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Abstract

We propose a new method named calibrated multivariate regression (CMR) for fitting high 

dimensional multivariate regression models. Compared to existing methods, CMR calibrates the 

regularization for each regression task with respect to its noise level so that it is simultaneously 

tuning insensitive and achieves an improved finite-sample performance. Computationally, we 

develop an efficient smoothed proximal gradient algorithm which has a worst-case iteration 

complexity O(1/ε), where ε is a pre-specified numerical accuracy. Theoretically, we prove that 

CMR achieves the optimal rate of convergence in parameter estimation. We illustrate the 

usefulness of CMR by thorough numerical simulations and show that CMR consistently 

outperforms other high dimensional multivariate regression methods. We also apply CMR on a 

brain activity prediction problem and find that CMR is as competitive as the handcrafted model 

created by human experts.

1 Introduction

Given a design matrix X ∈ ℝn×d and a response matrix Y ∈ ℝn×m, we consider a 

multivariate linear model Y = XB0 + Z, where B0 ∈ ℝd×m is an unknown regression 

coefficient matrix and Z ∈ ℝn×m is a noise matrix [1]. For a matrix A = [Ajk] ∈ ℝd×m, we 

denote Aj* = (Aj1, …, Ajm) ∈ ℝm and A*k = (A1k, …, Adk)T ∈ ℝd to be its jth row and kth 

column respectively. We assume that all Zi*’s are independently sampled from an m-

dimensional Gaussian distribution with mean 0 and covariance matrix Σ ∈ ℝm×m.

We can represent the multivariate linear model as an ensemble of univariate linear 

regression models: , k = 1, …, m. Then we get a multi-task learning 

problem [3, 2, 26]. Multi-task learning exploits shared common structure across tasks to 

obtain improved estimation performance. In the past decade, significant progress has been 

made towards designing a variety of modeling assumptions for multivariate regression.
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A popular assumption is that all the regression tasks share a common sparsity pattern, i.e., 

many ’s are zero vectors. Such a joint sparsity assumption is a natural extension of that 

for univariate linear regressions. Similar to the L1-regularization used in Lasso [23], we can 

adopt group regularization to obtain a good estimator of B0 [25, 24, 19, 13]. Besides the 

aforementioned approaches, there are other methods that aim to exploit the covariance 

structure of the noise matrix Z [7, 22]. For instance, [22] assume that all Zi*’s follow a 

multivariate Gaussian distribution with a sparse inverse covariance matrix Ω = Σ−1. They 

propose an iterative algorithm to estimate sparse B0 and Ω by maximizing the penalized 

Gaussian log-likelihood. Such an iterative procedure is effective in many applications, but 

the theoretical analysis is difficult due to its nonconvex formulation.

In this paper, we assume an uncorrelated structure for the noise matrix Z, i.e., 

. Under this setting, we can efficiently solve the resulting 

estimation problem with a convex program as follows

(1.1)

where λ > 0 is a tuning parameter, and  is the Frobenius norm of a 

matrix A. Popular choices of p include p = 2 and  and 

. Computationally, the optimization problem in (1.1) can be 

efficiently solved by some first order algorithms [11, 12, 4].

The problem with the uncorrelated noise structure is amenable to statistical analysis. Under 

suitable conditions on the noise and design matrices, let σmax = maxk σk, if we choose 

, for some c > 1, then the estimator B̂ in (1.1) achieves the 

optimal rates of convergence1 [13], i.e., there exists some universal constant C such that 

with high probability, we have

where s is the number of rows with non-zero entries in B0. However, the estimator in (1.1) 

has two drawbacks: (1) All the tasks are regularized by the same tuning parameter λ, even 

though different tasks may have different σk’s. Thus more estimation bias is introduced to 

the tasks with smaller σk’s to compensate the tasks with larger σk’s. In another word, these 

tasks are not calibrated. (2) The tuning parameter selection involves the unknown parameter 

1The rate of convergence is optimal when p = 2, i.e., the regularization function is ||B||1,p
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σmax. This requires tuning the regularization parameter over a wide range of potential values 

to get a good finite-sample performance.

To overcome the above two drawbacks, we formulate a new convex program named 

calibrated multivariate regression (CMR). The CMR estimator is defined to be the solution 

of the following convex program:

(1.2)

where  is the nonsmooth L2,1 norm of a matrix A = [Ajk] ∈ ℝd×m. 

