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Subtype-specific overexpression of the Rac-GEF
P-REX1 in breast cancer is associated with
promoter hypomethylation
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Abstract

analysis of methylation of the PREXT gene promoter.

patient survival.

Introduction: The Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in
mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal
human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of
the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown. Toward the
goal of dissecting the mechanistic basis of P-REX1 overexpression in breast cancer, in this study we focused on the

Methods: To determine the methylation status of the PREXT promoter region, we used bisulfite genomic
sequencing and pyrosequencing approaches. Re-expression studies in cell lines were carried out by treatment of
breast cancer cells with the demethylating agent 5-aza-2'-deoxycitidine. PREXT gene methylation in different human
breast cancer subtypes was analyzed from the TCGA database.

Results: We found that the human PREXT gene promoter has a CpG island located between —1.2 kb and +1.4 kb,
and that DNA methylation in this region inversely correlates with P-REX1 expression in human breast cancer cell
lines. A comprehensive analysis of human breast cancer cell lines and tumors revealed significant hypomethylation
of the PREXT promoter in ER-positive, luminal subtype, whereas hypermethylation occurs in basal-like breast
cancer. Treatment of normal MCF-10A or basal-like cancer cells, MDA-MB-231 with the demethylating agent
5-aza-2’-deoxycitidine in combination with the histone deacetylase inhibitor trichostatin A restores P-REX1 levels to
those observed in luminal breast cancer cell lines, suggesting that aberrant expression of P-REX1 in luminal breast
cancer is a consequence of PREXT promoter demethylation. Unlike PREXT, the pro-metastatic Rho/Rac-GEF, VAV3, is
not regulated by methylation. Notably, PREXT gene promoter hypomethylation is a prognostic marker of poor

Conclusions: Our study identified for the first time gene promoter hypomethylation as a distinctive subtype-specific
mechanism for controlling the expression of a key regulator of Rac-mediated motility and metastasis in breast cancer.

J

Introduction

Rho/Rac GTPases are effectors of cell surface receptors
that control fundamental cellular functions, including
actin cytoskeleton dynamics, cell morphology, motility,
and the progression through the cell cycle [1]. Like most
GTPases, Rac cycles between a GDP-bound inactive state
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and a GTP-bound active state responsible for the ac-
tivation of downstream effectors. This switch is tightly
regulated by Rac guanine nucleotide exchange factors
(Rac-GEFs) that promote GTP loading onto Rac, and
Rac GTPase activating proteins (Rac-GAPs) that inactivate
Rac by accelerating GTP hydrolysis [1-3]. Extensive evi-
dence supports a role for Rac in tumorigenesis as well as
in the acquisition of a highly motile phenotype required
for metastatic dissemination of cancer cells [4-6]. Alter-
ations of Rac signaling are common in human cancer and
can involve upregulation of Rac itself, expression of an
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active spliced variant (Raclb), or very rarely Rac gain-of-
function mutations and Rac-GAP downregulation [7-13].
However, the most common mechanism that accounts for
Rac hyperactivation in human cancer is the dysregulation
of Rac-GEF function [14-16]. A number of studies have
indeed reported overexpression and activating mutations
of Rac-GEFs in cancer, as described for Tiaml, Trio,
and others [14-21]. Exacerbated inputs from pathways
required for the activation of Rac-GEFs, such as PI3K
or receptors that are coupled to PI3K activation (for ex-
ample HER2/ErbB2 or PDGF receptors), also confer Rac
hyperactivation [3,6,22,23].

Using a PCR-based array screening approach, our
laboratory previously reported that the PI3K- and Gpy-
dependent Rac-GEF P-REX1 is highly expressed in breast
cancer [24]. P-REX1 was found to be an essential mediator
of HER2-driven activation of Rac and motility in breast
cancer cells by integrating signals emanating from tyrosine-
kinases and G-protein-coupled receptors (GPCRs) [24,25].
RNA interference (RNAi)-mediated silencing of P-REX1
essentially impairs the ability of breast cancer cells to form
tumors in nude mice as well as their migratory capacity,
suggesting its potential involvement in breast tumorigen-
esis and metastasis [24]. P-REX1 is essentially undetect-
able by immunohistochemistry (IHC) analysis in human
normal mammary epithelial tissue, whereas its expression
can be readily detected in approximately 60% of breast
tumors [24]. Elevated P-REX1 expression in breast tumors
has been associated with poor outcome and development
of metastasis in patients [24,25]. Analysis of P-REX1 ex-
pression using the Netherlands Cancer Institute (NKI)
microarray data and more recently through metagenomic
analysis of Rho/Rac GEFs established that P-REX1 upreg-
ulation occurs in a subset of tumors, specifically those
of the luminal subtype. On the other hand, P-REX1
levels are low in basal-like breast cancer, a subtype with
high abundance of triple-negative (estrogen receptor
(ER)-, progesterone receptor (PR)-, and human epider-
mal growth factor receptor (HER2)-negative) tumors
[21,24]. In addition to P-REX1, luminal tumors express
high levels of VAV3, a Rho/Rac GEF that was found to
drive a lung-specific metastatic transcriptional program
in breast cancer cells [21]. Consistent with data observed
in breast cancer, P-REX1 has been implicated in metasta-
sis in prostate cancer and melanoma [26,27].

