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Abstract

The purpose of this review is to explore recombination strategies in DNA viruses. Homologous 

recombination is a universal genetic process that plays multiple roles in the biology of all 

organisms, including viruses. Recombination and DNA replication are interconnected, with 

recombination being essential for repairing DNA damage and supporting replication of the viral 

genome. Recombination also creates genetic diversity, and viral recombination mechanisms have 

important implications for understanding viral origins as well as the dynamic nature of viral-host 

interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of 

recombination, both utilizing their own proteins and commandeering cellular proteins to promote 

recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both 

genetic and biochemical analysis and have recently been shown to exhibit some surprising 

similarities that will guide future studies.
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INTRODUCTION

Homologous recombination plays many important roles in the biology of all living 

organisms including DNA replication and repair of DNA damage. Recombination is 

essential for genetic diversification required to enable organisms to adapt and evolve (65, 
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149). Given the central role of recombination in all living organisms, it is not surprising that 

viruses have also evolved to rely heavily on recombination for DNA replication and repair 

and also to promote viral diversity. Both viruses and their hosts are under strong 

evolutionary pressure, and over time, host cells have evolved sophisticated antiviral 

strategies that are countered by the ability of viruses to evade or disarm these cellular 

defenses. Moreover, understanding the origins of viral diversity affects human health, owing 

to the emergence of new viral species and the ability of viruses to evade vaccine and other 

antiviral chemotherapeutic strategies. Viruses, from seemingly simple bacteriophage to 

complex eukaryotic viruses, have adopted sophisticated mechanisms that not only promote 

genetic diversity but also promote viral replication.

OVERVIEW OF SIMILARITIES BETWEEN λ AND HSV

Since its discovery in 1950 by Esther Lederberg (68), phage λ and its relatives have been 

intensely studied, providing paradigms for gene regulation, replication, and recombination. 

Much of the foundation of modern molecular biology stems from research on λ. The 

Herpesviridae are a large family of eukaryotic DNA viruses responsible for lifelong 

debilitating infections including some cancers. Three subfamilies of herpesviruses have been 

described (α, β, and γ) that exhibit considerable diversity in cell and tissue tropism, length of 

productive cycles, and other properties related to pathogenesis. Herpes simplex viruses 

(HSV-1 and -2) are α herpesviruses that are associated with cold sores, genital lesions, 

kerititis, corneal blindness, and encephalitis. HSV affects between 60% and 95% of the 

world’s population (14). In this review we compare and contrast recombination mechanisms 

in λ and HSV and explore how each virus utilizes recombination during its life cycle, 

especially with respect to viral DNA replication.

Recombination between lambdoid phage occurs frequently in nature and leads to diversity in 

phage populations (reviewed in 13). A successful life cycle for phage λ requires the 

generation of multiple-length DNA molecules (concatemers), either by rolling circle 

replication or by recombination. λ recombination was shown to be active even in hosts 

deficient in recA (the main Escherichia coli recombination function), leading to the 

identification of a phage-encoded homologous recombination system, Red. Two λ genes 

were identified as responsible for recombination in recA mutant cells, exo and bet, encoding 

Exo and β (28, 36, 123). Later, a third gene, gam, which encodes the Gam protein, was 

found to be necessary to promote maximal recombination levels (31, 162). λ Exo is a 

member of a family of 5′-to-3′ exonucleases that are encoded by many, if not all, linear 

double-stranded viruses that replicate by forming concatemers and are found in plants, 

insects, bacteria, and mammals (105, 148). Another member of the λ Exo family is the RecE 

protein, encoded by a cryptic defective lambdoid prophage, rac, present in many E. coli 

strains. Nucleases λ Exo and RecE associate with single-strand annealing proteins (SSAP) β 

and RecT, respectively (42, 43, 102, 103, 123). RedExo/β and RecE/T are the founding 

members of a large family of two-component recombinases (49); other members of this 

family include Chu/35 in phage SPP1, AN/LEF-3 in the insect virus Autographa californica 

multinucleocapsid nucleopolyhedrovirus, and as we describe below, UL12/ICP8 from HSV 

(105, 148). The λ RedExo/β and the RecE/T recombinases are of considerable interest for 
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their ability to promote in vivo recombination-mediated genetic engineering using short 

homologies—recombineering in bacteria (18, 30, 88, 91, 161).

Recombination is also important for HSV; rates of recombination are high between 

coinfecting HSVs in cultured cells, in animal infection models, and in human populations 

(11, 12, 44, 59, 74, 114, 120). HSV encodes a two-component recombinase consisting of a 

5′-to-3′ exonuclease (UL12) and a SSAP (ICP8) that is reminiscent of λ Exo/β. UL12 and 

ICP8 can also work together to mediate robust strand-exchange activity in vitro (104, 106). 

