall the setting introduced in §1.1, conditioning on the data points {xi, yi}i∈[n], the 

conditional error rate is

(7.2)

Let rn = λ||βT||1 and qn = sign(βT)′ΣTT sign(βT). We have the following result on risk 

consistency.

Corollary 9—Let v̂ = v̂SDA. We assume that the conditions of Theorem 4 hold with
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(7.3)

where K(n) could potentially scale with n, and . Furthermore, we assume 

that . Then

First, note that  is sufficient for . 

Under the conditions of Theorem 9, we have that 

. Therefore, if 

and  we have

and R(ŵ) − Ropt →P 0. If in addition

then R(ŵ)/Ropt →P 1, using Lemma 1 in Shao et al. (2011).

The above discussion shows that the conditions of Theorem 4 are sufficient for establishing 

risk consistency. We conjecture that substantially less restrictive conditions are needed to 

establish risk consistency results. Exploring such weaker conditions is beyond the scope of 

this paper.
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7.3 Approximate sparsity

Thus far, we were discussing estimation of discriminant directions that are exactly sparse. 

However, in many applications it may be the case that the discriminant direction 

 is only approximately sparse, that is, βN is not equal to zero, but is 

small. In this section, we briefly discuss the issue of variable selection in this context.

In the approximately sparse setting, since βN ≠ 0, a simple calculation gives

(7.4)

and

(7.5)

In what follows, we provide conditions under which the solution to the population version of 

the SDA estimator, given in (2.1), correctly recovers the support of large entries T. Let 

 where ŵT is given as

with . We will show that ŵ is the solution to (2.1).

We again define βmin = mina∈T|βa|. Following a similar argument as the proof of Theorem 1, 

we have that  holds if  satisfies

(7.6)

In the approximate sparsity setting, it is reasonable to assume that  is small 

compared to , which would imply that  using (7.4). Therefore, under 

suitable assumptions we have sign(ŵT) = sign(βT). Next, we need conditions under which ŵ 
is the solution to (2.1).

Following a similar analysis as in Lemma 2, the optimality condition
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needs to hold. Let . Using (7.5), the above display becomes

Therefore, using the triangle inequality, the following assumption

in addition to (2.4) and (7.6), is sufficient for ŵ to recover the set of important variables T.

The above discussion could be made more precise and extended to the sample SDA 

estimator in (1.4), by following the proof of Theorem 4. This is beyond the scope of the 

current paper and will be left as a future investigation.
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A Proofs Of Main Results

In this section, we collect proofs of results given in the main text. We will use C, C1, C2, … 

to denote generic constants that do not depend on problem parameters. Their values may 

change from line to line.

Let

(A.1)

where  is defined in (C.1),  in Lemma 10,  in Lemma 11,  in (C.8), and  in (C.9). 

We have that [ ] ≥ 1 −  log−1(n)).

A.1 Proofs of Results in Section 2

Proof of Lemma 2

From the KKT conditions given in (2.7), we have that  is a solution to the 

problem in (2.1) if and only if

(A.2)

By construction, ŵT satisfy the first equation. Therefore, we need to show that the second 

one is also satisfied. Plugging in the explicit form of ŵT into the second equation and using 

(2.2), after some algebra we obtain that

needs to be satisfied. The above display is satisfied with strict inequality under the 

assumption in (2.4).

Proof of Lemma 5

Throughout the proof, we will work on the event  defined in (A.1).

Let a ∈ T be such that ṽa > 0, noting that the case when ṽa < 0 can be handled in a similar 

way. Let
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Furthermore, let

For sufficiently large n, on the event , together with Lemma 12, Lemma 16, and Lemma 

13, we have that γ̂ ≥ γ(1 − o(1)) > γ/2 and 

 with probability at least 

1 −  (log−1(n). Then

so that sign(ṽa) = sign(βa) if

(A.3)

Lemma 15 gives a bound on |δ2|, for each fixed a ∈ T, as

Therefore assumption (2.11), with Kβ sufficiently large, and a union bound over all a ∈ T 

implies (A.3).

Lemma 15 gives sign(βT) = sign(βT) with probability 1 −  (log−1(n)).
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Proof of Lemma 6

Throughout the proof, we will work on the event  defined in (A.1). By construction, the 

vector  satisfies the condition in (2.16). Therefore, to show that it is a solution to 

(1.4), we need to show that it also satisfies (2.17).

To simplify notation, let

Recall that .

