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Human immunodeficiency virus (HIV)–infected leukocytes have been detected in genital secretions from HIV-
infected men and women and may play an important role in the sexual transmission of HIV. However, they have
been largely overlooked in studies on mechanisms of HIV transmission and in the design and testing of HIV
vaccine and microbicide candidates. This article describes the characteristics and quantities of leukocytes in
male and female genital secretions under various conditions and also reviews evidence for the involvement
of HIV-infected cells in both horizontal and vertical cell-associated HIV transmission. Additional research is
needed in this area to better target HIV prevention strategies.
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Unprotected intercourse is the most common route
through which human immunodeficiency virus type 1
(HIV) is transmitted [1, 2]. Genital secretions from
men and women contain leukocytes, which can be pre-
sent in high numbers during episodes of genital tract in-
flammation or infection. HIV-infected cells have been
detected in semen and cervicovaginal secretions from
HIV-infected men and women [3]. Since intracellular
HIV is protected from environmental factors that can
attenuate the infectiousness of free HIV virions and
can be efficiently transmitted to target cells via virologic
synapses, HIV-infected cells in genital secretions could
play an important role in sexual and maternal-to-fetal
transmission of HIV. This review focuses on the quan-
tities, characteristics, and function of uninfected and
HIV-infected leukocytes in genital tract secretions.

LEUKOCYTES IN MALE GENITAL
TRACT SECRETIONS

The principal cell types in human semen are spermato-
zoa, immature germ cells, and white blood cells (WBCs;

Figure 1). WBCs have been detected in semen by vari-
ous methods, including peroxidase stain (eg, the Endtz
test), immunohistologic, and enzymatic (eg, granulo-
cyte elastase) assays [4]. Recently, flow cytometry has
also been used, with results comparing favorably to
the more traditional methods of semen WBC assess-
ment [5].

WBCs potentially enter semen from various sites
along the reproductive tract, including the rete testis, ep-
ididymis, prostate, and urethra, where they are thought to
play an immunosurveillance role [6].Most of the studies
ofWBCs in semen that use immunohistologic analysis or
flow cytometry indicate that semen from healthy non–
HIV-infected men contains 105 WBCs/mL; the majority
are polymorphonuclear leukocytes (PMNs), but substan-
tial numbers of macrophages and CD4+ T cells are also
present [7–9]. In addition, CD8+ T lymphocytes, B
lymphocytes, and, most recently, dendritic cells have
been detected in human semen [7–10].

Seminal plasma contains a rich variety of bioactive
cytokines, chemokines, growth factors, prostaglandins,
and other immunomodulatory mediators that can po-
tentially affect the viability and function of seminal leu-
kocytes and cells in the female genital tract after
intercourse [11]. Seminal plasma has been reported to
be cytotoxic to peripheral blood–derived mononuclear
cells [12, 13] and to adversely affect macrophage func-
tion [14, 15]. However, many of the early studies used
long periods of exposure to seminal plasma and tissue
culture medium supplemented with fetal calf serum,
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which contains high concentrations of amine oxidase; this en-
zyme oxidizes spermine in seminal plasma creating toxic inter-
mediaries [16]. Recent studies have found that following short
so-called physiologic exposures to seminal plasma, lymphocytes
retain viability and function [12, 13]. In one flow cytometry study
of the viability of various leukocyte populations in semen, CD3+

cells were found to be >60% viable [7]. Markers of T-cell activa-
tion, such as interleukin 2 (IL-2) receptors and CD69, are often
detected on lymphocytes in human semen from both HIV-
infected and uninfected men [17, 18], indicating that seminal T
cells are in an activated state. Furthermore, lymphocytes isolated
from fresh semen are viable and retain their function; several
studies have demonstrated cell-mediated cytotoxic and other
functions of semen-derived T cells in vitro [19–21].

Genital Inflammation and Infections
Concentrations of WBCs in semen are highly variable, and gen-
ital inflammation is a common occurrence. The prevalence of
leukocytospermia, an asymptomatic genital inflammatory con-
dition characterized by >106 WBCs/mL semen [22], is 5%–10%
in healthy non–HIV-infected men [23–25] and up to 24% in
HIV-infected men [26]. Concentrations of PMNs correlate
with other WBC types in semen [27]; thus, leukocytospermic
semen contains substantially elevated concentrations of
PMNs, macrophages, and CD4+ T cells [28]. The principal eti-
ology of leukocytospermia is thought to be subclinical genital

infections [29]. Leukocytospermia has been associated with
asymptomatic detection of Chlamydia trachomatis [30] and
Epstein-Barr virus (EBV) [31] DNA in semen, whereas other
studies have failed to show a strong relationship between bacte-
rial or viral infection in the male genital tract and leukocyto-
spermia [32, 33]. Seminal WBC concentrations correlate
positively with various cytokines [25]. Thus, it is not surprising
that levels of a number of proinflammatory and other cytokines,
including interleukin 1β (IL-1β) [32], IL-2 [34], interleukin
6 (IL-6) [35], interleukin 8 (IL-8) [34], and tumor necrosis
factor α (TNF-α) [36], are elevated in semen of men with
leukocytospermia.

