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Human immunodeficiency virus type 1 (HIV-1) can efficiently spread by direct cell-to-cell contact, a mechanism
termed cell-associated HIV transmission. By some estimates, cell-associated HIV transmission is 10–1000-fold
more effective than cell-free HIV infection. Mucosal cell-associated HIV transmission may occur when HIV-
bearing cells in mucosal secretions from an HIV-infected donor transfer virus directly to recipient target
cells in or below the mucosal epithelium, or through HIV transcytosis across the mucosal epithelium of a non-
infected host. This mechanism may play an important role in the sexual and vertical transmission of HIV-1, yet
most in vitro tests of vaccine and microbicide efficacy assess cell-free virus transmission. This article reviews in
vitro assays that have been used to model mucosal cell-associated transmission, including microscopy, immune
cell cocultures, use of HIV-infected cells in epithelial cell transcytosis assays, and cell-associated infection of
mucosal tissue explants. Assays that authentically simulate mucosal cell-associated HIV transmission could pro-
vide valuable insight into mechanisms and molecules that can potentially be targeted for HIV prevention, as
well as critical models for testing novel HIV prevention strategies for efficacy against cell-associated HIV
transmission.
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Many viruses, including human immunodeficiency
virus type 1 (HIV-1), can spread (1) as cell-free virions
that bud from infected cells and encounter target cells
via diffusion through the extracellular milieu or (2) by
infected cells through direct cell-to-cell contact [1, 2].
Cell-to-cell HIV transmission, also known as cell-asso-
ciated HIV transmission, has been shown to be 10-fold
to >1000-fold more efficient than cell-free transmission
in vitro [3, 4]. This striking difference in efficiency be-
tween these 2 modes of HIV transmission has been
ascribed to a number of factors: (1) proximity of the
cell-associated virus to its target, (2) receptor clustering
at points of cell-to-cell contact, (3) increased multiplicity

of infection due to the targeted budding of virus at syn-
apses formed between cells, and (4) the relative resistance
of cell-associated transmission to a number of factors
that inhibit the infectiousness of cell-free virions, such
as neutralizing antibodies, and host restriction factors,
such as tetherin and TRIM 5-α [5]. Cell-to-cell HIV
transmission among cells in lymphoid organs and possi-
bly other sanctuary sites is thought to underlie HIV per-
sistence in vivo [5].

There is mounting evidence that cell-associated HIV
transmission could play a role in sexual and vertical
transmission of HIV [6]. Since the mechanisms under-
lying cell-associated HIV transmission differ from those
of cell-free transmission, cell-associated transmission
could require different prevention strategies. For exam-
ple, some broadly neutralizing antibodies and antiretro-
viral therapies are less effective at blocking cell-associated
HIV transmission than cell-free transmission [7, 8]. On
the other hand, strategies that block cell attachment and
the formation of viral synapses may be particularly ef-
fective at blocking cell-associated transmission [9].
Through this review article I hope to bring attention
to this understudied field by presenting the strengths
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and weaknesses of in vitro cell-associated HIV transmission as-
says that have been used to date to assess mucosal cell-associated
transmission and test HIV prevention strategies.

IN VITRO ASSAYS USED TO MODEL MUCOSAL
CELL-ASSOCIATED HIV TRANSMISSION

Microscopy
Much of what we know about cell-associated HIV transmission
has been learned from microscopy image analysis. Early evi-
dence for virus transmission between cells was provided by elec-
tron microscopy images showing directional budding of virus at
cell-cell contacts [10, 11]. Subsequently, use of sophisticated
fluorescence microscopy imaging techniques enabled visualiza-
tion of the recruitment of HIV and its receptors to intercellular
junctions, the formation of virologic synapses [12], and the di-
rect transfer of HIV via synapses from infected to uninfected
cells [13]. Microscopy has also been used to identify compo-
nents of virologic synapses that could be targeted to block
cell-associated HIV transmission. HIV gp160 env, CD4, and
chemokine coreceptors play crucial roles in synapse formation;
ICAM-1/LFA-1 adhesion molecules stabilize cell-cell contacts;
and actin and cytoskeleton proteins are remodeled during
cell-associated HIV transmission [14]. The targeted use of anti-
bodies and other antagonists to many of these structures inhib-
its cell-associated HIV transmission [15, 16]. Microscopy has
also been used for testing the efficacy of HIV broadly neutraliz-
ing antibodies and microbicides in blocking cell-to-cell HIV
transfer and provided the first evidence that cell-associated
transmission may be resistant to patient serum and broadly
neutralizing monoclonal antibodies [4, 17]. Although this ap-
proach is labor intensive and has been largely supplanted by
other methods (described below), a related quantitative flow
cytometry method using infectious green fluorescent protein–
labeled HIV for assessment of cell-associated HIV transmission
was recently published [18] and shows promise as a platform
for screening vaccine-induced antibodies and microbicides.