This is a multivariate extension of the square-root Lasso [5]. Similar to the square-root 

Lasso, the tuning parameter selection of CMR does not involve σmax. Moreover, the L2,1 

loss function can be viewed as a special example of the weighted least square loss, which 

calibrates each regression task (See more details in §2). Thus CMR adapts to different σk’s 

and achieves better finite-sample performance than the ordinary multivariate regression 

estimator (OMR) defined in (1.1).

Since both the loss and penalty functions in (1.2) are nonsmooth, CMR is computationally 

more challenging than OMR. To efficiently solve CMR, we propose a smoothed proximal 

gradient (SPG) algorithm with an iteration complexity O(1/ε), where ε is the pre-specified 

accuracy of the objective value [18, 4]. Theoretically, we provide sufficient conditions under 

which CMR achieves the optimal rates of convergence in parameter estimation. Numerical 

experiments on both synthetic and real data show that CMR universally outperforms 

existing multivariate regression methods. For a brain activity prediction task, prediction 

based on the features selected by CMR significantly outperforms that based on the features 

selected by OMR, and is even competitive with that based on the handcrafted features 

selected by human experts.

Notations

Given a vector v = (v1, …, vd)T ∈ ℝd, for 1 ≤ p ≤ ∞, we define the Lp-vector norm of v as 

 if 1 ≤ p < ∞ and ||v||p = max1≤j≤d |vj| if p = ∞. Given two matrices 

A = [Ajk] and C = [Cjk] ∈ ℝd×m, we define the inner product of A and C as 

, where tr(A) is the trace of a matrix A. We use 

A*k = (A1k, …, Adk)T and Aj* = (Aj1, …, Ajm) to denote the kth column and jth row of A. Let 

 be some subspace of ℝd×m, we use  to denote the projection of A onto : 

. Moreover, we define the Frobenius and spectral norms of A as 

 and ||A||2 = ψ1(A), ψ1(A) is the largest singular value of A. In addition, we 

define the matrix block norms as , ||A||2,∞ = max1≤k≤m ||A*k||2, 

, and ||A||∞,q = max1≤j≤d ||Aj*||q, where 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. It is 
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easy to verify that ||A||2,1 is the dual norm of ||A||2,∞. Let 1/∞ = 0, then if 1/p + 1/q = 1, ||

A||∞,q and ||A||1,p are also dual norms of each other.

2 Method

We solve the multivariate regression problem by the following convex program,

(2.1)

The only difference between (2.1) and (1.1) is that we replace the L2-loss function by the 

nonsmooth L2,1-loss function. The L2,1-loss function can be viewed as a special example of 

the weighted square loss function. More specifically, we consider the following optimization 

problem,

(2.2)

where  is a weight assigned to calibrate the kth regression task. Without prior 

knowledge on σk’s, we use the following replacement of σk’s,

(2.3)

By plugging (2.3) into the objective function in (2.2), we get (2.1). In another word, CMR 

calibrates different tasks by solving a penalized weighted least square program with weights 

defined in (2.3).

The optimization problem in (2.1) can be solved by the alternating direction method of 

multipliers (ADMM) with a global convergence guarantee [20]. However, ADMM does not 

take full advantage of the problem structure in (2.1). For example, even though the L2,1 

norm is nonsmooth, it is nondifferentiable only when a task achieves exact zero residual, 

which is unlikely in applications. In this paper, we apply the dual smoothing technique 

proposed by [18] to obtain a smooth surrogate function so that we can avoid directly 

evaluating the subgradient of the L2,1 loss function. Thus we gain computational efficiency 

like other smooth loss functions.

We consider the Fenchel’s dual representation of the L2,1 loss:

(2.4)

Let μ > 0 be a smoothing parameter. The smooth approximation of the L2,1 loss can be 

obtained by solving the following optimization problem
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(2.5)

where  is the proximity function. Due to the fact that , we obtain the 

following uniform bound by combing (2.4) and (2.5),

(2.6)

From (2.6), we see that the approximation error introduced by the smoothing procedure can 

be controlled by a suitable μ. Figure 2.1 shows several two-dimensional examples of the L2 

norm smoothed by different μ’s. The optimization problem in (2.5) has a closed form 

solution ÛB with .

The next lemma shows that ||Y − XB||μ is smooth in B with a simple form of gradient.