As luminal breast cancer is the most common subtype
and responsible for the largest number of breast cancer
deaths [28,29], understanding the regulation and function
of these Rac-GEFs is highly relevant. Deciphering the me-
chanisms leading to overexpression of tumorigenic and
metastatic proteins is key to identify novel approaches to
counterbalance dysregulated oncogenic stimuli in cancer.
In this regard, the molecular mechanisms underlying
P-REX1 upregulation in luminal breast cancer remain
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unknown. Extensive evidence suggests that epigenetic
events including DNA methylation and histone modi-
fications play important roles in the transcriptional
regulation of oncogenic/metastatic genes in many cancer
types, including breast cancer [30-32]. DNA methylation
of promoter CpG islands results in transcriptional silen-
cing, and dysregulation of this epigenetic mechanism plays
an important role in oncogenesis and cancer progression
[31]. Towards the goal of dissecting the mechanistic basis
of P-REX1 overexpression in breast cancer, in this study
we focused on the analysis of methylation of the PREX1
gene promoter. We found that derepression of P-REX1
expression in luminal breast cancer involves the deme-
thylation of its promoter. A comprehensive analysis of
human mammary cell lines and patient-derived tumors
revealed marked differences in PREXI promoter methy-
lation in distinct breast cancer subtypes that inversely
correlate with P-REX1 expression levels. The dissection of
the mechanisms leading to P-REX1 upregulation in breast
cancer may have significant prognostic and therapeutic
value.

Methods

Cell lines

Human breast cell lines (BT-474, BT-549, HCC1419,
HMEC, MCF-10A, MCF-7, MDA-MB-231, MDA-MB-
361, MDA-MB-453, MDA-MB-468 and T-47D) were
obtained from the American Type Culture Collection
(ATCC; Manassas, VA, USA), except for HMEC cells
that were purchased from Lonza (Walkersville, MD, USA).
Cells were grown in the medium recommended by the
providers.

Western blot analysis

Western blot analysis was carried out essentially as
described previously [33]. Briefly, cells growing in mono-
layer at a confluence of 80% were lysed in RIPA buffer
(50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1%
NP-40, 0.5% sodium deoxychloride, and protease/phos-
phatase inhibitors). Ten pg of total protein lysate were
loaded onto 8% acrylamide gels, transferred into PVDF
membranes, and incubated with anti-human P-REX1
antibody (1:1,000, Sigma-Aldrich; St. Louis, MO, USA) or
anti-ER-alpha antibody (1:1,000, Santa Cruz Biotech-
nology; Dallas, TX, USA). For loading normalization
we used anti-B-actin antibody (1:10,000, Sigma-Aldrich).
Anti-rabbit (1:1,000, Bio-Rad; Hercules, CA, USA) and
anti-mouse (1:5,000, Bio-Rad) antibodies conjugated
with horseradish peroxidase were used as secondary
antibodies. Bands were visualized using the ECL Western
blotting detection system. Images were captured with
a Fuji LAS-3000 Imaging System, as previously de-
scribed [34].



Barrio-Real et al. Breast Cancer Research 2014, 16:441
http://breast-cancer-research.com/content/16/5/441

Real-time quantitative PCR (qPCR)

Total RNA from cells was isolated using the RNeasy
Mini Kit (Qiagen; Valencia, CA, USA). One pg of total
RNA was reverse transcribed to cDNA with the TagMan
Reverse Transcription Kit (Invitrogen; Carlsbad, CA, USA).
Real-time quantitative PCR (qPCR) was performed in
triplicate in a total volume of 25 pl containing 10 to
100 ng cDNA, TagMan universal PCR MasterMix (Ap-
plied Biosystems; Branchburg, NJ, USA), target primers
(45 nM), and fluorescent probe (12.5 nM), using an ABI
PRISM 7700 detection system. TagMan probes specific
for PREX1, VAV3, ESRI and the housekeeping genes
B2M and UBC (used for normalization) were obtained
from Applied Biosystems. PCR product formation was
continuously monitored using the Sequence Detection
System software version 1.7 (Applied Biosystems).

