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Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this
review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic re-
sistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and
expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Stenotrophomonas maltophilia—all major threats to our cancer patients. Optimal
therapy for these antibiotic-resistant pathogens still remains to be determined.
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A dramatic evolution has recently occurred in the sig-
nificance of infections caused by gram-negative bacte-
ria. Decades of progress in the care of patients with
cancer, concomitant to the development of safe and ef-
fective antimicrobials, are being undermined. Patients
with cancer, particularly those with hematologic malig-
nancies, remain exquisitely vulnerable to infection with
gram-negative bacteria as a result of neutropenia, lym-
phocyte dysfunction, mucositis, and the use of invasive
devices [1].At the same time, the effectiveness of our cur-
rent prophylactic and empiric antibiotic regimens is
compromised by the emergence of gram-negative bacte-
ria that exhibit multidrug-resistant (MDR), extensively
drug-resistant (XDR), and pandrug-resistant (PDR) phe-
notypes (Table 1) [2]. This trend is exacerbated by the
successful global dissemination of “high-risk clones” of
MDR gram-negative bacteria [3]. In this review, we
focus on relevant examples of gram-negative bacteria
that cause infections in patients with cancer, and point
to important developments in their treatment.

CARBAPENEM-RESISTANT
ENTEROBACTERIACEAE

Bacteria originating from the gastrointestinal tract are
often responsible for infections in cancer patients
with neutropenia. Broad-spectrum β-lactam agents are
the cornerstone of treatment of cancer patients with
suspected infection by Enterobacteriaceae. Therefore,
the increasing prevalence in our healthcare system of
carbapenem-resistant Enterobacteriaceae (CRE), also
resistant to other β-lactams, poses an urgent threat [4].

The impact of CRE on patients with cancer is high-
lighted by the recent outbreak of carbapenem-resistant
Klebsiella pneumoniae at the US National Institutes of
Health Clinical Center, where patients with lymphoma
or solid tumors did not survive bloodstream infections
caused by CRE [5]. In patients with hematologic malig-
nancies who were treated at a referral cancer center,
CRE bloodstream infection was associated with an
89% chance of ineffective empiric therapy, a 55-hour
delay in the institution of appropriate antibiotics, and
a 69% mortality rate [6].

The chief mechanism of carbapenem resistance in
Enterobacteriaceae from the United States is hydrolysis
by the serine enzyme K. pneumoniae carbapenemase
(KPC) [7].Multilocus sequence typing of KPC-producing
K. pneumoniae reveals the predominance of sequence
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type (ST) 258 containing the Tn4401 transposon, with varia-
tions upstream of the blaKPC gene. This mobile genetic element
is also found in isolates from around the world [8]. The recent
worldwide dissemination of the New Delhi metallo-β-lactamase
(NDM) and other metallo-β-lactamases is also noteworthy [9].

FLUOROQUINOLONE-RESISTANT
ESCHERICHIA COLI

The prevention of infection through the prophylactic use of flu-
oroquinolones has been effective in the subset of “high-risk”
cancer patients [10]. Since the inception of fluoroquinolone
prophylaxis, controversy has arisen regarding its long-term im-
pact on fluoroquinolone use and resistance [11].The proportion
of fluoroquinolone-resistant Escherichia coli in a comprehensive
cancer center in the United States increased from <15% of iso-
lates in the 1990s to 46% in 2009 [12]. In England, fluoroquin-
olone-resistant isolates are much more frequent in patients with
hematologic malignancy than in other oncology patients [13].
These patterns bode poorly for the future of fluoroquinolone
prophylaxis.

ESCHERICHIA COLI ST131 PRODUCING
CTX-M-15

Studies have linked fluoroquinolone-resistant E. coli with the
emergence of the virulent strain ST131. Furthermore, E. coli
ST131 frequently harbors CTX-M-15 (cefotaximase-Munich), an
extended-spectrum β-lactamase (ESBL) [14]. Detailed genomic

analysis suggests that the clonal expansion of ST131 and its sub-
cloneH30 is the main “driver” of the epidemic of fluoroquinolone-
resistant E. coli worldwide [15]. Fluoroquinolone-resistant E. coli
ST131 is also implicated as the cause of pyomyositis in patients
with hematological malignancy [16]. Although ESBL production
is present in <10% of E. coli, this phenotype accounts for up to
20% of bloodstream isolates among cancer patients, and is
the most common mechanism behind bloodstream infections
caused by MDR gram-negative bacteria [17]. Interestingly, fecal
carriage of ESBL-producing E. coli was as high as 29% in a
Spanish cohort of neutropenic patients with leukemia or hemato-
poietic stem cell transplant, but was not associated with blood-
stream infection, mortality, or length of hospital stay [18].