Lemma 2.1

For any μ > 0, ||Y − XB||μ is a convex and continuously differentiable function in B. In 

addition, Gμ(B)—the gradient of ||Y − XB||μ w.r.t. B—has the form

(2.7)

Moreover, let , then we have that Gμ(B) is Lipschitz continuous in B with the 

Lipschitz constant γ/μ, i.e., for any B′, B″ ∈ ℝd×m,

Lemma 2.1 is a direct result of Theorem 1 in [18] and implies that ||Y − XB||μ has good 

computational structure. Therefore we apply the smooth proximal gradient algorithm to 

solve the smoothed version of the optimization problem as follows,

(2.8)

We then adopt the fast proximal gradient algorithm to solve (2.8) [4]. To derive the 

algorithm, we first define three sequences of auxiliary variables {A(t)}, {V(t)}, and {H(t)} 

with A(0) = H(0) = V(0) = B(0), a sequence of weights {θt = 2/(t + 1)}, and a nonincreasing 

sequence of step-sizes {ηt > 0}. For simplicity, we can set ηt = μ/γ. In practice, we use the 

backtracking line search to dynamically adjust ηt to boost the performance. At the tth 
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iteration, we first take V(t) = (1 − θt)B(t−1) + θtA(t−1). We then consider a quadratic 

approximation of ||Y − XH||μ as

Consequently, let H̃(t) = V(t) − ηtGμ(V(t)), we take

(2.9)

When p = 2, (2.9) has a closed form solution . More 

details about other choices of p in the L1,p norm can be found in [11] and [12]. To ensure 

that the objective value is nonincreasing, we choose

(2.10)

At last, we take . The algorithm stops when ||H(t)−V(t)||F ≤ ε, 

where ε is the stopping precision.

The numerical rate of convergence of the proposed algorithm with respect to the original 

optimization problem (2.1) is presented in the following theorem.

Theorem 2.2

Given a pre-specified accuracy ε and let μ = ε/m, after 

iterations, we have ||Y − XB(t)||2,1 + λ||B(t)||1,p ≤ ||Y − XB̂||2,1 + λ||B̂||1,p + ε.

The proof of Theorem 2.2 is provided in Appendix A.1. This result achieves the minimax 

optimal rate of convergence over all first order algorithms [18].

3 Statistical Properties

For notational simplicity, we define a re-scaled noise matrix W = [Wik] ∈ ℝn×m with Wik = 

Zik/σk, where . Thus W is a random matrix with all entries having mean 0 and 

variance 1. We define G0 to be the gradient of ||Y − XB||2,1 at B = B0. It is easy to see that

does not depend on the unknown quantities σk for all k = 1, …, m.  works as an 

important pivotal in our analysis. Moreover, our analysis exploits the decomposability of the 
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L1,p norm [17]. More specifically, we assume that B0 has s rows with all zero entries and 

define

(3.1)

(3.2)

Note that we have B0 ∈  and the L1,p norm is decomposable with respect to the pair ( , 

), i.e.,

The next lemma shows that when λ is suitably chosen, the solution to the optimization 

problem in (2.1) lies in a restricted set.

Lemma 3.1

Let B0 ∈  and B̂ be the optimum to (2.1), and 1/p + 1/q = 1. We denote the estimation error 

as Δ̂ = B̂ − B0. If λ ≥ c||G0||∞,q for some c > 1, we have

(3.3)

The proof of Lemma 3.1 is provided in Appendix B.1. To prove the main result, we also 

need to assume that the design matrix X satisfies the following condition.

Assumption 3.1

Let B0 ∈ , then there exist positive constants κ and c > 1 such that

Assumption 3.1 is the generalization of the restricted eigenvalue conditions for analyzing 

univariate sparse linear models [17, 15, 6], Many common examples of random design 

satisfy this assumption [13, 21].

Note that Lemma 3.1 is a deterministic result of the CMR estimator for a fixed λ. Since G is 

essentially a random matrix, we need to show that λ ≥ cR*(G0) holds with high probability 

to deliver a concrete rate of convergence for the CMR estimator in the next theorem.
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Theorem 3.2

We assume that each column of X is normalized as  for all j = 1, …, 

d. Then for some universal constant c0 and large enough n, taking

(3.4)

with probability at least , we have

The proof of Theorem 3.2 is provided in Appendix B.2. Note that when we choose p = 2, the 

column normalization condition is reduced to . Meanwhile, the corresponding 

error bound is further reduced to

which achieves the minimax optimal rate of convergence presented in [13]. See Theorem 6.1 

in [13] for more technical details. From Theorem 3.2, we see that CMR achieves the same 

rates of convergence as the noncalibrated counterpart, but the tuning parameter λ in (3.4) 

does not involve σk’s. Therefore CMR not only calibrates all the regression tasks, but also 

makes the tuning parameter selection insensitive to σmax.