Analysis of CpG islands in the PREX1 and VAV3 gene
promoters

The presence of CpG islands in the human PREXI
(NM_020820) and VAV3 (NM_006113) gene promoters
was determined using the Methyl Primer Express software
(Applied Biosystems).

Bisulfite sequencing and pyrosequencing

Genomic DNA was isolated from cell lines in culture using
the QIAamp DNA Mini Kit (Qiagen). For bisulfite sequen-
cing, 1 pg of genomic DNA was treated with sodium bisul-
fite and hydroquinone [35] and purified using the Wizard
DNA Clean-up system (Promega; Madison, WI, USA).
Bisulfite treated-genomic DNA was used as a template
to amplify specific promoter regions of PREX1 and VAV3,
using the Go-Taq Hot Start Polymerase (Promega).
Primer pairs in bisulfite-sequencing PCRs were as follows:
5-GGAGGATTTTGGAGTTAGGTAT (PREX1-BSP1-
Forward), 5'-AACAAATACCCTACCTACTCCC (PREX1-
BSP1-Reverse), 5-TTAGGGGGTAAAGAAGTTTAGA
(PREX1-BSP2-Forward), 5'-AACCAAATAAACACC"/
cGAACT (PREX1-BSP2-Reverse), 5'-GTTAGAATGGA
GGC/rGTTTAG (PREXI1-BSP3-Forward), 5'-AAAAC
TATCCCCAAACTCC (PREXI-BSP3-Reverse), 5'-GG
GATT/tGAGTTTTTTTAGA (PREXI-BSP4-Forward),
5"-ACTCCAACAAAAACCTATACAT (PREX1-BSP4-
Reverse), 5'-TTTAAGTAGGTTTTTGTGGGGT (VAV3-
BSP-Forward) and 5'-CAAACTCCCCAAAACAATAAA
(VAV3-BSP-Reverse). The thermal cycle conditions con-
sisted of 95°C for 5 min, followed by 35 cycles of de-
naturation at 95°C for 30 sec, annealing at 57°C for
30 sec, and elongation at 72°C for 1 min, and then
an incubation at 72°C for 10 min. PCR products were
cloned into the TopoTA vector (Invitrogen). Eight
clones for each PCR reaction were randomly selected
and sequenced.
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For pyrosequencing, bisulfite treated-genomic DNA
obtained from cell lines in culture was amplified using
the Hs_PREX1_04_PM PyroMark CpG assay (Qiagen)
specific for the human PREXI promoter, and the Pyro-
Mark PCR Kit (Qiagen), using the conditions described
by the manufacturer. Pyrosequencing was performed in
the Genetic Resources Core Facility at Johns Hopkins
University.

5-aza-2'-deoxycitidine and trichostatin A treatment

Cells growing in complete media were treated with 10 uM
5-aza-2'-deoxycitidine (AZA) (Sigma-Aldrich) for 96 h
and/or 100 ng/ml trichostatin A (TSA) (Sigma-Aldrich)
for 24 h. At the end of treatment, P-REX1 mRNA ex-
pression was determined by qPCR as described above.

Microarray analysis
For PREX1 expression and methylation profiles, proc-
essed cell line expression data was downloaded from
ArrayExpress under the accession number E-TAMB-157
[36]. Processed cell line methylation data was obtained
from the Gene Expression Omnibus (GEO) database under
the accession number GSE42944 [37]. Gene expression
and Illumina 450 k Human Methylation array data for The
Cancer Genome Atlas (TCGA) breast cancer samples were
obtained from the TCGA data portal. Expression data
from MCF-7 cells with ER-alpha depletion was obtained
from the GEO database under the accession number
GSE27473 [37]. Statistical analyses for microarrays were
performed using the R Biostatistical Program [38] with
annotation packages installed from Bioconductor [39].
Clinical annotations for the TCGA datasets were ob-
tained from the TCGA data portal. Samples in which
ER status was indeterminate were excluded from the
ER analysis. HER2 amplification status was given as two
variables: FISH and IHC. Equivocal and indeterminate
calls were excluded and when discordance occurred
between both calls, priority was given to the FISH assay.

Transfections and luciferase reporter gene assays

For luciferase reporter assays, cells in 12-well plates were
co-transfected with 1 pg of pGL3-PREXI promoter con-
structs [40] or empty vector, and 0.1 ng of the Renilla
reporter vector pRL-TK (Promega), using the transfection
reagent X-tremeGENE HP (Roche; Indianapolis, IN, USA).
Forty-eight hours after transfection, cells were lysed with
passive lysis buffer (Promega), and luciferase activity deter-
mined in cell extracts using the Dual-Luciferase Reporter
Assay System (Promega).