The World Health Organization reports an estimated 499
million new cases of genital tract infections each year caused
by the leading sexually transmitted pathogens, Neisseria gonor-
rhoeae, Chlamydia trachomatis, Treponema pallidum, and
Trichomonas vaginalis [37]. The primary symptoms of urethri-
tis caused by sexually transmitted infections (STIs) in men in-
clude dysuria and urethral discharge [38], which contains
elevated levels of PMNs [39]. Interestingly, there is not much
information available on seminal WBC subpopulations in
men with symptomatic STIs, although it is likely that, as with
leukocytospermia, leukocytic infiltrates associated with sympto-
matic bacterial infections contain elevated numbers of macro-
phages and lymphocytes in addition to PMNs. Viral STIs,
including several members of the human herpesvirus (HHV)

Figure 1. Leukocytes in human genital secretions, detected by immunohistochemistry. A, CD4+ T cell in semen. B, CD68+ macrophages in semen.
C, CD45+ leukocytes in semen from a man with leukocytospermia. D, CD68+ macrophages in cervicovaginal secretions. Original magnification ×400.
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family (HSV types 1 and 2, EBV, and human cytomegalovirus)
and human papillomaviruses, are also highly prevalent (>1 bil-
lion infections worldwide [37]) and have been associated with
leukocytospermia in some studies [40].

HIV-Infected Cells in Semen
Since the initial discovery in 1983 that HIV could be cultured
from seminal cells [41], a number of laboratories have demon-
strated that HIV can be cultured from both seminal cells and
cell-free seminal plasma. Overall, the recovery rate of infectious
HIV from seminal cells has been much higher (median, 20%;
range, 4%–55%) than that from seminal plasma (median,
5.9%; range, 3%–11%; P < .0001) [3]. Since most of these studies
were performed before widespread use of antiviral therapy and
viral load assessment, most of the subjects were chronically in-
fected (ie, HIV seropositive) and naive to highly active antire-
troviral therapy. The relatively low recovery rate of infectious
HIV from seminal plasma contrasts with the high rate of HIV
RNA detection by quantitative polymerase chain reaction
(PCR) [42], suggesting that much of the cell-free HIV in
semen is replication incompetent or inactivated. A number of
factors have been identified in seminal plasma that may inacti-
vate cell-free HIV, including anti-HIV antibodies [43], α and β

chemokines [25], and antimicrobial peptides (SLPI, lactoferrin,
and defensins [44]). The low culture rate could also reflect the
toxicity of seminal plasma to target peripheral blood mononu-
clear cells (PBMCs) used for culturing HIV [13, 14].

Only a few studies have used quantitative HIV DNA PCR as-
says to assess the prevalence or number of HIV-infected cells in
semen. In these studies, the prevalence of HIV proviral DNA in
semen samples has ranged from 21% to 65%, and the HIV DNA
level has ranged from not detectable to 80 000 copies/mL [3].
Interestingly, in 2 of the larger studies that assessed both HIV
RNA and DNA copy numbers in semen, these 2 parameters
were not correlated [42, 45]. Elevated proviral HIV DNA levels
in semen have been associated with (1) reduced peripheral
CD4+ T-cell counts [46], (2) acute HIV infection [47], (3) leu-
kocytospermia and STIs [46, 48], and (4) vasectomy [45]. After
initiation of HAART, levels of both HIV RNA and DNA are re-
duced in semen, although HIV proviral DNA–bearing cells can
persist in semen for several months [42, 49] and have been
shown to be infectious in vitro [50].

The question of whether spermatozoa transmit HIV infection
has been controversial for several years. HIV reportedly infects
or binds to testicular germ cells and spermatozoa under certain
conditions, but isolated viable motile sperm from HIV-infected
men are rarely HIV positive by PCR and are therefore not likely
a major factor in the sexual transmission of HIV [51, 52]. Both
macrophages and T cells, but not spermatozoa, isolated from
semen of HIV-infected men by magnetic beads were capable
of transmitting HIV to target PBMCs in vitro [53].Macrophag-
es usually outnumber CD4+ T cells in semen, especially in

HIV-infected men, in whom seminal CD4+ lymphocytes are
commonly depleted. In a study of 98 ART-naive HIV-positive
men, the median ratio of macrophages to CD4+ lymphocytes in
semen was 22:1 [17]. In some HIV-positive men with leukocy-
tospermia, the seminal macrophage cell count exceeds 107 cells/
mL [17]. These data indicate that macrophages are the most
abundant HIV host cells in semen and a likely principal medi-
ator of cell-associated HIV transmission. Dendritic cells, which
can capture and transfer HIV, have also been detected in semen,
and their numbers are elevated in semen of men with genital
tract inflammation [10]. Other important HIV host cells, such
as Langerhans cells, have not been detected in semen, although
it is possible that some viable HIV-infected Langerhans cells
from penile skin, especially the inner foreskin [54], are shed
into the vagina or rectum during intercourse.