Immune Cell Coculture Assays
Cell-to-cell HIV transmission is commonly demonstrated in
cell suspensions containing infected T cells [19, 20],macrophag-
es [21], or HIV-bearing dendritic cells [22] as virus donors and
uninfected T cells or highly permissive reporter cell lines as tar-
get cells [1]. In these cocultures, cells form transient adhesive
structures called virologic synapses through which virus is
directionally transmitted to adjacent cells [4]. The efficiency
of cell-associated transmission in coculture assays can vary
depending on the types of infected and target cells used [7].
Cell-associated HIV transmission is difficult to quantify in
coculture systems because of simultaneous infection of target
cells with cell-free HIV. Various approaches have been used
to reduce this possibility, including comparison of virus

transmission in static versus gently shaken cultures, to differen-
tiate cell-free from cell-associated transmission [21]; treatment
of infected cells with mitomycin C or antiviral drugs such as
saquinavir (protease inhibitor), to block new virus assembly
[7, 23]; use of activated primary CD4+ T cells as targets instead
of engineered reporter cell lines (eg, TZM-bl) that are highly
susceptible to cell-free infection [7]; and use of specialized
reporter vectors [3].

An early hypothesis predicted that virus transmitted via the
cell-associated pathway would be shielded from the effects of
neutralizing antibodies [2, 24]. However, studies to determine
the relative efficacy of HIV broadly neutralizing antibodies in
cell-associated versus cell-free HIV transmission assays have
produced mixed results (Table 1). Several of the major studies
have concluded that antibodies directed against the CD4 bind-
ing site on HIV effectively neutralize cell-associated HIV trans-
mission, whereas others have shown diminished neutralizing
activity with CD4bs antibodies but effective neutralization
with antibodies directed against the gp41 MPER region. Anti-
bodies and other antagonists directed against cell HIV receptors
(CD4 and CCR5) appear to also be effective [8, 25–28].Discord-
ance in these data may be due to differences in (1) timing of
antibody treatment (eg, CD4bs antibodies can affect synapse
formation but may show reduced efficiency once synapses are
formed), (2) source and types of virus and antibodies, (3) effec-
tor:target cell systems, and (4) possibly other factors, such as
background levels of cell-free HIV transmission [7]. It under-
scores the need for much more systematic research in this
field to fully understand the effects of HIV-directed antibodies
and other factors on cell-cell HIV transmission.

Coculture assays are currently being used to screen microbi-
cide compounds for efficacy against cell-associated HIV trans-
mission. The Southern Research Institute in the United States
has developed a comprehensive HIV screening algorithm for
the discovery and preclinical testing of topical microbicides

Table 1. Neutralization Activity of Broadly Neutralizing Human
Immunodeficiency Virus (HIV) Antibodies in Cell-Associated HIV
Transmission Assays

Reference System
CD4bs (VRCO1,

b12)
gp41 MPER
(4 E10, 2F5)

Frankel et al [25] DC-T + +
Abela et al [26] PBMC-TZMbl − +

Malbec et al [27] T-T + −
Sagar et al [22] DC-T - +
Duncan et al [28] MDM-T + −
Martin et al [29] Jurkat/A301.R5 + +