For transient depletion of ER-alpha, we used ESR1 ON-
TARGETplus SMARTpool, (Catalog # L-003401-00-0005),
from Dharmacon (Lafayette, CO, USA). ON-TARGETplus
Non-Targeting pool (Catalog # D-001810-0-05) was used
as a control. RNAi was transfected using Lipofectamine
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RNAiMax (Invitrogen) following instructions from the
manufacturer.

Statistical analysis

One-way ANOVA test with Bonferroni corrections was
applied, with P <0.05 considered as statistically significant.
Statistical significance for gene expression and probe me-
thylation from cell line and TCGA datasets were assessed
using the Mann-Whitney test with Bonferroni correction
across groups. Bonferroni correction was also applied
when a given gene was analyzed with more than one
probe. For these tests, P <0.05 was considered as statis-
tically significant. Pairwise correlations were calculated
using the Spearman’s ranked correlation test, with P <0.05
considered as statistically significant. For the Kaplan-Meier
curves, groups of low and high methylation were defined
via bifurcation using the median beta value of the specific
probe. Statistical difference between survival curves was
calculated using the log-rank test.

Results

Differential methylation of the PREX1 gene in breast
cancer subtypes

We have previously established that the Rac-GEF P-REX1
is overexpressed in breast cancer relative to normal
breast tissue, and a positive correlation was found with
ER-positive breast tumors [24]. Analysis of databases
from human breast specimens revealed elevated P-REX1
mRNA levels mainly in luminal A and luminal B subtypes,
whereas expression in the basal-like breast cancer subtype
was very low [21,24]. To extend these results to cellular
models, we analyzed P-REX1 expression in a number of
human breast cancer cell lines. Western blot analysis
showed elevated P-REX1 protein levels in most luminal
breast cancer cell lines examined (T-47D, HCC1419,
MDA-MB-361, MCF-7, BT-474). On the other hand,
P-REX1 was essentially undetectable in basal-like cell lines
(BT-549, MDA-MB-231, MDA-MB-468) or in normal
mammary epithelial cells (HMEC, MCF-10A) (Figure 1A).
This distinctive pattern of expression could also be
detected at the mRNA level, as determined by qPCR
(Figure 1B).

To dissect the mechanisms behind the differential
expression of P-REX1 in breast cancer, we turned our at-
tention to gene promoter methylation. DNA methylation
of CpG dinucleotides is an epigenetic alteration that
induces transcriptional silencing, and its dysregulation
has profound roles on the expression of genes linked to
oncogenesis and tumor progression [31]. Analysis of
the PREXI gene promoter sequence using the Methyl
Primer Express software revealed two major CpG islands,
defined as sequences covering more than 200 bp with a
C+ G content over 50% and an observed-to-expected
CpG ratio >0.6 [41]. The first CpG island is located 6.5

Page 4 of 13

to 5.5 kb upstream from the ATG start codon. The sec-
ond (and largest) CpG island is located between -1.2 kb
and +1.4 kb, and it includes the first exon of the PREX1
gene. This proximal CpG island is particularly rich in
C + G bases and has an observed-to-expected CpG ra-
tio >0.75 (Figure 1C).

In order to determine the methylation status of the
PREX1I promoter region, we utilized a bisulfite genomic
sequencing approach, using three representative breast cell
lines for normal (MCF-10A), basal-like (MDA-MB-231),
and luminal (BT-474) subtypes. Four different bisulfite
sequencing PCRs (BSPs) were designed in order to cover
most of the proximal CpG island. This analysis revealed
prominent hypermethylation of the PREXI promoter in
MCE-10A cells (86.8% CpG dinucleotides methylated)
and MDA-MB-231 cells (93.2%). On the other hand, this
CpG island was essentially unmethylated in BT-474 cells
(1.8%) (Figure 1D). Thus, the methylation status of the
PREX1 promoter inversely correlates with P-REX1 mRNA
and protein levels in MCF-10A, MDA-MB-231 and
BT-474 cells.

To further establish a relationship between PREXI
gene methylation and P-REX1 expression in cell lines,
we determined DNA methylation levels by pyrosequenc-
ing, a fully quantitative methylation assessment. Methy-
lation was determined using a PyroMark CpG assay in a
region between +377 bp and +414 bp in the PREXI
promoter that includes six CpG dinucleotides. In agree-
ment with results from the BSP analysis, pyrosequencing
revealed high methylation in normal MCF-10A and basal-
like MDA-MB-231 cells (72.3% and 85.3% methylation, re-
spectively). On the other hand, methylation was essentially
undetectable in luminal cell lines (<3% in all cell lines
examined) (Figure 2A and 2B), which in all cases display
high P-REX1 mRNA levels by qPCR (see Figure 1B).

