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Mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) continues to contribute to the
global burden of disease despite great advances in antiretroviral (ARV) treatment and prophylaxis. In this re-
view, we discuss the proposed mechanisms of MTCT, evidence for cell-free and cell-associated transmission in
different routes of MTCT, and the impact of ARVs on virus levels and transmission. Many population-based
studies support a role for cell-associated virus in transmission and in vitro studies also provide some support for
this mode of transmission. However, animal model studies provide proof-of-principle that cell-free virus can
establish infection in infants, and studies of ARVs in HIV-infected pregnant women show a strong correlation
with reduction in cell-free virus levels and protection. ARV treatment in MTCT potentially provides opportu-
nities to better define the infectious form of virus, but these studies will require better tools to measure the
infectious cell reservoir.
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Worldwide, over 260 000 children were infected with
human immunodeficiency virus (HIV) in 2012—
almost 30 children per hour [1]. The majority of these
infections were via mother-to-child transmission
(MTCT), which can occur while the child is in utero,
during labor and delivery, or via breastfeeding. In the
absence of any interventions, the risk of MTCT is ap-
proximately 30%–40% [2]. This risk of transmission de-
pends on a number of facets, but high levels of maternal
virus have consistently been shown to be a major risk
factor [2–5]. Antiretroviral (ARV) therapy can lower
maternal viral loads and provide prophylaxis to the in-
fant to significantly reduce this risk. In fact, single-dose
nevirapine provided to the mother and infant near birth
can decrease transmission by half, presumably by re-
ducing both intrapartum (during labor/delivery) and
early breast milk infections [6]. Furthermore, provision

of combination ARVs during pregnancy and breast-
feeding can reduce transmission risk to less than 5%
[7–9]. Despite these great advances, a significant num-
ber of infants are still infected every year and a number
of questions remain regarding the biologic mechanisms
of transmission.

One question that remains to be elucidated is the mo-
lecular mechanism of virus transmission in MTCT and
whether the most infectious form is free virus or an in-
fected cell. Insights into this question have been gleaned
from in vitro cell culture models, experimental infec-
tions in animals, and via clinical correlates of MTCT
identified through population-based studies. In this
article, we review proposed mechanisms of MTCT and
the evidence for cell-free and cell-associated virus trans-
mission in different routes of MTCT. We also discuss
the dynamic between antiretroviral treatment, virus lev-
els, and transmission and what such data suggest about
the likely source of transmitted virus.

Molecular Mechanisms of MTCT Across
Epithelial Barriers
While a number of MTCT mechanisms have been de-
scribed, a majority of transmission events are believed
to occur across infant mucosal surfaces, such as the
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gastrointestinal tract and nasopharyngeal surfaces. These muco-
sal barriers are in contact with HIV-infected maternal fluids
throughout gestation, delivery, and the breastfeeding period,
providing ample time and opportunity for transmission to
occur. However, transmission does not occur in the majority
of cases, and the polarized epithelial barrier that overlies muco-
sal surfaces certainly contributes to the infant’s protection. For
systemic infection to occur, maternal HIV must infect suscepti-
ble cells within or underneath the epithelial barrier and then
traffic to underlying layers to disseminate the virus to lymphatic
and blood vessels.

Despite the protection afforded by epithelial barriers, there is
evidence that exposure of these surfaces to virus does result in
infection. Firstly, limiting infant exposure to infected maternal
fluids (including blood, cervicovaginal fluid, and breast milk
[10–13]) has been shown to reduce the risk of MTCT. This re-
duction in transmission has been most clearly shown in cases
where breastfeeding is replaced with formula and infant infec-
tion is reduced by almost half [14]. Similarly, elective Cesarean
sections, conducted prior to the onset of labor and membrane
rupture, avoid infant exposure in the birth canal and reduce risk
of transmission [7, 15]. Data from nonhuman primates also
provide proof-of-concept that infection can occur at these mu-
cosal sites. Following oral challenge of cell-free simian immuno-
deficiency virus (SIV), viral replication has been observed in
oral, esophageal, and gastrointestinal mucosa of infant ma-
caques [16, 17].