4 Numerical Simulations

To compare the finite-sample performance between the calibrated multivariate regression 

(CMR) and ordinary multivariate regression (OMR), we generate a training dataset of 200 

samples. More specifically, we use the following data generation scheme: (1) Generate each 

row of the design matrix Xi*, i = 1, …, 200, independently from a 800-dimensional normal 

distribution N(0, Σ) where Σjj = 1 and Σjℓ = 0.5 for all ℓ ≠ j.(2) Let k = 1, …, 13, set the 

regression coefficient matrix B0 ∈ ℝ800×13 as , and  for all j 

≠ 1, 2, 4. (3) Generate the random noise matrix Z = WD, where W ∈ ℝ200×13 with all 

entries of W are independently generated from N(0, 1), and D is either of the following 

matrices

Liu et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



We generate a validation set of 200 samples for the regularization parameter selection and a 

testing set of 10,000 samples to evaluate the prediction accuracy.

In numerical experiments, we set σmax = 1, 2, and 4 to illustrate the tuning insensitivity of 

CMR. The regularization parameter λ of both CMR and OMR is chosen over a grid Λ = 

{240/4 λ0, 239/4 λ0, ···, 2−17/4 λ0, 2−18/4 λ0}, where . The optimal 

regularization parameter λ̂ is determined by the prediction error as 

, where B̂λ denotes the obtained estimate using the regularization 

parameter λ, and X̃ and Ỹ denote the design and response matrices of the validation set.

Since the noise level σk’s are different in regression tasks, we adopt the following three 

criteria to evaluate the empirical performance: 

, and 

, where X ̄ and Ȳ denotes the design and response matrices of the 

testing set.

All simulations are implemented by MATLAB using a PC with Intel Core i5 3.3GHz CPU 

and 16GB memory. CMR is solved by the proposed smoothing proximal gradient algorithm, 

where we set the stopping precision ε = 10−4, the smoothing parameter μ = 10−4. OMR is 

solved by the monotone fast proximal gradient algorithm, where we set the stopping 

precision ε = 10−4. We set p = 2, but the extension to arbitrary p > 2 is straightforward.

We first compare the smoothed proximal gradient (SPG) algorithm with the ADMM 

algorithm (the detailed derivation of ADMM can be found in Appendix A.2). We adopt the 

backtracking line search to accelerate both algorithms with a shrinkage parameter α = 0.8. 

We set σmax = 2 for the adopted multivariate linear models. We conduct 200 simulations. 

The results are presented in Table 4.1. The SPG and ADMM algorithms attain similar 

objective values, but SPG is up to 4 times faster than ADMM. Both algorithms also achieve 

similar estimation errors.

We then compare the statistical performance between CMR and OMR. Tables 4.2 and 4.3 

summarize the results averaged over 200 replicates. In addition, we also present the results 

of the oracle estimator, which is obtained by solving (2.2), since we know the true values of 

σk’s. Note that the oracle estimator is only for comparison purpose, and it is not a practical 

estimator. Since CMR calibrates the regularization for each task with respect to σk, CMR 

universally outperforms OMR, and achieves almost the same performance as the oracle 

estimator when we adopt the scale matrix DI to generate the random noise. Meanwhile, 

when we adopt the scale matrix DH, where all σk’s are the same, CMR and OMR achieve 

similar performance. This further implies that CMR can be a safe replacement of OMR for 

multivariate regressions.

In addition, we also examine the optimal regularization parameters for CMR and OMR over 

all replicates. We visualize the distribution of all 200 selected λ̂’s using the kernel density 

estimator. In particular, we adopt the Gaussian kernel, and the kernel bandwidth is selected 

based on the 10-fold cross validation. Figure 4.1 illustrates the estimated density functions. 
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The horizontal axis corresponds to the rescaled regularization parameter as . 

We see that the optimal regularization parameters of OMR significantly vary with different 

σmax. In contrast, the optimal regularization parameters of CMR are more concentrated. This 

is inconsistent with our claimed tuning insensitivity.