PSEUDOMONAS AERUGINOSA

Another peril of fluoroquinolone prophylaxis in neutropenic pa-
tients is the risk of bloodstream infections caused by Pseudomo-
nas aeruginosa [19]. Concomitantly, the prevalence of MDR
P. aeruginosa has markedly increased, in association with infec-
tion-related death in patients with hematologic malignancy [20].

In general, resistance to β-lactam antibiotics in P. aeruginosa
is due to hyperproduction of the cephalosporinase AmpC
(from ampicillin-resistant mutant C), with the interplay of mu-
tations in OprD (outer membrane protein D) and upregulation
of drug-efflux pumps in the case of carbapenem-resistant strains.
Acquired carbapenemases, such as metallo-β-lactamases, are
only detected sporadically in the United States [21]. The first
US isolate of metallo-β-lactamase–producing P. aeruginosa

Table 1. Antibiotic-Resistant Phenotypes of Pseudomonas aeruginosa Considered Multidrug Resistant, Extensively Drug Resistant, and
Pandrug Resistant

Antibiotic Class Antibiotic
Multidrug
Resistant

Extensively
Drug Resistant

Pandrug
Resistant

Phosphonic acids Fosfomycin X
Polymyxins Polymyxin B X

Colistin X

Carbapenems Imipenem X X X
Meropenem X X

Aminoglycosides Tobramycin X X

Amikacin X X
Gentamicin X X X

Cephalosporins Ceftazidime X X X

Cefepime X X
Fluoroquinolones Ciprofloxacin X X X

Levofloxacin X X X

β-lactam+ β-lactamase inhibitors Piperacillin-tazobactam X X
Ticarcillin-clavulanate X X

An X indicates resistance to the corresponding antibiotic.

Source: Based on definitions by Magiorakos et al [2].
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was obtained from a patient with breast cancer and possessed
VIM-7 (Verona integron–encoded metallo-β-lactamase), a dis-
tinct member of the VIM family. In the same cancer center,
VIM-2–producing P. aeruginosa was later isolated from a pa-
tient from the Near East [22, 23]; indeed, carbapenem resistance
in P. aeruginosa mediated by VIM-2 has long been common in
the Mediterranean basin [24]. More recently in Italy, the fatal
outcome of infection with NDM-1–producing P. aeruginosa
was reported in a patient with leukemia previously hospitalized
in Serbia [25]. This isolate belonged to P. aeruginosa ST235, as-
sociated with VIM throughout Europe and identified as an in-
ternationally successful XDR “high-risk clone” [26].

ACINETOBACTER BAUMANNII

Our understanding of the genetic diversity and the popula-
tion structure of Acinetobacter has given rise to the concept
of MDR clonal lineages. The predominant clone type has shift-
ed from clonal cluster 3 (CC3 in the Pasteur scheme, or CC110
in the Oxford scheme) to clonal cluster 2 (CC2 or CC92), asso-
ciated with carbapenem resistance mediated by the β-lactamase
OXA-23 (oxacillinase) [27]. In Pittsburgh, where CC2 is pre-
valent, the mortality rate of patients with cancer and MDR
Acinetobacter baumannii infection reached 55% [28]. Interest-
ingly, a multivariate analysis revealed that the risk factors for
acquisition of MDR A. baumannii were related to healthcare
exposure, such as need for dialysis and length of previous inten-
sive care, rather than to the underlying cancer [28]. In patients
undergoing hematopoietic stem cell transplant, pneumonia
(occurring after engraftment) was the main source of MDR