In human infants, virus may infect susceptible lymphocytes
within the epithelial layer and/or traverse the barrier to reach
other target cells. Recently, fetal and infant gut epithelia were
shown to contain large numbers of activated target cells
(CD4+CCR5+ T cells) that are susceptible to HIV infection, sug-
gesting that infection may occur at these surfaces if they come
into contact with HIV-infected fluids [18].Alternatively, viruses
may penetrate this epithelium via breaks in the mucosal barrier
or via transcytosis [19, 20]. Transcytosis is the vesicular trans-
port of materials, such as HIV, across a cell. In the infant, this
mechanism may permit HIV to be transferred from the gastro-
intestinal tract lumen through the cell to the basolateral face of
the epithelium where it is released. This transfer brings the virus
into contact with susceptible target cells, seeding infection. In
vitro studies of fetal oral and intestinal tissue have shown that
cell-free and cell-associated virus can transmigrate across these
barriers, and virions that pass through these cells remain highly
infectious [21, 22].

Studies in cell culture models, while not specifically designed
to recapitulate MTCT, do provide insight into cell-free and cell-
associated transmission across epithelial barriers. HIV-infected
cells may transmigrate through epithelial cell layers or transmit
virus through these layers by forming virologic synapses with
epithelial cells and releasing virus at the apical surface of
these cells [19, 20, 22, 23]. Virologic synapses, which aid in

transcytosis, are similar to immune synapses and may also pro-
tect the virus from recognition (and subsequent elimination) by
the host’s immune system [24]. In vitro studies of transcytosis
across epithelial layers suggest that cell-associated virus is
more infectious than cell-free virus [19, 25]. Similarly, kinetic
studies suggest that cell-to-cell spread of infection in culture
is more efficient than that of cell-free virus [26–28]. Thus,
these in vitro studies support a potential role of cell-associated
virus in cell-to-cell spread of infection. The studies, however,
utilized a variety of epithelial cell lines, not all relevant to
MTCT, and as with all in vitro models, they do not fully reca-
pitulate the complexity of infection in exposed infants.

Defining the Infectious Form of Virus in HIV-Infected Women
and Their Infants
The study of cell-free and cell-associated virus in cohorts of
HIV-infected women and their infants is the only way to deter-
mine the relative role of these 2 viral forms in the presence of
the complex host-pathogen interactions that occur during
MTCT. Population-based studies present their own challenges
and limitations, however, because it is difficult to capture events
at the precise moment of transmission. Nonetheless, the win-
dow period of infection is perhaps best defined for MTCT com-
pared to other modes of HIV transmission, as infants born to
HIV-positive mothers are monitored regularly to determine if
and when transmission occurs.

Cell-free and cell-associated virus have both been detected in
maternal blood (plasma), breast milk, and genital secretions,
and virus levels in these fluids have all been correlated with
MTCT (reviewed in [2] and discussed further below). However,
examining the potential role of these different viral forms in
MTCT has relied on the use of surrogate measures rather
than a specific measure of infectious virus. Cell-free virus is
typically measured by HIV RNA levels. These levels, while
easily quantifiable, do not directly measure the number of infec-
tious particles, as most virions are noninfectious [29].Neverthe-
less, a majority of studies examining correlates of MTCT have
observed that maternal HIV RNA levels do correlate with
transmission risk (reviewed in [2]). However, there is also con-
siderable evidence in the setting of MTCT that infected cells
(cell-associated virus) are also involved in HIV transmission
(reviewed in [2]). Infected cells have typically been quantified
by levels of HIV proviral DNA. As with cell-free virus, DNA
levels do not directly quantify the infection potential of
the cells as many integrated proviruses are not capable of pro-
ducing infectious virions [30], but they do correlate with MTCT
risk. Because DNA and RNA viral loads are often correlated,
it has made it more difficult to clarify the specific contribution
of cell-associated versus cell-free virus to transmission risk.
Thus, studies that measure both forms of the virus in the
same cohort are essential to determine the relative contribution
of each form.
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Evidence for Cell-Associated and Cell-Free Virus Transmission
During in Utero Transmission
In utero transmission is the least common route of MTCT.
While HIV has been detected in fetuses as early as 8 weeks,
the majority of in utero transmission occurs during the third
trimester and only 5%–10% of infants born to HIV-infected
mothers become infected via this route [2, 31].