Zhong et al [30] Jurkat/SupT ND +

Abbreviations: +, strong neutralization in both cell-free and cell-associated HIV
transmission assays; −, poor neutralization activity in cell-associated HIV
transmission assays.
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that includes cell-associated HIV transmission assays [23]. For
this purpose, they use HIV-infected H9 or MOLT cells, as well
as GHOST target cells. Their algorithm calls for a pH transition
to simulate vaginal conditions, as well as the addition of 12.5%
seminal plasma. R. J. Shattock’s laboratory in the United
Kingdom uses HIV-infected PM1 cells and TZM-bl (ie, HeLa
cervical carcinoma derived) reporter cells [31]. The Virology
Unit at the Institute of Tropical Medicine in Antwerp, Belgium,
routinely screens antiretrovirals and microbicides in a cell-
associated HIV transmission assay consisting of HIV-infected
leukocytes and T-cell lines (R5 and X4 MaRBLE) containing
a firefly luciferase reporter gene [32].

It could be argued that coculture assays such as the ones de-
scribed above simulate HIV transmission that potentially occurs
between HIV-bearing immune cells in mucosal secretions and
uninfected HIV target cells residing in the mucosal epithelium.
HIV-infected T cells and macrophages have been isolated from
semen obtained from HIV-positive men [33], and infected leu-
kocytes have also been detected in cervicovaginal secretions and
breast milk from HIV-infected women [34, 35]. Uninfected
counterparts of these cells along with dendritic cells could
serve as HIV target cells in genital and gastrointestinal epithelia,
especially under inflammatory conditions [36]. HIV-infected
leukocytes from semen, cervicovaginal secretions, or breast
milk could encounter uninfected target cells residing on the
surface of the epithelium or within the stratum corneum, the
superficial layer of the vaginal and penile epithelium that is de-
void of tight junctions [37, 38], or they could transmigrate into
the epithelium to encounter target cells within or below the
mucosal layer [6]. However, it should be kept in mind that
HIV-infected cells and target cells in mucosal tissues have dis-
tinct characteristics that distinguish them from PBMCs or cell
lines that are normally used in coculture assays. T lymphocytes
at mucosal sites are predominately differentiated memory T
cells, and tissue macrophages usually have an M2 phenotype
[36, 39]. In addition, the Langerhans cells and numerous den-
dritic cells in mucosal tissues could play a major role in cell-
associated HIV transmission [22, 40]. Finally, cell-associated
HIV transmission in vivo could be affected by the degree of
allogenicity between donor and host.

Cell-Associated HIV Epithelial Transcytosis Assays
Various polarized epithelial cell monolayers have been used to
study HIV mucosal transmission. It has been known for some
time that contact between HIV-infected cells and epithelial cells
results in a massive and rapid budding of HIV virions toward
the epithelium [10, 11]. This is followed by the internalization
of virions into endosome-like structures and their passage
across the epithelial barrier via a characteristic epithelial trans-
cellular vesicular pathway, a process termed transcytosis [41].
After their passage, the virions are capable of infecting tar-
get cells residing below the epithelium [41]. Efficient HIV

transcytosis has been demonstrated to occur across polarized
monolayers of immortalized vaginal cells [42], as well as trans-
formed intestinal [43], endometrial [44], and cervical epithelial
cells [45, 46]. In most transcytosis models, HIV-infected leuko-
cytes are more efficient than cell-free virus in producing infec-
tion of subepithelial target cells. Synapse formation between
HIV-infected lymphocytes and epithelial cells has been demon-
strated by electron microscopy [47, 48]. Whereas HIV transcy-
tosis has been readily demonstrated with transformed epithelial
cell models, the physiological relevance of this cell-associated
HIV transmission mechanism is unclear; HIV transmission
was inefficient when infected cells were added to the apical sur-
face of polarized primary cultures of human ectocervical and
endocervical epithelia [49, 50], ectocervical and endocervical
epithelial sheets [49], and a reconstructed vaginal epithelial
model [51].

Epithelial transcytosis assays have been used to test the effi-
cacy of mucosal and monoclonal antibodies to prevent cell-
associated HIV transmission. Mucosal HIV antibodies, especially
immunoglobulin A, efficiently block HIV transcytosis from
infected cells [52], whereas several neutralizing monoclonal
antibodies against HIV have failed to effectively block cell-
associated HIV transcytosis [53]. Cell-associated HIV transcy-
tosis assays have also been used to test microbicide candidates
[31, 54–56].