In addition, ICP8 and UL12 interact with components of the host repair/recombination 

machinery (1, 135). Thus by analogy with λ Exo/β, UL12/ICP8 may function alone or in 

conjunction with host cell recombination machinery to promote recombination in infected 

cells. Understanding recombination mechanisms in HSV and λ will shed light on how these 

viruses replicate their genomes and generate genetic diversity and may lead to new tools for 

establishing recombineering and gene therapy in mammalian cells.

Another important similarity between λ and HSV is the choice they must make between two 

different lifestyles. λ is a temperate phage; upon infection the λ chromosome can integrate 

into the host chromosome via site-specific recombination to form a lysogen. In the lysogenic 

form, the integrated viral chromosome expresses the CI repressor protein that in turn 

prevents expression of most of the other λ genes; however, the repressed state can be 

reversed under DNA-damaging conditions that induce lytic growth. During lytic infection, 

the λ chromosome replicates, viral genes are expressed, and infectious progeny are 

produced. The choice between entering into the lytic or lysogenic life cycle is determined by 

many factors, including multiplicity of infection (62), temperature (39), and physiology of 

E. coli (131). In a similar fashion, herpesviruses have the ability to establish lifelong latent 

infections. During latent infection, the HSV genome is found in a circular episomal state 

characterized by heterochromatin and reduced viral gene expression, analogous to lysogenic 

λ. One of the key players in the decision to establish a lytic or latent infection cycle is 

immediate early protein ICP0, an E3 ubiquitin ligase that can induce the reactivation of HSV 

from a latent or quiescent infection and can also influence the decision to establish a lytic or 

latent infection (10, 33, 71).

GENERAL RECOMBINATION PATHWAYS

Several recombination pathways for the repair of broken DNA have been described, starting 

with homologous recombination in E. coli in the mid-1940s (69). Recombination is known 

to initiate at double-strand breaks (DSBs) and at single-stranded-DNA (ssDNA) gaps. 

Several events can lead to the formation of double-stranded-DNA (dsDNA) ends, including 

damage by ionizing radiation, completion of the replication of a linear genome, nuclease 

cleavage (e.g., restriction enzymes or the viral-encoded packaging enzyme, terminase), or 

replication through a nick or ssDNA gap. ssDNA gaps can be generated during replication at 

a blocked replication fork, by an inefficient primase, or during repair of DNA damage. If not 

repaired correctly, DSBs can cause deletions, translocations, and other deleterious genome 

rearrangements. Four recombination models that initiate at DSBs have been described; these 

function in varying degrees for both prokaryotes and eukaryotes (56, 156). Three require 

some degree of homology and one does not. Although the term homologous recombination 
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(HR) is often used to refer to events mediated by strand invasion (SI), in this review we refer 

to these HR events as SI to distinguish them from microhomology-mediated end-joining 

(MMEJ) and single-strand annealing (SSA) that also use homology to promote 

recombination (Figure 1). The fourth pathway, classical nonhomologous end-joining (C-

NHEJ), does not require homology. In eukaryotes, pathway choice following a DSB is 

tightly regulated and is controlled in part by the availability of a homologous sequence to 

repair the break. Pathway choice is also controlled by proteins recruited to the DSB: 

Nucleases that carry out end resection such as the damage-sensing MRN complex promote 

homologous recombination, whereas proteins that prevent DNA end resection such as Ku 

and 53BP1 appear to favor C-NHEJ (16). The recombinases λ RedExo/β and HSVUL12/

ICP8 both utilize SSA (116, 129); however, λ RedExo/β can also utilize SI in the presence 

of RecA (129). Although it is not known whether HSV utilizes SI, knock-down of RecA-

like Rad51, necessary for SI, has little effect on HSV growth (89).

TWO-COMPONENT RECOMBINASES

The Exonucleases

Both Exo (24 kDa) and RecE (140 kDa) are dsDNA-dependent 5′-to-3′ exonucleases that 

bind tightly to dsDNA ends and degrade one strand (53, 75). They degrade ssDNA 

inefficiently. λ Exo requires Mg2+ but not ATP and can be highly processive, degrading an 

average of 18 kb per event (145). The high degree of processivity observed in λ Exo (63) 

and RecE (159) may be explained by their structure. They both form multisubunit toroidal 

proteins that contain a central funnel-shaped channel; one side is large enough to allow 

dsDNA to enter, and the other side is only able to accommodate the exiting ssDNA. Exo 

interacts with β (103), and RecE interacts with RecT (91); interestingly, however, these 

protein pairs cannot be mixed to make a functional complex (91).

The HSV-1 alkaline nuclease, encoded by the UL12 gene, was first reported in the early 

1960s as a DNase induced in HSV-infected cells (57). It has a high pH optimum and a 

requirement for a divalent metal cation but not ATP (46, 57, 133). UL12 exhibits both 

endonuclease and exonuclease activities (45, 46, 61); however, the endonuclease activity is 

approximately tenfold less active than the exonuclease (133). UL12 is a relatively abundant 

85-kDa phosphoprotein expressed very early in infected cells (2, 3, 19). UL12 interacts with 

ICP8 (104, 138, 147) and has also been shown to interact with MRN, the primary sensor of 

DSBs and MSH3 (1, 84).