Let U ∈ ℝ(n−2)×p be a matrix with each row  such that (n − 2)S = U′U. For a 

∈ N, we have

where  is independent of UT, and

where  is independent of μ̂
T. Therefore,
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and finally

First, we deal with the term

Conditional on {yi}i∈[n] and XT, we have that

and

with probability at least 1 − log−1(n). On the event , we have that
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Since

and

we have that

by taking both Kλ0 and K sufficiently large.

Similarly, conditional on {yi}i∈[n] and XT, we have that

which, on the event , gives

with probability at least 1 − log−1(n) for sufficiently large K.

Next, let
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Simple algebra shows that

Therefore conditional on {yi}i∈[n] and XT, we have that

which, on the event , gives

with probability at least 1 − log−1(n) when Kλ0 and K are chosen sufficiently large.

Piecing all these results together, we have that

A.2 Proof of Theorem 7

The theorem will be shown using standard tools described in Tsybakov (2009). First, in 

order to provide a lower bound on the minimax risk, we will construct a finite subset of Θ(Σ, 

τ, s), which contains the most difficult instances of the estimation problem so that estimation 

over the subset is as difficult as estimation over the whole family. Let Θ1 ⊂ Θ(Σ, τ, s), be a 

set with finite number of elements, so that

To further lower bound the right hand side of the display above, we will use Theorem 2.5 in 

Tsybakov (2009). Suppose that Θ1 = {θ0, θ1, …, θM} where T (θa) ≠ T (θb) and
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(A.4)

then

Without loss of generality, we will consider θa = (μa, 0, Σ). Denote  the joint distributions 

of {Xi, Yi}i∈[n]. Under , we have , Xi|Yi = 1 ~ (0, Σ) and Xi|Yi 

= 2 ~  (μa, Σ). Denote f (x; μ, Σ) the density function of a multivariate Normal 

distribution. With this we have

(A.5)

where βa = Σ−1μa. We proceed to construct different finite collections for which (A.4) holds.

Consider a collection Θ1 = {θ0, θ1, …, θp−s}, with θa = (μa, 0), that contains instances whose 

supports differ in only one component. Vectors  are constructed indirectly through 

, using the relationship βa = Σ−1μa. Note that this construction is possible, since Σ is 

a full rank matrix. For every a, all s non-zero elements of the vector βa are equal to τ. Let T 

be the support and u(T) an element of the support T for which (3.2) is minimized. Set β0 so 

that supp(β0) = T. The remaining p–s parameter vectors  are constructed so that the 

support of βa contains all s − 1 element in T\u(T) and then one more element from [p]\T. 

With this, (A.5) gives

and (3.2) gives

It follows from the display above that if
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(A.6)

then (A.4) holds with α = 1/16.

Next, we consider another collection Θ2 = {θ0, θ1, …, θM}, where , and the 

Hamming distance between T (θ0) and T (θa) is equal to 2s. As before, θa = (μa, 0) and 

vectors  are constructed so that βa = Σ−1 μa with s non-zero components equal to τ. 

Let T be the support set for which the minimum in (3.3) is attained. Set the vector β0 so that 

supp(β0) = T. The remaining vectors  are set so that their support contains s 

elements from the set [p]\T. Now, (A.5) gives

Using (3.3), if

(A.7)

then (A.4) holds with α = 1/16.

Combining (A.6) and (A.7), by taking the larger β between the two, we obtain the result.

A.3 Proof of Theorem 8

For a fixed T, let Δ(T′) = f(T) − f(T′) and  = {T′ ⊂ [p]: |T′| = s, T′ ≠ T}. Then

Partition , where μ̂
1 contains the variables in T ∩ T′, and . 

Similarly, we can partition the covariance matrix STT and ST′T′. Then,
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where  and  (see Section 3.6.2 in Mardia et al., 

1979). Furthermore, we have that

(A.8)

The two terms are correlated, but we will ignore this correlation and use the union bound to 

lower bound the first term and upper bound the second term. We start with analyzing 

, noting that the result for the second term will follow in the same way. By 

Theorem 3.4.5 in Mardia et al. (1979), we have that

and independent of (S12, S11, μ̂). Therefore S22|1 is independent of μ̃
2|1 and Theorem 3.2.12 

in Muirhead (1982) gives us that

As in Lemma 10, we can show that

For μ̃
2|1, we have

where , independent of μ̂
1, and . 

Conditioning on μ̂
1 and S1, we have that

where . Since μ̂
2|1 is independent of (S12, S11, μ̂

1), we 

have that
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Let . Then

Therefore, conditioned on (μ̂
1, S11),

with probability 1 − 2η. Similarly,

with probability 1 − 2η. Finally, Lemma 12 gives that  with 

probability 1 − 2η.