Next, we analyzed the methylation status of PREX1 in 51
breast cancer cell lines obtained from the Infinium Human-
Methylation27 BeadChip array (Illumina; San Diego,
CA, USA); GSE42944 [37]). This array contains data on
€g24364574, a CpG dinucleotide located at bp +703 in the
PREXI gene promoter. Again, this analysis revealed major
differences between basal-like cell lines that display high
methylation on ¢g24364574 and luminal-derived cell lines
(Figure 2C; P <0.001). Taken together, analysis of human
mammary cell lines argue for a major role of methylation
in repressing the expression of P-REX1 in normal breast
tissue and basal-like breast tumors. It is conceivable that
derepression of P-REX1 expression in luminal breast cancer
is associated with demethylation of the PREX1 promoter.

Rescue of P-REX1 expression in normal mammary and
basal-like breast cancer cells by 5-aza-2-deoxycytidine
To determine if P-REX1 expression is regulated by me-
thylation, we used the demethylating agent 5-aza-2'-
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Figure 1 Differential P-REX1 expression and methylation of the PREXT gene promoter in mammary cell lines. Panel A. P-REX1 levels in
human breast cell lines were determined by Western blot. 3-actin was used as loading control. N, normal; B, basal-like; L, luminal. Panel B. Quantitative
PCR determination of P-REXT mRNA levels in human breast cancer cell lines, normalized to those in T-47D cells. B2M and UBC were used as
housekeeping genes. Data are expressed as mean + S.D. of triplicate samples. A second additional experiment gave similar results. As P-REX1
mMRNA levels in MCF-10A are non detectable (ND), statistical analysis is not provided. Panel C. Schematic representation of the PREXT gene
promoter. The location of the two CpG islands, the four regions amplified by BSPs, and the ATG codon are indicated. Panel D. DNA methylation
of the PREXT promoter was determined by bisulfite sequencing PCR. Each dot represents the methylation status of a CpG dinucleotide in one

sequenced BSP clone. Black dot, methylated CpG; white dot, unmethylated CpG.

deoxycytidine (AZA). As histone deacetylation usually
works together with DNA methylation in the silencing of
genes [42,43], AZA treatment was done either in the pres-
ence or absence of the histone deacetylase (HDAC) inhibi-
tor trichostatin A (TSA). As shown in Figure 3, combined
AZA/TSA treatment rescued P-REX1 expression in MCE-
10A and MDA-MB-231 cells to levels in the range of those
observed in T-47D or BT-474 cells. P-REX1 expression
could not be rescued by treatment with AZA or TSA alone.
These results suggest that the PREXI promoter is inactiva-
ted by DNA methylation in non-expressing cell lines, and
that demethylation in combination with acetylation of asso-
ciated histones is sufficient to rescue P-REX1 expression.

Analysis of PREXT mRNA expression and promoter
methylation in human breast specimens from the TCGA
database revealed presence of major differences in breast
cancer subtypes

Following the studies in mammary cell lines, we next
examined PREX1 gene methylation in human breast cancer

specimens using the TCGA public database. In agreement
with IHC data [24], this database also showed
significant P-REX1 mRNA upregulation in primary breast
carcinomas vs. normal breast tissue samples (Figure 4A,
left panel, P <0.001). Analysis of cg24364574 methylation
status in the TCGA database revealed significantly lower
methylation in primary breast tumors relative to normal
breast tissue (Figure 4A, right panel, P <0.001).

The TCGA database showed significantly higher levels
of P-REX1 in luminal A and B breast cancer relative
to other cancer subtypes and normal tissues (Figure 4B,
P <0.001). Analysis of cg24364574 methylation status in
the TCGA database revealed remarkable differences among
the different breast cancer subtypes. Specifically, high
methylation was observed in both basal-like tumors and
normal breast tissue, whereas a profound hypomethyla-
tion in PREX1 was detected in those subtypes with high
P-REX1 expression, namely luminal A/B and normal-like
subclasses (Figure 4B, P <0.01). The HER2/ErbB2 subtype
displays slightly higher levels of methylation compared
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to those of luminal subtype. Figure 4C shows a clear
inverse correlation between P-REX1 expression levels
and PREXI gene promoter methylation status in human
breast cancer and normal breast specimens (rho = —0.55;
P <0.001).