The Single-Strand Annealing Proteins

One common feature of SSAPs is their ability to bind to ssDNA and anneal complementary 

DNA strands (60, 87). Although β (29 kDa) and RecT (33 kDa) share little overall sequence 

identity, they contain conserved residues that are also present in Rad52, a SSAP that 

functions in homologous recombination in eukaryotes (32, 83). Electron microscopy (EM) 

and atomic force microscopy (AFM) studies have suggested that β forms rings of ~12 

subunits in the absence of DNA (96). In the presence of ssDNA, larger rings of ~15–18 

subunits are observed, and left-handed helices are seen after complementary ssDNA are 

annealed. RecT can also form higher-order structures such as tetramers (42), rings (141), 
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and filaments. In the presence of circular ssDNA, helical rod-shaped nucleoprotein 

structures can be observed. In general, β and RecT proteins bind ssDNA weakly, anneal 

complementary DNA molecules, and remain more tightly bound to the resulting dsDNA, 

protecting it from nuclease digestion (43, 55, 92). Unlike RecA (64), β and RecT do not 

require ATP for SSA.

The HSV SSAP, ICP8, is multifunctional, playing roles in DNA replication, recombination, 

and gene expression. It was one of the first viral proteins shown to be absolutely essential 

for viral DNA synthesis (17, 153). It has helix-destabilizing activity, consistent with a role in 

unwinding duplex DNA during DNA synthesis (24), and interacts with several viral proteins 

(reviewed in 150, 152). ICP8 is a 130-kDa zinc metalloprotein that binds nonspecifically to 

ssDNA (41) and exhibits potent annealing activity of homologous ssDNAs (9, 27). In the 

absence of DNA, ICP8 forms double-helical protein filaments (79); however, in the 

presence of ssDNA, ICP8 forms thin helical filaments and oligomeric rings, similar to those 

observed with RecT, β, and Rad52 (77, 78, 96, 121, 141). Structures believed to represent 

intermediates of the annealing reaction have been observed by EM and 3-D reconstruction 

and consist of two nonameric rings, one on top of the other (142). It appears that several 

SSAPs share the ability to form rings and filaments, and further analysis of these quaternary 

structures is expected to shed light on the mechanism of DNA strand annealing.

LINKAGES BETWEEN DNA REPLICATION AND RECOMBINATION

Phage λ

The λ chromosome contains unique 12-base ssDNA ends that are complementary to each 

other (Figure 2a). After infection, these ends, the cohesive end site (cos), anneal and ligate, 

and early λ DNA replication initiates with a few rounds of circle-to-circle DNA replication, 

termed θ replication. In this mode of replication, closed circular chromosomes generate 

duplicate circular molecules by bidirectional replication from a unique origin (115). λ only 

encodes two known replication proteins, O and P, and the remaining replication functions 

are performed by host (E. coli) proteins (93). The O protein binds to ori, which maps within 

the O gene (143), and the P protein interacts with O and facilitates initiation by recruiting 

the E. coli DnaB helicase (154). Fifteen minutes after infection (or induction), θ replication 

ceases (54).

Late replication, also known as rolling circle or σ replication, starts about 15 minutes after 

infection. An alternate view is that σ replication starts when θ replication does but continues 

after θ replication stops (7). σ replication is characterized by the formation of concatemers 

that are two to eight times the length of a linear λ monomer (31, 124). Replication of these 

molecules is still bidirectional, with some circles replicating clockwise and others 

replicating counterclockwise. Concatemer formation is necessary to produce the substrate 

required for λ DNA packaging, two tandem cos sites (31, 140). How the switch is made 

between θ and σ replication is still not understood, but it could result from breakage of one 

replication fork. The Gam protein is important to allow σ replication (31), as it binds to 

RecB and protects tails of rolling circles from being degraded by the RecBCD exonuclease 

(81). By the end of the lytic cycle, there are enough λ genomes to fill ~100 phage heads.
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λ Red-mediated recombination is associated with DNA replication. In a red mutant phage 

infection, production of phage DNA is slow and only about 50% of the wild-type level is 

made, indicating that Red recombination influences DNA replication (31). How it does so is 

yet to be fully understood. Although infection of red mutant phage produces less 

intracellular phage DNA, the DNA appears normal in structure. During DNA replication, 

recombination is stimulated (128) and is believed to be initiated by the tips of tails of rolling 

circle replication intermediates (127, 137). Recombination events occur throughout the 

phage chromosome. Interestingly, the λ P protein was shown to interact with Redβ by two-

hybrid analysis, suggesting an additional link between DNA replication and recombination 

(103). In the absence of DNA replication, Red-mediated recombination occurs near the end 

of the λ chromosome, cos, or near any introduced DSB (127, 136).