HIV-infected leukocytes have been detected in pre-ejaculatory
fluid, a urethral secretion secreted from the glands of Littre and
Cowper glands during sexual stimulation [55]. Evidence that
cells in pre-ejaculatory fluid are infectious was provided by an
epidemiologic study that found that delayed application of con-
doms is a risk factor for HIV transmission [56].

Elevated seminal PMN counts and leukocytospermia have
been associated with increased levels of both cell-free and
cell-associated HIV in semen [3], as well as with increased levels
of IL-1β, TNF-α, IL-6, and other proinflammatory cytokines
that could activate HIV replication in infected cells [25, 32,
57]. A recent study showed that seminal IL-6, TNF-α, and
IL-8 concentrations were elevated in semen samples positive
for cell-associated but not cell-free HIV (Politch et al, unpub-
lished data). Epidemiologic studies indicate that STIs substan-
tially enhance HIV transmission [58]. Urethritis caused by N.
gonorrhoeae was associated with a 10-fold increase in HIV
RNA copy numbers in semen, which declined following suc-
cessful antibiotic treatment [59]. Other studies have demon-
strated increased HIV RNA shedding from genital ulcers
caused by various STI pathogens [60]. Most of these studies
have only measured cell-free HIV RNA, but since symptomatic
infections and inflammation are associated with elevated WBC
levels in semen, it is probable that the number of HIV-infected
cells in semen is also increased. One study showed that both
HIV RNA and proviral DNA levels were elevated in semen
from men with a recent STI [48].

LEUKOCYTES IN FEMALE GENITAL TRACT
SECRETIONS

HIV host cells (ie, monocytes, macrophages, CD4+ T cells, and
dendritic cells) have been described in vaginal and cervical tis-
sue [61], but few studies have quantified or characterized these
cell populations in human vaginal and cervical secretions. HIV
host cells are detectable but usually not numerous in cervicova-
ginal secretions from healthy uninfected [62] and HIV-infected
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women [63]. Two recent studies have characterized lymphocyte
subtypes in cervicovaginal lavage or cytobrush samples. A large
fraction of T lymphocytes were positive for the integrin α4β7
and expressed the HIV coreceptor CCR5 and the early activa-
tion marker CD69 but not CXCR4. As with semen, cervical
CD4+ T cells were severely depleted in HIV-positive subjects
[64, 65].

There are limited data regarding the viability of leukocytes
isolated from cervicovaginal fluid. The viability of lymphocytes
in vaginal secretions from healthy reproductive aged women is
often poor, most likely because of toxic effects of low pH con-
ditions commonly found in the human vagina [66]. In prepu-
bertal and postmenopausal women, the vaginal pH is closer to
neutral, and leukocytes in cervical vaginal secretions may be
more viable. Likewise, vaginal secretions at menses are neutral-
ized by the presence of blood, and viable lymphocytes have been
recovered from menstrual blood and used in functional assays
[67]. Studies that have used cytobrush sampling to obtain lym-
phocytes for functional assays have demonstrated >85% viabil-
ity [68, 69].

Cervicovaginal secretions from women with certain STIs
have elevated leukocyte counts. N. gonorrhoeae and C. tracho-
matis infections can induce massive inflammatory infiltrates
[70]. Bacterial vaginosis (BV), on the other hand, appears to
have little or no effect on vaginal leukocyte counts [70, 71],
but HIV-infected cells in vaginal secretions from women with
BV could have preserved viability and higher infectiousness
because of near-neutral pH conditions. This hypothesis is sup-
ported by the observation that BV is associated with an in-
creased incidence of HIV transmission and acquisition [72].
Seminal fluid neutralizes the pH of vaginal secretions following
intercourse [73, 74] and could thus prolong the viability of in-
fected leukocytes in the vagina; seminal fluid also contains high
concentrations of chemokines that recruit leukocytes, especially
macrophages and dendritic cells, to the human cervix after co-
itus [75]. These HIV host cells may play an important role in
sexual transmission or acquisition of HIV.