HIV infection during pregnancy is hypothesized to occur
across the placenta. Placental trophoblasts (syncytiotro-
phoblasts and cytotrophoblasts) form a polarized epithelial
barrier between maternal and fetal blood supplies. A number
of early in vitro studies suggested that cell-free HIV can
infect placental trophoblasts [32–35]. Newer studies, however,
suggest that while cell-associated virus can cross the placenta
and cause productive infection in target cells, cell-free virus
cannot productively infect placental cells [25, 36, 37]. These
newer studies utilized trophoblastic cells organized as a
polarized monolayer, similar to the barrier encountered in
vivo, while older studies often used unorganized trophoblast
target cells [32, 34, 35]. Other studies have also supported
a role for cell-associated virus transmission across placental
trophoblasts by transcytosis [38, 39]. If the data from these
in vitro studies reflect events in vivo, they suggest that cell-
associated virus may significantly contribute to in utero
infections.

Alternatively, in animal models, there is evidence for cell-free
HIV transmission through amniotic fluid. As a proof-of-con-
cept, direct injection of SIV into the amniotic fluid of pregnant
macaques resulted in infant infection in 2 different studies
[40, 41]. The role of cell-free virus transmission through amni-
otic fluid in humans, however, is unclear and controversial.
While there have been cases where HIV has been detected in
amniotic fluid [42, 43], others have shown no evidence of
HIV in amniotic fluid [44, 45]. These studies suggest that if
HIV is present in amniotic fluid, it is likely rare or present at
low levels. Furthermore, even in the study where HIV was re-
ported in amniotic fluid, the presence or level of virus was
not correlated with infant infection risk in utero [43]. Studies
of virus in amniotic fluid are limited, partially over concerns
that such an invasive procedure may increase the transmission
risk [46–48]. Given the difficulty of sampling viral reservoirs
and infected tissues during pregnancy, as well as the challenge
of accurately estimating the time of infection in the fetus, the
roles of cell-associated and cell-free virus in in utero MTCT
are still largely undefined.

Evidence for Cell-Associated and Cell-Free Virus Transmission
During Labor and Delivery
A large proportion of HIV-positive infants are infected
intrapartum. MTCT around the time of delivery accounts for
approximately one-third to half of infant infections in breast-
feeding populations [2].

HIV may be transmitted during pregnancy or labor and de-
livery if a breach in the maternal-infant blood barrier, a placen-
tal microtransfusion, occurs. While the exact cause of placental
microtransfusions is unknown, they have been associated with
contractions during the early stages of labor when membranes
rupture, and they ultimately result in the exchange of small
amounts of maternal and fetal blood [49, 50]. This exchange
may result in the transfer of HIV-infected cells and free virus
from the mother to the infant, increasing infant infection risk.
Two studies of HIV-infected Malawian women found placental
microtransfusions to be strongly associated with the risk of in-
trapartum MTCT [51, 52]. These studies and others, however,
have not attempted to clarify the impact of cell-free and
cell-associated HIV on transmission [51–54].

During labor and delivery, infection may also occur as the
infant is exposed to and swallows cervical and vaginal fluids
infected with HIV. HIV has been isolated from gastric/
oropharyngeal aspirates at birth, and firstborn twins who
spend a longer time in the birth canal in contact with HIV-
infected fluids are more likely than their second born siblings
to become infected [55–59]. Epidemiologic studies examining
levels of HIV RNA and DNA and their correlation with infant
infection have attempted to clarify the relative impact of cell-
free versus cell-associated virus on this route of transmission
(Table 1). While HIV RNA in the genital tract has been associ-
ated with intrapartum transmission risk in a few studies
[60, 61, 63], somewhat more compelling evidence exists for a
role of cell-associated virus. Several studies have found a signifi-
cant correlation between levels of genital tract HIV DNA and
risk of intrapartum transmission [5, 61–63]. Although relatively
few studies have examined both DNA and RNA virus levels, re-
sults from at least 2 studies support a role for cell-associated
virus over that of cell-free virus in transmission. Tuomala
et al observed that every 1-log increase of HIV DNA in cervico-
vaginal lavage specimens was associated with a significantly
higher risk of transmission. This association was not seen
when examining HIV RNA levels in the genital samples, sup-
porting a role for cell-associated virus transmission [63]. Simi-
larly, in a study of 279 HIV-exposed infants, maternal cervical
and vaginal DNA were significantly associated with transmis-
sion, independent of plasma HIV RNA levels [5]. Overall,
these cohort studies suggest a significant association between
cell-associated HIV and intrapartum transmission risk. While
the number of intrapartum studies is limited at this time,
other studies of oral infection (such as via breastfeeding) may
provide additional insight into mechanisms of intrapartum
transmission.