Investigation into the mechanism(s) of Red-mediated recombination via recombineering (see 

sidebar, Recombineering) has provided additional insight into the interconnection between 

replication and recombination in λ. For instance, during ssDNA recombination, mutations in 

DNA replication proteins Pol I, Pol III, and DNA primase alter the frequency and/or final 

product of recombination (67, 72, 101). Current models for ssDNA recombination suggest 

that a β-coated ss-oligo is annealed at the DNA replication fork (Figure 3a) and that this 

occurs most readily when the oligo can anneal on the lagging-strand template (20, 30, 47).

An initial model for dsDNA recombination suggested that a dsDNA fragment could undergo 

limited degradation by Exo at each end, resulting in a double-stranded region flanked by two 

3′ overhangs that could be coated with β and participate in SSA (21, 75) (Figure 3b). Two 

observations, however, have cast doubt on this mechanism. First, when a DNA substrate 

with 3′ overhangs was tested directly for recombination, very low efficiencies were 

observed, suggesting that limited resection from each end may not produce a preferred 

substrate for dsDNA recombination (158). On the other hand, a substrate with 5′ ssDNA 

overhangs was shown to recombine at frequencies nearly as high as a ssDNA. Second, it has 

now been shown that dsDNA recombination requires replication of the target molecule (80, 

100). An emerging model posits that dsDNA recombination occurs by a mechanism similar 

to that for ssDNA recombination (Figure 3a). Instead of limited degradation at a dsDNA 

end, it is possible that Exo degrades one entire strand of the dsDNA substrate and that the 

remaining strand is coated with β and incorporated into a replication fork (158) (Figure 3c). 

According to this scenario, the high efficiency of the 5′ overhang substrate is due to the fact 

that recessed 3′ ends can be extended by DNA polymerase to generate blunt dsDNA ends, 

which are excellent substrates for Exo. Support for this model was provided by experiments 

that examined recombination of a dsDNA containing a drug-resistance cassette (80, 85) and 

additional genetic markers. It was shown that after recombination of a dsDNA, most of the 

markers in a recombinant came from one strand, consistent with the assimilation of an entire 

strand at a replication fork. Additional experimentation will be required before this model 

can be adopted with confidence, however.

RECOMBINEERING

In the last approximately 15 years, Red (91, 157), RecET (91, 161), and a growing list of 

other bacteriophage-encoded recombination systems (22, 134, 144, 146) have been used 

Weller and Sawitzke Page 6

Annu Rev Microbiol. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in bacteria for in vivo, recombination-mediated genetic engineering, also known as 

recombineering. These systems are independent of host recombination proteins and 

require only short homologies, ~50 bp, which can be included in a synthesized 

oligonucleotide. Recombineering can be performed efficiently with either ssDNA or 

dsDNA when introducing only a few base changes. Under optimized conditions, no 

selection is required, and up to 75% of colonies contain a recombinant (111, 112). 

Recombineering with ssDNA to remove a large DNA segment or with dsDNA to insert a 

large DNA segment (e.g., drug cassette) is up to 1000-fold less efficient and requires 

selection for recovery of desired recombinant. Recombineering has been used to 

introduce base changes, deletions (1 bp to >50 kb), insertions (1 bp to ~4 kb), 

duplications, inversions, and gene fusions into bacterial genomes (~5 Mb). Recently, a 

similar system has been developed in the eukaryote Saccharomyces cerevisiae (23). We 

are intrigued by the possibility that UL12/ICP8 might promote similar recombination-

dependent genetic engineering in human cells. For reviews on recombineering see 88, 

113, 139, and references within.

Herpes Simplex Virus

At the outset of infection, enveloped virions fuse with cellular membranes and viral capsids 

translocate along microtubules (125) to nuclear pores, where they dock and eject their 152-

kb linear genomes into the nucleus (94). The HSV-1 genome consists of unique components 

(UL and US) flanked by inverted repeat sequences, and the UL and US regions invert relative 

to one another during replication (44, 120) (Figure 2b). The HSV genome contains three 

origins of replication, two copies of OriS and one of OriL (reviewed in 150, 152). Deletions 

of one or two of these origins are tolerated as long as one remains intact (48, 98). Another 

feature of the HSV genome likely relevant for its mode of replication is that both the 

replicating DNA and encapsi-dated viral genomes contain nicks and gaps that are randomly 

located and present on both strands (58, 155).

HSV encodes seven essential replication proteins: an origin-binding protein (UL9) plus six 

core or replication-fork proteins. The core complex consists of ICP8, a two-subunit DNA 

polymerase (UL30 and its accessory subunit, UL42), and a three-subunit helicase/primase 

complex (UL5, UL8, and UL52) (reviewed in 90, 150, 152). Despite identification of these 

cis- and transacting factors essential for DNA replication, the overall mechanism remains 

poorly understood. Considerable controversy exists surrounding the fate of the incoming 

HSV genome at the outset of infection. According to one model, the viral genome 

circularizes, leading to a θ replication mode followed by σ replication (108). This model is 

supported by the disappearance of terminal fragments and the appearance of joint fragments 

that could be a result of ligation of the ends of the viral genome (29, 37, 97, 132). There is 

no direct proof, however, for either circularization or θ replication in infected cells. Gardella 

gel electrophoresis, reported to distinguish circular from linear forms of large viral genomes 

(38), has been used to determine whether the viral genome circularizes in infected cells. 