Further analysis using the TCGA database revealed
PREX1 hypomethylation in ER-positive tumors relative
to ER-negative breast tumors (Figure 4D, left panel,
P <0.001), which inversely correlates with P-REX1 mRNA
expression (Figure 4D, right panel, P <0.001). In fact,
P-REX1 levels in breast tumors positively correlates
with the expression of the ER-alpha gene, ESRI (Figure 4E,
rho =0.58; P <0.0001). Interestingly, analysis from the
GSE27473 database revealed significant reduction in
P-REX1 mRNA expression in MCF-7 cells upon ER-
alpha short hairpin (sh)RNA depletion. We validated
these results experimentally both in MCF-7 and T-47D
cells (Figure S1 in Additional file 1). Our analysis did
not reveal statistically significant changes in PREXI
methylation when we compared HER2/ErbB2-positive
and HER2/ErbB2-negative tumors (Figure S2 in Additional
file 2).

Demethylation of the PREXT promoter gene is associated

with reduced breast cancer survival

Montero et al. reported a correlation between P-REX1
expression and poor patient outcome in breast cancer
[25]. In addition, we previously observed that expression
of P-REX1 in primary breast tumors is statistically sig-
nificantly associated with the development of metastasis
[24]. We therefore asked if methylation of the PREX1
promoter is linked to survival in patients with breast
cancer. As shown in Figure 5, low PREXI methylation
associates with elevated risk of breast cancer mortality.
This association becomes statistically significant when we
compare patient survival five years after initial diagnosis
(P =0.03), suggesting a notable trend of poor long-term
survival in patients with lower PREXI methylation.

VAV3 expression in breast cancer is not regulated by
methylation

Citterio et al. recently reported that other Rac-GEFs
in addition to P-REX1 are upregulated in luminal
breast cancer. Specifically, VAV3 is overexpressed in lu-
minal breast cancer cells, and this drives a transcriptional
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program for metastatic dissemination to the lungs. More-
over, VAV3 upregulation correlates with ER and PR
expression in breast cancer cells [21]. Concordant with
these data, we found a strong correlation between P-REX1
and VAV3 expression in human breast samples (Figure 6A;
rho =0.47; P <0.0001). VAV3 mRNA levels tend to be
higher in luminal-derived breast cancer cell lines than
in basal-like cancer cell lines or normal mammary cells
(Figure 6B). We then asked if VAV3 expression is regu-
lated by methylation. The Methyl Primer Express software
identified three CpG islands in the VAV3 gene promoter
(Figure 6C). For the analysis of the methylation status
of the VAV3 promoter we used bisulfite sequencing.
Cell lines with low VAV3 expression (MDA-MB-231
and BT-549, basal-like) and high VAV3 expression (BT-474,
luminal) were selected. As shown in Figure 6D, sequencing
of the BSP region comprising bp -989 to —643 revealed
essentially no CpG island methylation in these cell lines.
Using the TCGA database, we analyzed the methylation
status of the CpG dinucleotide ¢g19918758 located at
bp -623 in the VAV3 promoter. We found low methylation
across all samples and no significant differences in the pat-
tern of methylation between the different breast cancer
subtypes (Figure 6E). Additionally, there is no statistically
significant correlation between VAV3 promoter methyla-
tion and VAV3 mRNA expression (Figure 6F; rho = -0.10;
P =0.13). Therefore, methylation plays a major role in con-
trolling P-REX1 expression in breast cancer; however, it
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does not seem to be a primary mechanism for the control
of VAV3 expression.

Discussion

Rac plays important roles in breast cancer cell migration
and invasiveness and is upregulated in invasive human
breast cancer [7-9,11-13]. Previous studies identified the
Rac-GEF P-REX1 as a mediator of Racl activation and
motility of breast cancer cells in response to growth fac-
tors and chemokines [24,25,44]. P-REX1 is predominantly
upregulated in luminal A and B breast cancer, and its ex-
pression is higher in primary breast tumors from patients
that ultimately develop metastasis. P-REX1-positive cells
can be readily detected in the lymph nodes of patients
with breast cancer, strongly arguing for the involvement of
this Rac-GEF in the local metastatic dissemination of
breast cancer cells [24]. In addition to its involvement in
breast cancer, P-REX1 also confers an invasive phenotype
to prostate cancer and melanoma cells [26,27]. The main
goal of this study was to decipher the mechanisms behind
P-REX1 upregulation in luminal breast cancer, which
remained unexplored to date. Our results identified me-
thylation of the PREXI gene promoter as a key mechan-
ism implicated in the differential expression of P-REX1 in
breast cancer. On the other hand, methylation does not
seem to be involved in the upregulation of VAV3, a Rho/
Rac-GEF also implicated in breast cancer metastasis [21],
despite the presence of CpG islands in the VAV3 gene
promoter. VAV3 is basally expressed in all different breast
cancer subtypes despite a preferential overexpression in
luminal breast cancer, thus suggesting that mechanisms
other than promoter methylation regulate its differential
expression.