Evidence for Cell-Associated and Cell-Free Virus Transmission
in Breastfeeding
Breastfeeding also contributes substantially to MTCT, account-
ing for up to 40% of infant infections [2]. Both cell-free and
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cell-associated viruses have been detected in breast milk. HIV
RNA levels in breast milk typically correlate with those of plas-
ma but are approximately 100-fold lower [11, 64–66]. HIV
DNA has also been detected in breast milk CD4+ T cells and
macrophages [12]. It has been difficult to isolate infectious
HIV from breast milk, perhaps because levels are low, and
past efforts in our lab were unsuccessful; however, there have
been at least 2 reports of HIV being cultured from breast milk
[65, 67]. These studies isolated the virus from cellular and cell-
free fractions of breast milk, suggesting that infectious virus may
exist in either form.

Studies in animal models have provided limited evidence that
transmission may occur by cell-free or cell-associated virus.
First, studies using oral inoculations of cell-free virus have
been shown to cause infection in infant macaques [68]. While
these studies typically use high doses of virus in the challenge
inoculum, which may not be directly relevant to human expo-
sure, they do provide proof-of-concept that cell-free virus can
cause infection via the oral route. More recently, a study in hu-
manized mice suggested that either cell-free or cell-associated
HIV can result in oral HIV transmission [69].

Similar to studies of genital fluids, cohort studies of breastfeed-
ing populations have tried to clarify the impact of cell-free versus
cell-associated virus in MTCT (Table 2). In humans, HIV RNA
levels in breast milk have been associated with transmission risk
[64, 70–72, 74–79]. Multiple studies have also suggested a role
for cell-associated virus transmission during breastfeeding
[5, 66, 73–75, 78, 79]. Of the studies that examined both DNA
and RNA, the majority suggest an increased role for cell-
associated virus transmission during the breastfeeding period.

In a study of 291 HIV-infected women from Kenya, cell-associ-
ated HIV in breast milk was significantly associated with trans-
mission risk after adjusting for cell-free virus [73]. In this study,
each log10 increase in infected cells tripled the risk of infant in-
fection. Koulinska et al also found that cell-associated virus levels
in breast milk were associated with transmission throughout the
breastfeeding period, while cell-free virus levels were only predic-
tive of transmission risk after 9 months of age [74].Additionally,
Kantarci et al observed that in a multivariate analysis, only cel-
l-associated virus levels were directly associated with mastitis
(inflammation of the breast tissue), a known risk factor for
breastfeeding transmission [75].

It is possible that cell-associated virus is less susceptible than
cell-free virus to inhibitory factors found in breast milk. In vitro
studies have suggested that many innate factors in milk can inhib-
it cell-free HIV; however, a similar effect has not been observed
with cell-to-cell viral spread [80–87]. One interpretation of this
finding is that cell-associated virus may contribute tomore breast-
feeding infections because cell-free virus is neutralized by innate
factors. The impact of such inhibitors on MTCT, however, is
largely unclear when considering population-based studies. For
example, secretory leukocyte protease inhibitor (SLPI) levels in
breast milk from HIV-infected women did not correlate with
transmission risk, but other studies have suggested that SLPI levels
in infant saliva and maternal cervicovaginal fluid correlate with
decreased risk of transmission [88–90].

Contrary to many in vitro studies, however, oral challenge
studies of humanized mice have observed that human breast
milk strongly inhibits transmission of both cell-free and cell-
associated HIV [69]. Along these same lines, evidence from

Table 1. Cohort Studies of Cell-Associated and Cell-Free Virus in Maternal Genital Fluids and Risk of MTCT

Study
Mother-Infant

Pairs (n)
Maternal Genital Virus
Levels Measureda Summary of Findings

Chuachoowong
(2000) [60]

310 CVL RNA High plasma VL (>10 000 copies/mL) and quantifiable CVL RNA were
associated with transmission (P< .001)

CVL RNA levels were associated with risk of transmission after adjusting for
plasma RNA