Cell-Associated HIV Infection of Mucosal Tissue Explants
Mucosal tissue explants, comprising an intact epithelium and
resident mucosal HIV target cells, have also been used for stud-
ies of cell-associated HIV transmission. In one study [57], cell-
free HIV or infected cells were placed on the luminal side of
polarized ectocervical explant tissue, and viral transmission
was detected by measuring the HIV load in the lower chamber
at different time points. The addition of X4 cell-associated HIV
and both X4 and R5 cell-free HIV resulted in transmission of
the virus across the mucosa. In another study [58], labeled via-
ble cells from semen were shown to bind to and penetrate the
ectocervical epithelium but failed to bind to endocervical ex-
plants because of their entrapment in mucus secreted by these
cells. Two studies have demonstrated efficient cell-associated
HIV transmission across inner but not outer foreskin tissue
in vitro [48,59]; cell-free HIV was ineffective in this ex vivo fore-
skin model. Tugizov et al [60] recently demonstrated that HIV-
infected macrophages but not T cells were able to transverse
fetal oral and intestinal epithelia but not adult epithelia. In con-
trast, another group reported that HIV-infected CD4+ T cells
transmigrate across human colonic explant tissues to infect
target cells below [61].

Mucosal tissue explants have the advantage of containing an
intact epithelial layer, authentic mucosal HIV target cells, and
other factors in the mucosal environment. However, they
have several disadvantages, including (1) marked interdonor
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variation in hormone status, inflammation, sexually transmitted
disease history, and HIV target cell populations, making assay
reproducibility difficult; and (2) rapid deterioration of tissue
structure in vitro [62]. Nonetheless, mucosal tissue explants
have been widely used to screen microbicide candidates for
efficacy against cell-free HIV infection but rarely against cell-
associated infection [31, 54, 63].

ADDITIONAL CONSIDERATIONS

For enhanced authenticity, cell-associated HIV transmission
models should incorporate mucosal tissue-derived cells as infec-
tion sources and/or targets and should include other elements of
the mucosal environment, such as semen, cervicovaginal secre-
tions, a pH range, genital pathogens, and microflora [64]. This
poses several challenges: few viable immune cells are normally
recovered from genital secretions by noninvasive techniques,
and these cells vary in phenotype, activation state, and function,
depending on local conditions such as inflammation, infections/
microflora, and hormone status [65, 66]. Furthermore, the mole-
cular composition of genital secretions and the nature of tight
junctions in genital epithelium may also be affected by these
and other factors [67, 68]. Little research has been done to deter-
mine whether such factors affect cell-associated HIV transmis-
sion or the efficacy of antibodies and other compounds being
tested in cell-associated transmission assays.

Another relevant topic is immune defense against infected
cells that mediate cell-associated HIV transmission. Three prin-
cipal effector mechanisms are known to target HIV-infected
cells: cell-mediated immunity, carried out by CD8+ T cells; nat-
ural killer (NK) cell immunity, mediated by NK cells; and anti-
body dependent cellular cytotoxicity (ADCC), mediated by
Fc-bearing immune cells and antibodies [69, 70]. Vaccine and
microbicide candidates should also be tested in these assays be-
cause it should be determined that prevention strategies do not
interfere with these important defense mechanisms. The ideal pre-
vention strategy would potentiate these mechanisms. A few labo-
ratories have begun to systematically test monoclonal antibodies
and vaccine antisera to determine which antibody specificities,
subclasses, and isotypes are most effective in mediating ADCC
killing of HIV infected cells [71]. This work should continue.

CONCLUSIONS

Cell-associated HIV transmission is increasingly recognized as a
potentially important mechanism underlying HIV transmission
across mucosal surfaces. However, the focus for microbicide
and vaccine screening remains cell-free HIV infection assays.
Relatively little effort has been spent on developing authentic
mucosal cell-associated HIV transmission assays, and as such
much more work is needed to expand, refine, and validate
these assays.
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