The PREXI promoter has two CpG islands, one of
them very rich in C+ G bases located between -1.2 kb
and +1.4 kb. Our results indicate a differential methylation
pattern of this CpG island between different breast cancer
subtypes. A systematic analysis of human breast cancer
cell lines and tumors revealed that this promoter region is
highly methylated in the normal breast epithelium and
basal-like breast cancer, and hypomethylated in luminal
breast cancer. The inverse correlation found between
PREXI1 promoter methylation and P-REX1 expression
strongly indicates a role for this epigenetic mechanism in
regulating the P-REX1-Rac signaling pathway in breast
cancer cells through the control of P-REX1 expression.
Additionally, P-REX1 expression can be induced by treat-
ment with the demethylating agent AZA in combination
with the HDAC inhibitor TSA in breast cell lines with
PREX1 promoter hypermethylation. Regardless of few
studies suggesting indirect effects of these agents [45,46],
our results argue for a distinctive demethylation of the
PREX1 promoter that contributes to its upregulation in
the luminal subtype. Interestingly, an association between
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Figure 5 PREX1 methylation predicts poor survival of breast
cancer patients. Kaplan-Meier curve and log-rank test for the
survival of breast cancer patients with low or high PREXT methylation
levels was obtained from the TCGA database. Two P values were
calculated, one for the comparison of the two groups since time 0

(P =0.093), and a second one after year 5 (P =0.03). TCGA, The Cancer

Time (years)

PREXI1 promoter hypomethylation and reduced overall
survival in patients was observed, which reaches statistical
significance when considering patients five years after
diagnosis. It should be noted that a previous reported ana-
lysis of clinical data indicates that patients with elevated
P-REX1 levels in breast tumors had a shorter disease-free
survival, and a multivariate analysis for known prognostic
markers in breast cancer showed that P-REX1 is an inde-
pendent marker [25]. Taken together, these findings sup-
port the concept that the methylation status of the PREX1
promoter is causally linked to P-REX1 upregulation and
associates with poor outcome of breast cancer patients,
thus implying PREXI methylation as a prognostic factor.
Although basal-like tumors have the worse prognosis par-
ticularly within the first five years after diagnosis [47],
most breast cancers belong to the luminal type. Therefore,
survival correlations with P-REX1 expression most likely
include luminal breast cancer patients as the largest popu-
lation, thus arguing the possibility that PREXI promoter
methylation has prognostic value to predict outcome in
this subset of patients. It is important to note that studies
using three-dimensional organotypic cultures showed that
Rac activity is important for tumor invasion regardless
of subtype [13]. This suggests that Rac-GEFs other than
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P-REX1 are implicated in Rac activation in basal-like
tumors.

DNA methylation is a primary epigenetic mechanism
for the silencing of genes that has been widely associated
with all stages of cancer development, and specific me-
thylation events have been used as biomarkers for
diagnosis and prognosis [48,49]. One well-established

alteration linked to cancer development is the inacti-
vation of tumor suppressor genes by DNA methylation.
For example, epigenetic silencing by methylation of PTEN
and BRCAI genes is a hallmark of breast cancer [50,51].
Predictably, inhibition of DNA methylation has been ex-
tensively considered as a therapeutic approach, and
DNA methylation inhibitors have been approved for
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cancer therapy [52]. Notwithstanding, fewer studies have
addressed a role for abnormal demethylation in cancer,
although hypomethylation of the genome has been in-
creasingly recognized as a cancer-linked trait, including in
breast cancer [53,54]. For example, early studies found
that hypomethylation of cancer-linked satellite 2 (Sat2) in
chromosome 1 is significantly associated with ovarian and
breast cancer [53,55]. Subsequent studies showed that the
expression of oncogenic proteins could be activated by
abnormal hypomethylation, as shown for MYC, H-RAS,
R-RAS, BCL2 and PIK3CA [56-61]. Landscapes of pro-
moter demethylation and common hypomethylation
signatures have also been established for various cancers
[62-65]. In addition, DNA demethylation occurs during
the process of malignant cell transformation by onco-
genes and carcinogenic agents [66-68], and reduced
methylation in normal tissue was shown to predict pre-
disposition to multiple cancers [69]. Most remarkably,
global expression analysis identified hypomethylation of
pathways critical for growth and metastasis in cancer
[62,70,71]. Indeed, hypomethylation of gene promoters
for invasive/metastatic proteins such as uPA and MMP2
has been reported [72-74]. There is so far little evidence
that components of the Rac pathway, a cascade that
plays fundamental roles in motility and invasiveness,
could be regulated at the epigenetic level. One study
showed that expression of the metastatic exchange factor
Tiam1 in colon cancer is inversely related to the methyla-
tion status of its promoter; however, TIAM1 gene hyper-
methylation also occurs in many tumors, and a clear
relationship with metastasis could not be observed [75].
Wong et al. showed that P-REX1 expression in prostate
epithelial cells could be stimulated by a HDAC inhibitor,
and suggested that disassociation of HDACs from the
transcription factor Spl on the PREX] promoter may con-
tribute to aberrant P-REX1 upregulation in metastatic
prostate cancer [40]. We found similar results in MCF-7,
BT-474, and HCC1419 breast cancer cells (a representa-
tive experiment in MCE-7 cells is shown in Figure S3 in
Additional file 3). It has been reported that methylation of
adjacent CpG sites in the Spl DNA consensus sequence
can affect Spl binding [76]. However, we found that in
breast cancer cells the luciferase activity of a PREXI pro-
moter reporter that includes the Spl sites (located in the
proximal CpG island, positions —201/-192 and —170/-161)
does not change after methylation (data not shown),
suggesting that methylation of the Sp1 sites is not relevant
for controlling the expression of the gene. At the present
time, we do not know if demethylation of the PREXI pro-
moter is a consequence of global aberrant hypomethyla-
tion as reported in breast cancer [53] or whether it is
dictated by a specific signal. We also found that P-REX1
and ER-alpha expression correlates in breast cancer and
that depletion of ER-alpha in ER-positive cells reduces
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P-REX1 mRNA levels. As ER-alpha RNAi does not seem
to significantly change the methylation status of PREX1
promoter (data not shown), it is possible that ER-alpha
controls P-REX1 expression by alternative mechanisms.