Panther (2000) [61] 24 CVL DNA
CVL RNA

CVL CA RNA

CVL DNA (P= .04), and RNA (P= .01) levels were associated with perinatal
transmission

CA CVL RNA levels did not correlate with transmission

John (2001) [5] 279 Cervical DNA
Vaginal DNA

Cervical (P= .004) and vaginal (P= .03) DNA levels were associated with
perinatal transmission, independent of plasma VL

Montano (2003) [62] 84 CVL DNA CVL DNA was associated with increased risk of transmission, independent
of plasma RNA VL (P= .034)

Tuomala (2003) [63] 78 CVL DNA
CVL RNA

CVL CA RNA

CVL DNA (P= .01) and RNA (P= .04) titers were associated with
transmission risk, while CVL CA RNA was not (P= .08)

CVL DNA titers were associated with transmission risk (P= .03) in vaginal
and nonelective cesarean deliveries after controlling for plasma VL. CVL
RNA and CA RNA titers were not associated with transmission after
controlling for plasma RNA

Abbreviations: CA, cell-associated; CVL, cervicovaginal lavage; MTCT, mother-to-child transmission; VL, viral load.
a CVL DNA represents cell-associated virus; CVL RNA represents cell-free virus; CVL CA RNA represents RNA present in the cellular fraction (cell-associated).
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population-based studies suggest that other immune responses
in breast milk may act to lower cell-associated virus levels. For
example, in a cohort study of 170 women, HIV-gag-specific cy-
totoxic T lymphocyte (CTL) activity in breast milk correlated
with reduced infant infection during the breastfeeding period
[91]. HIV-specific maternal antibodies in breast milk may also
reduce levels of cell-associated virus by mediating activities such
as antibody-dependent cellular cytotoxicity (ADCC). ADCC
activity results in the death of infected cells, thus preventing fur-
ther spread of infection and reducing levels of cell-associated
virus. In a small study of HIV-infected women, ADCC levels
in breast milk were associated with reduced risk of infant infec-
tion during the breastfeeding period [92]. One interpretation of
the findings that breast milk CTL and ADCC are associated
with reduced transmission is that these responses act by lower-
ing maternal cell-associated virus levels and reducing infant in-
fection risk, although this hypothesis remains to be tested.

Overall, the most data regarding cell-free versus cell-associat-
ed virus transmission in MTCT are from the breastfeeding
period, probably largely due to the fact that timing of infant

infection can be more accurately estimated with regular fol-
low-up, and collection of breast milk is easy and noninvasive.
While cohort studies suggest that cell-associated virus may con-
tribute to more infections, animal studies have shown that both
cell-free and cell-associated virus can cause oral transmission.
In vitro experiments have also suggested that factors in breast
milk may inhibit cell-free or cell-associated virus and thus
more studies need to be conducted to understand the relative
impacts of such factors on virus levels and transmission in
breastfeeding populations. Such studies can provide informa-
tion on virus transmission during breastfeeding and may also
provide insights into potential therapeutic interventions that
could work by mimicking natural inhibitory processes.

The Role of Preexisting HIV-Specific Antibodies and Virus
Transmission
MTCT is also a unique setting in which to study whether anti-
bodies play a role in protection from infection. Specifically,
maternal antibodies are transferred to the infant through the
placenta, and infection occurs in the face of HIV-specific

Table 2. Cohort Studies of Cell-Associated and Cell-Free Virus in Maternal Breast Milk and Risk of MTCT

Study
Mother-Infant

Pairs (N)
Maternal BM Virus
Levels Measureda Summary of Findings

Van de Perre (1993) [66] 129 BM DNA The presence of infected BM cells was predictive of transmission (P< .05)
Semba (1999) [70] 134 BM RNA BM RNA levels were associated with transmission (P< .0001)

Pillay (2000) [71] 79 BM RNA BM RNA levels were associated with transmission (P= .04)

John (2001) [5] 141 BM DNA Trend for higher concentration of HIV-infected cells among transmitting
mothers compared to nontransmitting mothers (P= .09)

Rousseau (2003) [72] 275 BM RNA BM RNA levels were significantly associated with transmission (P= .002)

Rousseau (2004) [73] 134 BM DNA
BM RNA

BMDNA associated with increased risk of transmission after adjusting for
cell-free virus in plasma (P= .03) and BM RNA (P= .1)

In multivariate analyses, BM RNA was not associated with transmission

Koulinska (2006) [74] 122 BM DNA
BM RNA

BM DNA (P= .001) and RNA (P= .006) were associated with
transmission.