Interestingly, Jackson & Deluca (50) reported that circular genomes could not be detected 

during lytic infection with wild-type virus; however, circles could be seen in cells infected 

with a mutant virus lacking the immediate early protein, ICP0. Also, in cells infected with a 
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virus that is deleted for all immediate early genes and thus fails to induce any viral gene 

expression (109), only circular genomes are detected (50). Infection with this mutant is 

thought to mimic latent infection, and thus it is possible that circularization is associated 

with the establishment of a quiescent state or latency.

Current models for initiation of HSV DNA replication posit that UL9, in conjunction with 

ICP8, distorts or destabilizes one of the viral origins of replication (reviewed in 90, 150, 

152). The subsequent recruitment of the helicase/primase complex and the two-subunit 

polymerase is expected to unwind duplex DNA, synthesize short RNA primers, and catalyze 

leading- and lagging-strand DNA synthesis. On the one hand, if the viral genome 

circularizes, bidirectional replication would be expected to lead to θ replication; on the other 

hand, if initiation occurs on a linear molecule, bidirectional replication would proceed to the 

end of the molecule. By analogy to the bacteriophage T4, the ends of the daughter molecules 

could participate in recombination (76, 86). The role of the HSVUL12/ICP8 recombinase in 

DNA replication is not clear. Because ICP8 is essential for viral DNA replication, ICP8 

mutants are not viable and do not synthesize viral DNA (17, 153). The phenotype of a 

UL12-null virus is more complex. Although viral DNA synthesis occurs at wild-type levels, 

UL12 is essential for the production of infectious progeny (119). Although some 

encapsidation can occur, DNA packaged in cells infected with UL12 mutant viruses is not 

infectious and appears to be structurally aberrant (40, 99). Although we initially proposed 

that UL12 was needed to process viral genomes prior to packaging (40), we now favor a role 

in directing the replication machinery toward a pathway that can generate concatemers that 

can be packaged into infectious virions.

Several lines of evidence support the notion that DNA replication and recombination in 

HSV are linked (25, 26, 151). Genomic inversions are observed as soon as newly replicated 

DNA can be detected (4, 5, 117, 118, 160) and are mediated by ICP8 and the other HSV 

replication proteins (110, 151). EM analysis suggests that viral DNA replication results in 

the accumulation of head-to-tail concatemers that are highly branched, with X- and Y-

junctions (51, 52, 118, 122). In addition, pulsed-field gel electrophoresis suggests that 

replicating HSV DNA adopts a complex, branched structure that cannot enter the gel 

(remains in the well) even after DNA restriction digestion with a single cutting enzyme (82, 

117, 160). Replicating DNA appears to be held together by branches, generating a network 

of DNA reminiscent of the replication/recombination intermediates of bacteriophage T4. 

These structures are not consistent with a simple rolling circle mechanism of replication.

Additional evidence suggesting that HSV has evolved to utilize recombination-dependent 

replication was provided by the analysis of replication intermediates generated by another 

DNA virus, SV40. In SV40-infected cells, the small circular viral genome is replicated by 

the origin-binding protein T-antigen and cellular replication proteins to generate a θ 

structure and produce two circular daughter molecules, much like early λ replication. 

However, if SV40 DNA is introduced in HSV-infected cells, the SV40 genome is replicated 

by SV40 large T-antigen and the six core HSV-encoded replication factors (8). In these 

cells, the SV40 genome adopts complex structures reminiscent of HSV replication 

intermediates. Furthermore, a high frequency of homologous recombination between SV40 

genomes was observed when the SV40 genomes were replicated using the HSV replication 
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machinery (8). Thus, there appears to be an intrinsic herpesvirus-specific replication mode 

that generates complex branched structures, and this mode of replication correlates with 

increased recombination frequencies.

MECHANISMS OF RECOMBINATION

Phage λ

λ recombination can occur in the absence or presence of DNA replication. For λ 

recombination studied in the absence of DNA replication, both SI and SSA have been 

demonstrated. When RecA protein is absent, recombination proceeds by SSA (129) and 

recombinants that are found contain a long stretch of heteroduplex DNA, as expected. When 

RecA protein is present in these replication-blocked crosses, SI is the most prevalent 

recombination pathway.

When the DNA can replicate, replication stimulates recombination levels and creates DNA 

substrates that are favorable for SSA, such as the tips of rolling-circle tails, DSBs that arise 

during packaging, and lagging-strand gaps such as those at the replication fork (126). Red-

mediated recombination can proceed by two different pathways, SI or SSA (129) (Figure 1). 