5 Real Data Experiment

We apply CMR on a brain activity prediction problem which aims to build a parsimonious 

model to predict a person’s neural activity when seeing a stimulus word. As is illustrated in 

Figure 5.1, for a given stimulus word, we first encode it into an intermediate semantic 

feature vector using some corpus statistics. We then model the brain’s neural activity pattern 

using CMR. Creating such a predictive model not only enables us to explore new analytical 

tools for the fMRI data, but also helps us to gain deeper understanding on how human brain 

represents knowledge [16].

Our experiments involves 9 participants, and Table 5.1 summarizes the prediction 

performance of different methods on these participants. We see that the prediction based on 

the features selected by CMR significantly outperforms that based on the features selected 

by OMR, and is as competitive as that based on the handcrafted features selected by human 

experts. But due to the space limit, we present the details of the real data experiment in the 

technical report version.

6 Discussions

A related method is the square-root sparse multivariate regression [8]. They solve the 

convex program with the Frobenius loss function and L1,p regularization function

(6.1)

The Frobenius loss function in (6.1) makes the regularization parameter selection 

independent of σmax, but it does not calibrate different regression tasks. Note that we can 

rewrite (6.1) as

(6.2)

Since σ in (6.2) is not specific to any individual task, it cannot calibrate the regularization. 

Thus it is fundamentally different from CMR.
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Figure 2.1. 
The L2 norm (μ = 0) and its smooth surrogates with μ = 0.1, 0.25, 0.5. A larger μ makes the 

approximation more smooth, but introduces a larger approximation error.
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Figure 4.1. 
The distributions of the selected regularization parameters using the kernel density 

estimator. The numbers in the parentheses are σmax’s. The optimal regularization parameters 

of OMR are spreader with different σmax than those of CMR and the oracle estimator.
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Figure 5.1. 
An illustration of the fMRI brain activity prediction problem [16]. (a) To collect the data, a 

human participant sees a sequence of English words and their images. The corresponding 

fMRI images are recorded to represent the brain activity patterns; (b) To build a predictive 

model, each stimulus word is encoded into intermediate semantic features (e.g. the co-

occurrence statistics of this stimulus word in a large text corpus). These intermediate 

features can then be used to predict the brain activity pattern.
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Table 4.2

Quantitive comparison of the statistical performance between CMR and OMR with the noise matrices 

generated using DI. The results are averaged over 200 simulations with the standard errors in parentheses. 

CMR universally outperforms OMR, and achieves almost the same performance as the oracle estimator.

σmax Method Pre. Err. Adj. Pre.Err Est. Err.

1

Oracle 5.8759(0.0834) 1.0454(0.0149) 0.0245(0.0086)

CMR 5.8761(0.0673) 1.0459(0.0123) 0.0249(0.0071)

OMR 5.9012(0.0701) 1.0581(0.0162) 0.0290(0.0091)

2

Oracle 23.464(0.3237) 1.0441(0.0148) 0.0926(0.0342)

CMR 23.465(0.2598) 1.0446(0.0121) 0.0928(0.0279)

OMR 23.580(0.2832) 1.0573(0.0170) 0.1115(0.0365)

4

Oracle 93.532(0.8843) 1.0418(0.0962) 0.3342(0.1255)

CMR 93.542(0.9794) 1.0421(0.0118) 0.3346(0.1063)

OMR 94.094(1.0978) 1.0550(0.0166) 0.4125(0.1417)
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Table 4.3

Quantitive comparison of the statistical performance between CMR and OMR with the noise matrices 

generated using DH. The results are averaged over 200 simulations with the standard errors in parentheses. 

CMR and OMR achieve similar performance.

σmax Method Pre. Err. Adj. Pre.Err Est. Err.

1
CMR 13.565(0.1408) 1.0435(0.0108) 0.0599(0.0164)

OMR 13.697(0.1554) 1.0486(0.0142) 0.0607(0.0128)

2
CMR 54.171(0.5771) 1.0418(0.0110) 0.2252(0.0649)

OMR 54.221(0.6173) 1.0427(0.0118) 0.2359(0.0821)

4
CMR 215.98(2.104) 1.0384(0.0101) 0.80821(0.25078)

OMR 216.19(2.391) 1.0394(0.0114) 0.81957(0.31806)
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