A. baumannii bloodstream infections, with overwhelming mor-
tality (95%) [29].

STENOTROPHOMONAS MALTOPHILIA

The hallmark of Stenotrophomonas maltophilia is intrinsic antibi-
otic resistance. Its chromosome harbors 2 β-lactamases: L1, a met-
allo-β-lactamase with carbapenemase activity that does not
hydrolyze aztreonam; and L2, a serine cephalosporinase that is in-
hibited by clavulanic acid. Additionally, S. maltophilia possesses a
relatively impermeable membrane, and like P. aeruginosa,
expresses efflux pumps and acquires additional resistance deter-
minants in class 1 integrons. Trimethoprim-sulfamethoxazole
(TMP-SMX) remains the main reliable antibiotic option to treat
infections caused by S. maltophilia, although resistance to TMP-
SMX has emerged; tigecycline, minocycline, moxifloxacin, and,
inparticular,colistinmayofferactivity [30].Bloodstreaminfection
with S. maltophilia is associated commonly with central lines,
and strong consideration should be given to catheter removal
[31]. Patients with hematologic malignancy may develop fulmi-
nant hemorrhagic pneumonia caused by S. maltophilia [32].

IMPLICATIONS FOR PRESENT AND FUTURE
ANTIBIOTIC THERAPY

At the present time, clinicians struggle to devise effective guide-
lines that assist with the choice of therapy for infections caused
by antibiotic resistant gram-negative bacteria in cancer patients
[33]. The notion that in the immunologically impaired cancer
patient “the first dose of antibiotics must really count” should

Table 2. Potential Combination Antibiotic Regimens and Examples of Novel Antibiotics Against Select Multidrug-Resistant Gram-
Negative Bacteria

Bacteria and Phenotype Suggested Antibiotic Combinations
Mechanism of β-Lactam

Resistance Novel Antibiotics

MDR and carbapenem-resistant
Enterobacteriaceae

Carbapenem+ tigecycline + (aminoglycoside
or polymyxin) [35–37]

KPC in Klebsiella pneumoniae
ST258

Ceftazidime/avibactam [38]

MK-7655 + imipenem [38]

Biapenem+RPX7009 [38]
NDM Aztreonam/avibactam [38]

MDR and carbapenem-resistant
Pseudomonas aeruginosa

Carbapenem+ polymyxin ± rifampin [39–41]
Carbapenem+ intravenous fosfomycin [41]

AmpC hyperproduction Ceftolozane/tazobactam [42]

Ceftazidime/avibactam [43]
OprD2 changes Ceftolozane/tazobactam [42]

BAL30072 +meropenem [44]

MK-7655 + imipenem [45]
Metallo-β-lactamases BAL30072 +meropenem [44]

MDR and carbapenem-resistant
Acinetobacter baumannii

Carbapenem+ polymyxin [46]
Sulbactam+ polymyxin [47]
Tigecycline + polymyxin [48]

OXA-23 in clone 2 (CC2/CC92) BAL30072 +meropenem [49]
(no other OXAs)

Abbreviations: KPC, Klebsiella pneumoniae carbapenemase; MDR, multidrug resistant; NDM, New Delhi metallo-β-lactamase; OprD, outer membrane protein D;
OXA, oxacillinase-type β-lactamase; ST, sequence type.
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remain the prevailing wisdom [34]. Although clinical evidence
needs to be stronger in this regard, we suggest the use of com-
bination antibiotic chemotherapy for empiric and definitive
treatment of serious infections where certain MDR pathogens
are suspected or recovered (Table 2). The risk of selection of an-
tibiotic-resistant pathogens and the inability of current micro-
biological methods to deliver their timely identification merit
giving consideration to this approach.

It is clear that the introduction of novel antibiotics will lead to
improvements in the treatment of MDR, XDR, and PDR gram-
negative bacterial infections, recognizing that a “magic bullet”
does not exist and that therapeutic needs will remain unsatisfied
(Table 2). The future use of novel agents will be informed and
molded by developments in rapid molecular diagnostic testing.
For instance, the rapid detection of K. pneumoniae in the blood-
stream with the simultaneous confirmation of KPC and exclusion
of a metallo-β-lactamase would permit the confident use of an
antibiotic active against the former, but not the latter,
carbapenemase. Such an approach is also a blueprint for clini-
cal investigations where rapid molecular testing enhances patient
selection and targeted use of antibiotics. Presently, the implemen-
tation of effective antimicrobial stewardship [50] and infection
control programs remains essential. Regardless of how these prac-
tices develop and how the landscape of antimicrobial resistance
evolves, we anticipate that fundamental lessons on how to treat
gram-negative bacterial infections will continue to be learned
from patients with cancer and neutropenia [51].
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