With both pathways, Exo processes the DSB, creating a 3′ single-strand overhang. For SI, 

this ssDNA overhang then synapses with and invades an intact homologous chromosome in 

a reaction that requires a recombinase with synaptase activity, in this case, a β/RecA 

complex (64, 107). In the absence of RecA, β promotes SSA. For example, the tips of 

rolling-circle tails can be processed by Exo, and β can anneal the end to complementary 

single-strand regions such as lagging-strand gaps at a replication fork (60, 87). During DNA 

replication, Red recombination becomes less RecA dependent.

Herpes Simplex Virus

Recombination is known to initiate at DSBs and at ssDNA gaps. DSBs are likely to occur 

during HSV DNA replication if DNA replication occurs through a nick or gap or if HSV 

replication occurs on a linear rather than circular molecule. Furthermore, during the 

encapsidation phase it is expected that terminase will cleave concatemeric DNA, packaging 

a viral genome on one side of the packaging sequence and leaving a DSB on the other. HSV 

also encodes a viral primase that at low concentrations is inefficient (15, 130), providing a 

possible mechanism for the formation of nicks and gaps. Thus, HSV DNA replication is 

likely to produce DSBs and DNA molecules with gaps, conditions that would be expected to 

stimulate recombination events. As depicted in Figure 1, several recombination mechanisms 

are available to HSV to repair DSBs. To determine which pathways were active in cells 

infected with HSV, chromosomally integrated reporter assays have been used to measure 

activation of C-NHEJ, MMEJ, SI, and SSA (6). Interestingly, SSA was increased in HSV-

infected cells, whereas SI, MMEJ, and NHEJ were inhibited (116) (see sidebar, Why Has 

HSV Evolved to Inactivate NHEJ and SI?). This increase in SSA was abolished when cells 

were infected with a viral mutant lacking UL12, and expression of UL12 alone caused an 

increase in SSA (116). UL12 and its partner ICP8 may be responsible for the stimulation of 

SSA in HSV-infected cells; however, we have not ruled out the contribution of cellular 

proteins such as Rad52 and other interaction partners of UL12 and ICP8 (1, 135). We are 

Weller and Sawitzke Page 9

Annu Rev Microbiol. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intrigued by the observation that UL12 interacts directly with MSH3, one of the players in 

cellular SSA reactions (84). The activation of SSA and apparent inhibition of NHEJ and SI 

in HSV-infected cells have important implications for the DNA replication mechanism of 

this virus. HSV may have evolved to utilize the two-component recombinase UL12/ICP8 to 

promote recombination-dependent replication by SSA because this pathway is conducive to 

the production of concatemeric DNA, which can be packaged into an infectious virus. 

Although DNA synthesis occurs in the absence of UL12, the production of aberrant 

genomes suggests that alternate pathways may be deleterious for the production of an 

infectious virus.

WHY HAS HERPES SIMPLEX VIRUS EVOLVED TO INACTIVATE 
NONHOMOLOGOUS END-JOINING AND STRAND INVASION?

When a virus infects a cell, it encounters a hostile environment, as cells have evolved 

sophisticated intrinsic mechanisms to counter viral infections. Viruses, in turn, have 

evolved to evade or disarm these cellular defenses; in particular, the immediate early 

protein ICP0 has been shown to degrade several cellular proteins involved in antiviral 

responses (10, 34, 35). Interestingly, HSV replication is more efficient in cells lacking 

the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) (95); and in Ku-

deficient murine embryonic fibroblasts, viral yields are increased by almost 50-fold 

(135). Given that DNA-PKcs and Ku are known components of the NHEJ pathway, these 

results suggest that this pathway is antiviral. ICP0 is known to induce the degradation of 

DNA-PKcs (70, 95), consistent with the observation that NHEJ is decreased in HSV-

infected cells (116). By inhibiting NHEJ, ICP0 may prevent circularization and promote 

lytic infection. ICP0 has also been shown to degrade two cellular ubiquitin ligases 

involved in repair by SI, RNF8 and RNF168 (73). It is possible that HSV has evolved to 

control the pathway by which DSBs are repaired because NHEJ and SI result in negative 

outcomes such as genome silencing. Repair by SSA may be conducive to the production 

of concatemeric DNA that can be packaged into an infectious virus during lytic infection. 

Additional experimentation will be required to test these predictions.

IMPLICATIONS OF SSA FOR λ AND HERPES SIMPLEX VIRUS

SSA could theoretically function in λ, HSV, or both to repair DSBs, create concatemers, 

prime DNA synthesis, and generate branched replication intermediates. DSBs that arise 

following replication through a nick or a gap, as a result of terminase activity, or as a result 

of bidirectional replication of a linear genome could be repaired by SSA, as outlined in 

Figure 4a. Under this scenario, DSBs at different locations would be resected by the 

exonuclease activity of Exo or UL12, and homologous regions would be annealed by β or 