BM DNA was predictive of transmission before (P= .04) and after 9 mo
postpartum (P= .05)

BM RNA was only predictive of transmission after 9 mo (P= .02)
Kantarci (2007) [75] 118 BM DNA

BM RNA
BM DNA (P= .001) and BM RNA (P= .002) were associated with
transmission

Positive association between BM DNA and mastitis, which was
associated with transmission

Semrau (2008) [76] 138 BM RNA Detection of BM RNA was significantly associated with transmission
(P< .01)

Lunney (2010) [77] 559 BM RNA BM RNA viral load was associated with transmission (P= .02)
Neveu (2011) [64] 72 BM RNA BM RNA shedding was associated with transmission (P< .001)

Ndirangu (2012) [78] 72 BM DNA
BM RNA

BM RNA (P< .001) and DNA (P< .001) levels were associated with
transmission. Prior to 6 mo, this association was stronger for BM DNA.
After 6 mo, this association was stronger for BM RNA

Kuhn (2013) [79] 839 BM DNA
BM RNA

HIV RNA and DNA concentrations were strongly associated with postnatal
transmission

HIV RNA concentrations remained associated with postnatal transmission
after adjusting for maternal CD4 count and plasma RNA VL.

Abbreviations: BM, breast milk; HIV, human immunodeficiency virus; MTCT, mother-to-child transmission; VL, viral load.
a BM DNA represents cell-associated virus; BM RNA represents cell-free virus.
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antibodies present in the infant. HIV-specific antibodies may
act through multiple mechanisms to prevent cell-free and/or
cell-associated virus transmission. First, antibodies may bind
to and neutralize cell-free virions, thus preventing initial infec-
tion. Alternatively, antibodies can block cell-associated virus
through mechanisms such as ADCC, which target infected
cells for destruction. The relative efficacy of these antibody
functions could thus shift the relative contribution of cell-free
or cell-associated virus transmission from one form to the
other.

Passive immunization studies in macaques have shown that
both neutralization and other antibody functions are important
in protection from infection [93–95], but the relative contribu-
tion of different antibody functions in human infant protection
is less clear. A number of population-based studies from MTCT
cohorts have been conducted, and while there is some evidence
to support a role for neutralizing and nonneutralizing antibod-
ies in protection, there is inconsistency among studies, with a
number of other studies suggesting no protective effect (re-
viewed in [96, 97]). Future studies are warranted to clarify
how these antibody functions impact the transmission of cell-
free and cell-associated virus transmission.

The Impact of Antiretroviral Therapy on Cell-Free and Cell-
Associated Transmission
Treatment of women and their children with antiretrovirals
during the course of pregnancy and breastfeeding has dra-
matically lowered the risk of MTCT, by reducing maternal
viral burden and by providing prophylaxis to the infant. In
fact, prevention of MTCT was one of the first settings to show
that ARV prophylaxis can prevent infection [6, 98]. Multiple
studies have observed that ARVs provided to the infant can pre-
vent infection, even in the absence of maternal treatment
[99, 100]. Thus, infant prophylaxis works independent of ma-
ternal viral loads, and the ARVs may be acting to prevent
cell-free or cell-associated virus.

The reduction in maternal viral load associated with ARV
treatment, however, also greatly contributes to reduction in
transmission risk. Data by Chung et al suggest that the decrease
in maternal RNA viral load associated with treatment is an in-
dependent protective factor against transmission [101]. The
correlation between a reduction in maternal RNA viral load
and infant infection risk has been shown in a number of com-
partments (blood, breast milk, and genital secretions) and thus
suggests that cell-free virus significantly contributes to MTCT
[4, 60, 102–106]. Similarly, disruption of antiretrovirals in the
mother has been associated with an immediate increase in
RNA viral load in breast milk and a subsequent increase in
risk of breastfeeding transmission [107, 108].