HIV-Infected Leukocytes in Female Genital Secretions
Several studies have used qualitative cell-associated HIV DNA
assessment as a marker for infected leukocytes. An increased
prevalence of HIV DNA in vaginal secretions has been associ-
ated with cervicitis, candidiasis and STIs [76–89], hormonal
contraception [83] and vitamin A or selenium deficiency [83,
90], although this latter relationship may be more complex
[91]. As mentioned above, menstrual blood introduces viable
CD4+ lymphocytes into vaginal secretions; HIV proviral DNA
[92, 93] has been detected in vaginal samples collected at men-
ses, and one of the first studies to culture infectious HIV from
vaginal secretions provided evidence that samples collected dur-
ing menses were more infectious than those collected at other
times during the menstrual cycle [94]. These data, combined

with epidemiological reports of increased female-to-male HIV
transmission as a result of sexual contact during menses [95,
96], suggest that menses may be a time of increased risk for
female-to-male cell-associated HIV transmission. The preva-
lence of HIV-infected cells in vaginal secretions is reduced in
women receiving antiretroviral therapy [97, 98], although as
with semen, the reduction in HIV-infected cells following initi-
ation of HAART appears to lag behind the reduction in cell-free
HIV load [99]. Only a few studies have quantified HIV DNA in
cells from cervicovaginal secretions [3]; the maximum number
of HIV proviral copies was on the order of 104 copies per lavage
sample.

It is difficult to culture infectious HIV from cervicovaginal
secretions because of heavy contamination with endogenous
bacteria and fungi. Most successful studies have cultured HIV
from the filtered cell-free fraction and have produced HIV cul-
ture rates ranging from 11% to 22% [3]. Only one study to date
has compared the HIV culture rate from cell-free versus cell-
associated fractions of cervicovaginal lavage samples: HIV was
cultured from 12 of 55 cell-free supernatants (22%) and 5 of 22
cell lysates (23%) [100]. Although correlates of HIV culture
from cervicovaginal cells have not been studied, we hypothesize
that HIV-infected leukocytes from reproductive-aged women
with normal vaginal flora are inactivated by lactic acid produced
by lactobacilli and are therefore less infectious [66]. We predict
that HIV-infected genital leukocytes from women with neutral
vaginal pH due to conditions such as BV and low estrogen states
[101] are more infectious than those from reproductive-aged
women with vaginal pH of 3.5–5.0 and more capable of cell-
associated HIV transmission. The effect of factors present
in female genital secretions on the infectiousness of either
cell-associated or cell-free HIV is reviewed in this issue of the
Journal.

Role of HIV-infected Genital Leukocytes in Mother-to-Child
Transmission (MTCT)
Cell-associated HIV transmission has been implicated in
MTCT as a result of breast-feeding. A 10-fold increase in the
number of infected cells per milliliter of breast milk was associ-
ated with 3-fold increased risk of HIV transmission [102]. Sim-
ilarly, cell-associated HIV transmission has been implicated in
MTCT during parturition, as several studies have demonstrated
a correlation between increased MTCT and the isolation of cel-
lular HIV DNA from the mother’s cervicovaginal samples [103,
104] and the presence of HIV-infected cells in the baby’s oro-
pharyngeal cavity [105]. The hypothesis of MTCT of HIV via
fetal ingestion of infected maternal cells during parturition is
further supported by a recent study demonstrating that HIV-
infected cells can migrate across human fetal oral epithelial tis-
sues and retain their infectiousness. In contrast, HIV-infected
cells lost their infectiousness while crossing adult oral epithelium,
because of the expression of anti-HIV beta-defensins 2 and 3
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[106]. This latter finding is consistent with reports that oral
transmission of HIV in adults is rare [107, 108]. Our laboratory
quantified HIV RNA and DNA in cervicovaginal secretions
from women in the WITS cohort during the third trimester
of pregnancy; levels of HIV DNA, but not RNA, and proviral
heterogeneity were positively associated with perinatal HIV
transmission [109, 110]. A recent study, designed to determine
the timing of HIV transmission, reported that 5 of 9 infants
were infected at the time of delivery, whereas 4 of 9 were infect-
ed during pregnancy [111]. These results stress the need to fur-
ther evaluate methods to block MTCT of cell-associated HIV
via breast milk and genital secretions.

CONCLUSION

There is increasing evidence that HIV-infected WBCs in male
and female genital secretions may be important vectors of both
horizontal and vertical HIV mucosal transmission. These cells
are attractive targets for microbicide and vaccine interventions
to prevent HIV transmission, but relatively little information is
available about these cells or factors that affect their abundance
and infectiousness. Future research should be conducted to fur-
ther characterize the phenotypes of HIV-infected cells in genital
secretions and their abundance, viability, survival time, and in-
fectiousness under various conditions. Studies should also be
conducted on mechanisms of cell-associated HIV transmission.
Such information could provide clues leading to the control or
eradication of these infectious vectors to achieve an ultimate
goal of HIV prevention.
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