Conclusions

In summary, our study established methylation as a major
mechanism that dictates the differential expression of
P-REX1 in breast cancer subtypes. Increased expression
of P-REX1 in luminal breast cancer is associated with
demethylation of CpG islands in the PREXI promoter.
The P-REX1/Rac pathway plays an important role in
ErbB receptor-driven breast cancer cell motility and
invasiveness, and consequently the methylation status
of the PREX1 promoter could be a determinant in the
progression of subsets of breast cancer patients. In ad-
dition to the prognostic implications of our findings, our
results may have significant impact for cancer therapy.
Indeed, the use of demethylating agents is emerging as a
novel approach to cancer therapy due to their ability to
reactivate the expression of tumor suppressor genes that
are silenced by DNA methylation, and studies have pro-
posed the use of AZA or related agents as anti-cancer
agents for patients with solid tumors [77-82]. Specifically
for breast cancer, demethylating agents have been shown
to overcome resistance to other agents such as tamoxifen
[83-85]. Thus, the fact that tumor-promoting and me-
tastatic genes such as PREXI can be reactivated by
demethylating agents poses a serious therapeutic chal-
lenge, specially taking into account that PREXI de-
methylation is correlated with poor prognosis.

Additional files

Additional file 1: Figure S1. ER-alpha RNAi depletion reduces P-REX1
expression. Panel A. P-REXT mRNA expression in MCF-7 cells subject

to estrogen receptor (ER)-alpha depletion, from dataset GSE27473
(***, P <0.001). Panels B. P-REX1T mRNA levels in MCF-7 (left panel)
and T-47D cells (right panel) were determined after transfection with
either ER-alpha or non-target control (NTC) RNAi. P-REXT mRNA levels
were normalized to the housekeeping gene B2M and expressed

as relative to those in NTC-transfected cells. Similar results were
observed in an additional experiment. ***, P <0.001. Inset, ER-alpha
expression was determined by Western blot.

Additional file 2: Figure S2. Similar PREXT expression and methylation
across HER2 subtypes. PREXT mRNA expression (left) and promoter
methylation (right) in normal tissue, HER2/ErbB2-positive and HER2/ErbB2-
negative breast cancers values were obtained from The Cancer Genome
Atlas (TCGA) database. No statistically significant differences were
observed between HER2/ErbB2-positive and -negative tumors. NS, not
significant.

Additional file 3: Figure S3. Sp1 sites are required for transcriptional
activity of the PREXT promoter. Panel A. Luciferase activity of truncated
deletions of the PREXT promoter (cloned in a pGL3 vector) was measured
in MCF-7 cells. Luciferase activity was determined 48 h after transfection.
Data are expressed as mean + S. D. relative to construct comprising

bp —599 to bp —20. Panel B. Luciferase assay was performed upon
transfection of PREXT luciferase constructs comprising bp —204 to

bp —20, either wild-type or with both Sp1 sites mutated [40]. Cells were
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treated either with trichostatin A (TSA) (100 ng/ml, 24 h) or vehicle. Data
are expressed as mean + S. D. relative to wild-type. Experiments were
done in triplicate, and similar results were observed in three separate
experiments. *** =P <0.001.
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