While ARVs have been shown to reduce RNA viral load in
maternal fluids, there is a limited effect on cell-associated
virus (as measured by HIV DNA) in breast milk [102–104]

and blood [109, 110]. These results seemingly contradict the ep-
idemiologic and in vitro data presented above, which suggest
the importance of cell-associated virus in MTCT. This discrep-
ancy is particularly true after short-course treatments used for
prevention of MTCT [103].

If cell-associated virus is important in transmission, then it is
unclear why short-course ARVs are so effective. One explana-
tion may be that infant prophylaxis, discussed above, is the
major mediator of protection. Alternatively, the number of ac-
tivated infected cells that produce infectious virus may represent
a small proportion of the total number of infected cells mea-
sured by HIV DNA. Thus, while maternal treatment may lead
to rapid decline of the infected, activated CD4+ T cells (which
would lead to a rapid decline in HIV RNA as these are the cells
that produce the majority of free virus), a reservoir of primarily
latently infected T cells and/or macrophages would remain.
These cells are potentially less infectious, but still detected by
HIV DNA assays. In this case, part of the discrepancy may be
explained by the method used to quantify cell-associated HIV.
Provirus levels detected by DNA, typically used to enumerate
cell-associated HIV, have been shown to be poorly predictive
of the number of latently infected cells capable of producing in-
fectious virus [30, 111]. In fact, in patients on long-term ARV
treatment, DNA levels gave infected cell frequencies greater
than 100× those levels predicted by viral outgrowth assays
[111]. Thus, it is possible that the majority of cells in maternal
fluids that harbor HIV DNA after ARV treatment encode defec-
tive virus or virus that cannot be induced, and are therefore not
an appropriate measure of cell-associated virus capable of me-
diating transmission [30].

A more relevant measure of the transmissible form of cell-
associated virus may be cell-associated RNA, which is likely
more indicative of infectious virus associated with cells. Lehman
and colleagues measured the impact of antiretroviral treatment
on cell-free RNA, cell-associated RNA, and cell-associated
DNA levels in breast milk. While treatment had no measurable
impact on cell-associated DNA, it did significantly reduce the
levels of cell-free and cell-associated RNA [103]. These data
suggest that cell-associated HIV RNA levels may be a more im-
portant measure of cell-associated virus in breast milk, and fu-
ture studies should determine if cell-associated RNA levels in
maternal fluids correlate with infant infection risk.

CONCLUSIONS

Amajority of mother-to-child transmission events are believed to
occur across epithelial barriers; however, the relative contribution
of cell-free versus cell-associated virus in transmission is still un-
clear. A number of epidemiologic studies of breastfeeding and in-
trapartum transmission suggest that cell-associated virus may be
relatively more important than cell-free virus. Similarly, in vitro
studies examining the infection of polarized epithelial cell layers
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(including placental trophoblasts), suggest that cell-associated
HIV is more efficient and infectious. Alternatively, data from
nonhuman primates have provided proof-of-concept that cell-
free virus can result in infant infection, although these studies
often use very high levels of virus relative to those levels which
infants are naturally exposed. Supporting the cell-free virus trans-
mission hypothesis, data from human studies have shown that
HIV RNA is drastically reduced following antiretroviral treat-
ment, and this drop in viral load is associated with a reduction
in transmission. Contrary to the epidemiologic and in vitro stud-
ies, cell-associated viral loads remain relatively constant despite
treatment. While this discrepancy may be explained by the meth-
ods used to measure cell-free and cell-associated virus, there is
need for future studies in this area.

A number of considerations should be taken into account
when planning future MTCT studies. First, as antiretroviral
treatment and prophylaxis is scaled up, it is of interest to better
define the viral reservoir in women receiving ARV treatment
and to clarify the potential of these cells to produce infectious
virus. Along these lines, as highlighted by latent reservoir stud-
ies, it is important to consider a better measure of cell-associat-
ed virus that accounts for the potential of cells to transmit virus.
A measure that is more indicative of the levels of infectious virus
associated with infected cells, such as cell-associated RNA lev-
els, should be utilized in epidemiologic and treatment studies.
Similarly, both cell-associated and cell-free virus levels should
be measured in these studies to allow for a more direct compar-
ison of their relative contributions to infection. Finally, animal
models of MTCT should also incorporate cell-associated virus
in challenge inoculum. The data garnered from such research
will ultimately provide a clearer picture of the relative impor-
tance of cell-free and cell-associated virus in HIV mother-to-
child transmission.
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