ICP8. This mechanism could be used to produce concatemers from DNA fragments 

generated by DSBs; however, it may also generate deletions, especially in a genome with 

repeated elements, such as HSV. Figure 4b shows a similar mechanism that might also result 

in the formation of concatemers from two viral genomes by resection and annealing of the 

directly repeated “a” sequence at HSV termini (Figure 2b).
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If SSA pathways are active during viral DNA replication, as we have argued, additional 

scenarios can be envisioned. As discussed above, dsDNA can be degraded by Exo or UL12, 

leaving a ssDNA molecule that can be coated by β or ICP8, and assimilated at a DNA 

replication fork, predominantly on the lagging-strand template (Figure 3c). A modification 

of this scenario (Figure 3d) was originally proposed by Kuzminov (66). According to this 

model, degradation occurs simultaneously with assimilation of the other strand at the DNA 

replication fork by the SSAP. In this model the Exo and SSAP work in conjunction to 

regulate each other’s activities, as is known to occur with RedExo/β. A final scenario 

suggests a mechanism by which branched replication/recombination intermediates could 

form (Figure 4c). According to this scenario, a DSB could be resected by Exo and the 

exposed 3′ overhangs coated with SSAP. The SSAP-coated overhang could anneal at a 

ssDNA gap and initiate formation of a DNA replication fork (Figure 4c, scenario III). Two 

different outcomes of this type of reaction are described in the figure legend (scenarios II 

and III), and either could generate the complex branched molecules seen among the 

replication intermediates during HSV infection (51, 52, 118). These reactions coupled with 

reactions depicted in Figure 4b could create branched, longer-than-unit-length concatemeric 

molecules that could be resolved by cellular Holliday junction resolvases or perhaps during 

encapsidation. Thus, it is possible that SSA results in the generation of the longer-than-unit-

length molecules that are required to produce the substrate for encapsidation.

The extent to which the various models for SSA are used by either λ or HSV during DNA 

replication to generate concatemeric DNA is unclear. Genetic and biochemical experiments 

have confirmed that the RedExo/β and RecE/T systems are capable of many of the reactions 

shown in Figures 3 and 4. Models shown in panels 3a, 3b, 3c, and 4a have experimental 

support in the λ system. λ does not contain the repeat sequences required for the reactions in 

4b, and it is therefore unlikely that end resection leads to concatemer formation in cells 

infected with λ. The model outlined in Figure 4c is consistent with the known biochemical 

properties of the RedExo/β and UL12/ICP8 systems, and it will be of interest to test whether 

this mechanism contributes to concatemer formation in λ- or HSV-infected cells. 

Comparison of the viral recombination systems encoded by λ and HSV demonstrates 

striking similarities and fascinating differences. The models shown in Figures 3 and 4 

suggest testable hypotheses for future experimentation that will lead to a better 

understanding of whether λ and HSV utilize θ and σ replication mechanisms, 

recombination-dependent replication, or a combination of both.

SUMMARY POINTS AND FUTURE ISSUES

1. Both λ and HSV encode a two-component recombinase capable of stimulating 

SSA, and both generate concatemers during DNA replication that are packaged 

into infectious progeny.

2. Both λ and HSV genomes have been reported to circularize and replicate 

through θ and σ replication; however, in the case of HSV, concatemer formation 

may also involve recombination-dependent replication. The observation that 

recombineering requires DNA replication raises the interesting possibility that 

Red recombination also functions at the replication fork during the λ life cycle. 

Weller and Sawitzke Page 11

Annu Rev Microbiol. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



It will be of considerable interest to determine the extent to which the various 

models for SSA are used by either λ or HSV during DNA replication to generate 

concatemeric DNA.

3. λ RedExo/β can function on its own to promote SSA or in conjunction with 

RecA to promote SI. It is unclear whether the HSVUL12/ICP8 system functions 

on its own or in conjunction with cellular repair/recombination proteins. 

Although UL12 interacts with MRN and both UL12 and ICP8 interact with host 

repair/recombination proteins, further experimentation will be required to 

determine the biological significance of these interactions.

4. It is clear that λ Red and RecE/T are very powerful tools for genetic engineering 

in bacteria. It will be very interesting to determine whether UL12 and ICP8 can 

be utilized to perform recombineering in eukaryotic cells.
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Glossary

SSAP single-strand annealing proteins make up a family of proteins that are able to 

anneal complementary strands; their quaternary structures, rings, and filaments 

are believed to be important for their annealing activities

DSB a double-strand break in DNA can form via ionizing radiation, replication of a 

linear genome, nuclease cleavage, or replication through a nick or ssDNA gap

ssDNA single-stranded DNA

dsDNA double-stranded DNA

SSA single-strand annealing is DSB repair whereby ends are processed by a 5′-to-3′ 

exonuclease and complementary single-strand regions are annealed by a SSAP

MRN a protein complex consisting of Mre11, Rad50, and Nbs1 in eukaryotes binds to 

DSBs and is believed to initiate resection prior to repair by homologous 

recombination

EM electron microscopy

θ a mode of bidirectional DNA replication whereby the molecules look like a θ by 

EM

σ a mode of DNA replication that generates linear multimer concatemers; the 

molecules look like a σ by EM
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Figure 1. 
Major pathways for double-strand break (DSB) repair: classical nonhomologous end-joining 