Set . For any T′ ⊂ [p], where |T′| = s and |T′ ∩ T | = k, 

we have that

The right hand side in the above display is bounded away from zero with probability 

 under the assumptions. Therefore,
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which completes the proof.

B Proof of Risk Consistency

In this section, we give a proof of Corollary 9. From Theorem 4 we have that 

with v̂T defined in (2.13). Define

To obtain a bound on the risk, we need to control

(B.1)

for i ∈ {1, 2}. Define the following quantities

Under the assumptions, we have that

The last equation follows from Lemma 12. Note that δ̃
2 = (rn). From Lemma 13, we have 

that δ̃
1 = op(1).
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We have , since Lemma 13 gives δ̃
1 = 

op(1), and

Therefore . With this, we have

(B.2)

where the last line follows from . Next

and similarly

Combining these two estimates, we have

(B.3)

From (B.2) and (B.3), we have that
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(B.4)

Finally, a simple calculation gives,

(B.5)

Combining the equation (B.4) and (B.5), we have that

This completes the proof.

C Technical Results

We provide some technical lemmas which are useful for proving the main results. Without 

loss of generality, π1 = π2 = 1/2 in model (1.2). Define

(C.1)

where n1, n2 are defined in §1. Observe that n1 ~ Binomial(n, 1/2), which gives [{n1 ≤ 

n/4}] ≤ exp(−3n/64) and [{n1 ≥ 3n/4}] ≤ exp(−3n/64) using standard tail bound for 

binomial random variable (Devroye et al., 1996, p. 130). Therefore

(C.2)
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The analysis is performed by conditioning on y and, in particular, we will perform analysis 

on the event . Note that on , 16/9n−1 ≤ n/(n1n2) ≤ 16n−1. In our analysis, we do not strive 

to obtain the sharpest possible constants.

C.1 Deviation of the Quadratic Scaling Term

In this section, we collect lemmas that will help us deal with bounding the deviation of 

 from .

Lemma 10

Define the event

(C.3)

for some constants C1, C2 > 0. Assume that s = o(n), then [  (η)] ≥ 1 − η for n sufficiently 

large.

Proof of Lemma 10—Using Theorem 3.2.12 in Muirhead (1982)

(D.4) gives

with probability at least 1 − η. Since s = o(n), the above display becomes

(C.4)

for n sufficiently large.

Lemma 11

Define the event
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(C.

5)

Assume that βmin ≥ cn−1/2, then [ (η)] ≥ 1 − 2η for n sufficiently large.

Proof of Lemma 11—Recall that . Therefore

Using (D.5), we have that

(C.

6)

with probability 1 − η. The second inequality follows since we are working on the event , 

and the third inequality follows from the fact that βmin ≥ cn−1/2. A lower bound follows from 

(D.6),

(C.7)

with probability 1 − η.

Lemma 12

On the event (η) ∩ (η) the following holds
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Proof of Lemma 12—On the event (η) ∩ (η), using Lemma 10 and Lemma 11, we 

have that

A lower bound is obtained in the same way.

C.2 Other Results

Let the event (η) be defined as

(C.8)

Since  is a multivariate normal with mean  and variance , we have 

[ (η)] ≥ 1 − η.

Furthermore, define the event (η) as

(C.9)

Since , we have 

[ (η)] ≥ 1 − η.

The next result gives a deviation of  from .

Lemma 13

The following inequality
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(C.10)

holds with probability at least 1 − (log−1(n)).

Proof—Using the triangle inequality

(C.11)

For the first term, we write

(C.12)

Let

and

Using Theorem 3 of Bodnar and Okhrin (2008), we compute the density of 

conditional on μ̂
T and obtain that

where
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Lemma 20 gives

with probability at least 1 − log−1(n). Combining with Lemma 14, Lemma 11, and (C.9), we 

obtain an upper bound on the RHS of (C.12) as

(C.

13)

with probability at least 1 − (log−1(n)).

The second term in (C.11) can be bounded using (C.9) with η = log−1(n). Therefore, 

combining with (C.13), we obtain

(C.

14)

with probability at least 1 − (log−1(n)), as desired.

Lemma 14

There exist constants C1, C2, C3, and C4 such that each of the following inequalities hold 

with probability at least 1 − log−1(n):

(C.15)

(C.16)
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(C.17)

(C.

18)

Proof—Theorem 3.2.12. in Muirhead (1982) states that

Using Equation (D.4),

with probability 1 − (2s log(n))−1. Rearranging terms in the display above, we have that

and

A union bound gives (C.15) and (C.16).