(C-NHEJ), microhomology-mediated end-joining (MMEJ), single-strand annealing (SSA), 

and strand invasion (SI). This diagram depicts the four major DSB repair pathways and lists 

some key components for each pathway. MMEJ, SSA, and SI all require some degree of 

DNA homology and require end resection stimulated by the MRN complex (Mre11, Rad50, 

and Nbs1). MRN in conjunction with other cellular exonucleases such as Exo1 resect DNA 

at a DSB in the 5′ to 3′ direction, leaving a free 3′ overhang to participate in various types of 

homology-driven events. The requirements for SI-mediated recombination include a 

specialized ATP-dependent recombinase that can perform SI (Rad51 in eukaryotes, RecA in 

bacteria, and UvsX in T4). Although SI reactions are generally referred to in the literature as 

HR, in this review we refer to them as SI to distinguish them from MMEJ and SSA, which 

also utilize homology. SSA reactions do not require ATP and are mediated by a single-

strand annealing protein (SSAP) (β in λ, ICP8 in HSV, and Rad52 in eukaryotic cells).
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Figure 2. 
Phage λ and herpes simplex virus (HSV) genomes. (a) The 48.5-kb phage λ chromosome as 

it exists in the phage head, before it circularizes after infection. The recombination genes, 

Red exo, bet, and gam (located in the red region), and replication genes (located in the blue 

region), O and P, are indicated, as is the origin of replication, ori. The arrow’s head and tail 

signify cos, the 12-base-pair self-complementary ends that anneal after infection. (b) Herpes 

simplex virus-1 (HSV-1) has a 152-kb linear genome consisting of two unique sequences, 

UL and US, flanked by inverted sequences ab-b′a′ and a′c′-ca, respectively. The “a” region 

contains the packaging sequences and is repeated directly at genome termini and in an 

inverted orientation at the UL-US junction. The position of the UL12 and ICP8 genes (shown 

in red) as well as OriL and both copies of OriS are shown.
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Figure 3. 
Red-mediated single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) 

recombination. (a) Current model for ssDNA recombination by recombineering. An oligo is 

coated by β and inserted at the DNA replication fork. Although recombination on the 

lagging strand is depicted, it also occurs at a reduced frequency on the leading strand. The 

gold patch on the ssDNA represents a region of nonhomology such as a mutation that is 

being introduced by recombineering. Arrowheads represent the 3′ end of a DNA molecule. 

(b) Limited resection model. Exo performs limited degradation to expose 3′ overhangs, 

which are subsequently coated with β, thereby promoting annealing at regions of homology. 

(c) Alternative model for dsDNA recombination. Exo binds one end of a dsDNA fragment 

and degrades the entire strand. The remaining strand is coated with β and incorporated into a 

replication fork on the lagging-strand template. (d) Simultaneous resection and annealing 

model. Resection from a DSB by an exonuclease occurs simultaneously with annealing of 

the other strand at the DNA replication fork. In this model the Exo and single-strand 

annealing protein (SSAP) (λExo/β or UL12/ICP8) likely work in conjunction to regulate 

each other’s activities. In fact, RedExo/β have already been shown to modulate each other’s 

activities. This model was originally proposed by Kuzminov (66).
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Figure 4. 
Implications for single-strand annealing (SSA) during λ and herpes simplex virus (HSV) 

infection. These models depict potential roles for SSA during λ and HSV infection. (a) SSA 

at double-strand breaks (DSBs). SSA can be used when replication through a nick or gap 

leads to a DSB, or when a DSB occurs by another mechanism (see text for examples). After 

limited resection by Exo or UL12, a SSA protein (SSAP) such as β, ICP8, or Rad52 binds to 

single-stranded DNA (ssDNA) regions and induces annealing of complementary ssDNA. 

Unpaired ssDNA overhangs after annealing are removed by a structure-specific 

endonuclease such as ERCC1/XPF; remaining gaps are filled and ligated. In the case of λ, 

Exo is known to degrade until the entire strand is assimilated, and then ligation occurs; thus, 

unpaired ssDNA overhangs (flaps) would not be expected. This reaction is potentially 

mutagenic, as it can lead to deletions. (b) SSA at viral termini. Resection and annealing of 

the directly repeated “a” sequences found at HSV termini (shown in green) could lead to 

concatemer formation. (c) Formation of branched replication intermediates. A DSB is 
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processed by a 5′-to-3′ Exo, and the 3′ overhang can anneal at a single-strand gap on another 

genome. In scenario I, a branched structure is generated. In scenario II, 3′ ends denoted in 

black can be extended by DNA polymerase, with accompanying strand displacement to 

complete a recombinant. In scenario III, a full replication fork is established. This can 

replicate out to the end, resulting in a linear chromosome fragment that could either invade 

another genome or participate in reactions shown in panel a or b, possibly leading to 

concatemer formation. We have depicted a simple case, but additional annealing events 

could occur at gaps along each strand of the HSV genome, such as the one depicted in 

scenario III.
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