Equations (C.17) and (C.18) are shown similarly.

Lemma 15

There exist constants C1, C2 > 0 such that the following inequality
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(C.

19)

holds with probability at least 1 − (log−1(n)).

Proof—Using the triangle inequality, we have

(C.

20)

For the first term, we write

(C.21)

As in the proof of Lemma C.10, we can show that

where

Lemma 20 and an application of union bound gives

with probability at least 1 − (log−1(n)). Combining Lemma 11, Lemma 14 and Equation 

(C.8) with η = log−1(n), we can bound the right hand side of (C.21) as
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(C.

22)

with probability at least 1 − (log−1(n)).

The second term in (C.20) is handled by (C.8) with η = log−1(n). Combining with (C.22), we 

obtain

(C.

23)

with probability at least 1 − (log−1(n)). This completes the proof.

Lemma 16

The probability of the event

is at least 1 − 2log−1(n) for n sufficiently large.

Proof—Write

(C.24)

As in the proof of Lemma C.10, we can show that

where
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Therefore,

(C.25)

with probability 1 − (s log(n))−1. Combining Lemma 14 and (C.25), we can bound the right 

hand side of Equation (C.24) as

where the second inequality follows from

An application of the union bound gives the desired result.

D Tail Bounds For Certain Random Variables

In this section, we collect useful results on tail bounds of various random quantities used 

throughout the paper. We start by stating a lower and upper bound on the survival function 

of the standard normal random variable. Let Z ~ (0, 1) be a standard normal random 

variable. Then for t > 0

(D.1)

Next, we collect results concerning tail bounds for central χ2 random variables.

Lemma 17 (Laurent and Massart (2000))

Let . For all x ≥ 0,
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(D.2)

(D.3)

Lemma 18 (Johnstone and Lu (2009))

Let , then

(D.4)

The following result provides a tail bound for non-central χ2 random variable with non-

centrality parameter ν.

Lemma 19 (Birgé (2001))

Let , then for all x > 0

(D.5)

(D.6)

The following Lemma gives a tail bound for a t-distributed random variable.

Lemma 20

Let X be a random variable distributed as

where td denotes a t-distribution with d degrees of freedom. Then

with probability at least 1 − η.

Proof

Let Y ~ (0, 1) and  be two independent random variables. Then X is equal in 

distribution to
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Using (D.1),

with probability at least 1 − η/2. (D.4) gives

with probability at least 1 − η/2. Therefore, for sufficiently large d,
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Figure 1. 
(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming 

distance between T̂ and T for identity covariance matrix Σ = Ip (averaged over 200 

simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p ∈ 

{100, 200, 300}. The first subfigure corresponds to the fractional power sparsity regime, s = 

2p0.45, the second subfigure corresponds to the sublinear sparsity regime s = 0.4p/log(0.4p), 

and the third ssubfigure corresponds to the linear sparsity regime s = 0.4p. Vertical lines 

denote a scaled sample size at which the support set T is recovered correctly.
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Figure 2. 
(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming 

distance between T̂ and T for the Toeplitz covariance matrix ΣTT with ρ = 0.1 (averaged over 

200 simulation runs). Each subfigure shows three curves, corresponding to the problem sizes 

p ∈ {100, 200, 300}. The first subfigure corresponds to the fractional power sparsity regime, 

s = 2p0.45, the second subfigure corresponds to the sublinear sparsity regime s = 0.4p/

log(0.4p), and the third subfiguren corresponds to the linear sparsity regime s = 0.4p. 

Vertical lines denote a scaled sample size at which the support set T is recovered correctly.
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Figure 3. 
(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming 

distance between T̂ and T for equal correlation matrix ΣTT with ρ = 0.1 (averaged over 200 

simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p ∈ 

{100, 200, 300}. The first subfigure corresponds to the fractional power sparsity regime, s = 

2p0.45, the second subfigure corresponds to the sublinear sparsity regime s = 0.4p/log(0.4p), 

and the third subfigure corresponds to the linear sparsity regime s = 0.4p. Vertical lines 

denote a scaled sample size at which the support set T is recovered correctly.
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Figure 4. 
(The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming 

distance between T̂ and T for equal correlation matrix ΣTT with ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 

0.9} (averaged over 200 simulation runs). The ambient dimension is set as p = 100. The first 

subfigure corresponds to the fractional power sparsity regime, s = 2p0.45 and the second 

subfigure corresponds to the sublinear sparsity regime s = 0.4p/log(0.4p).
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