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Abstract

Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating 

energy production with generation of reducing power and the biosynthesis of nucleotide 

precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell 

proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how 

PGAM activity is regulated in vivo remains poorly understood. Here we report that PGAM is 

acetylated at lysine 100 (K100), an active site residue that is invariably conserved from bacteria, to 

yeast, plant, and mammals. K100 acetylation is detected in fly, mouse, and human cells and in 

multiple tissues and decreases PGAM2 activity. The cytosolic protein deacetylase sirtuin 2 

(SIRT2) deacetylates and activates PGAM2. Increased levels of reactive oxygen species stimulate 

PGAM2 deacetylation and activity by promoting its interaction with SIRT2. Substitution of 

endogenous PGAM2 with an acetylation mimetic mutant K100Q reduces cellular NADPH 

production and inhibits cell proliferation and tumor growth. These results reveal a mechanism of 
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PGAM2 regulation and NADPH homeostasis in response to oxidative stress that impacts cell 

proliferation and tumor growth.

Introduction

Enhanced glycolysis, commonly referred to as the “Warburg effect” (1), is a distinctive and 

prominent feature of cancer cells. One prevalent belief on the benefits of the Warburg effect 

to tumor cells holds that enhanced glycolysis accumulates glycolytic intermediates, 

providing substrates for biosynthetic reactions to support cell growth and division. An 

alternative, but not mutual exclusive, view is that enhanced glycolysis limits the rate of 

oxidative phosphorylation, thereby helping cells within the tumor to adapt hypoxic condition 

and protecting them against oxidative damages (2, 3).

Phosphoglycerate mutase (PGAM) is a glycolytic enzyme that catalyzes the reversible 

conversion of 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG; ref. 4). Human 

genome contains two PGAM genes, PGAM1 (also known as PGAM-B), which is expressed 

in brain and most other tissues, and PGAM2 (also known as PGAM-M), which is highly 

expressed in muscle. Their encoded products are similar in length (254 and 253 residues, 

respectively), share high degree of homology (81% identity), and form either homo- or 

heterodimers that are functionally indistinguishable. Both 3-PG and 2-PG are allosteric 

regulators; 3-PG inhibits 6-phosphogluconate dehydrogenase (6PGD) of pentose phosphate 

pathway (PPP), whereas 2-PG activates phosphoglycerate dehydrogenase (PHGDH) of 

glycine and serine synthesis pathway (5). By controlling the levels of its substrate (3-PG) 

and product (2-PG), PGAM may play a role in coordinating the energy production through 

glycolysis with generation of reducing power and biosynthesis of amino acids and 5-carbon 

sugar, the precursors of nucleotides for the synthesis of both RNA and DNA. Supporting a 

critical role of PGAM activity in cell growth, an unbiased screen for genes that can 

immortalize mouse embryonic fibroblasts (MEF) identified PGAM2, which when expressed 

at 2-fold higher level, renders MEFs to indefinite proliferation and resistance to ras-induced 

senescence (6). Conversely, inhibition of PGAM, by either small RNAi or small molecule, 

attenuates cell proliferation and tumor growth (5).

The regulation of PGAM is poorly understood. Like other glycolytic enzymes, the activity 

of PGAM is upregulated in tumor cells, including tumors of lung, colon, liver, breast, and 

leukemia (5, 7, 8). Most glucose transporter and glycolytic enzymes are transcriptionally 

regulated by the hypoxia-inducible transcriptional factor HIF-1α (9). Notably, however, of a 

panel of 18 glucose transporter and glycolytic genes examined, the transcription of 2 genes, 

PGAM and glucose-6-phosphate isomerase (GPI), was found not to be induced by HIF-1α 

(9), suggesting that the activity of these two glycolytic enzymes may be posttranscriptionally 

regulated. In tumors where an increased PGAM activity has been demonstrated, the steady-

state levels of PGAM protein appear to be similar to that of normal tissues compared, 

suggesting the possibility that the activity of PGAM is subjected to a posttranslational 

regulation.

Protein acetylation has been recently found as an evolutionarily conserved modification that 

regulates diverse cellular pathway, including notably the metabolic enzymes (10–15). 
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Studies on individual enzymes have subsequently demonstrated that acetylation regulates 

the activity of metabolic enzymes via a variety of different mechanisms (16). In this study, 

we report that the activity of PGAM is inhibited by lysine acetylation and this mechanism of 

regulation plays a critical role in oxidative stress response and tumorigenesis.

Materials and Methods

Plasmid construction

Full-length cDNA of PGAM2 was amplified by PCR and cloned into indicated vectors 

including pRK7-N-FLAG and pQCXIH; SIRT1 and SIRT2 were cloned to pCDNA3-HA 

vector. Point mutations for PGAM2 were generated by site-directed mutagenesis. The 

PGAM2 shRNA plasmid (Origene) and the SIRT2 shRNA plasmid (Sigma) were 

commercially purchased.

Cell culture and transfection

HEK293T and MEF cells were cultured in DMEM (Invitrogen) supplemented with 10% 

FBS (HyClone), 100 units/mL penicillin, and 100 μg/mL streptomycin (Gibco). Human lung 

carcinoma A549 cells were cultured in Nutrient Mixture F-12 Ham Kaighn’s Modification 

(F12K) Medium (Sigma) with 10% FBS, 100 units/mL penicillin, and 100 μg/mL 

streptomycin. Cell transfection was carried out by Lipofectamine 2000 according to the 

manufacturer’s protocol (Invitrogen).

Cell lysis, immunoprecipitation, immunoblotting, and antibody

Cells were lysed in NP-40 buffer containing 50 mmol/L Tris pH 7.5, 150 mmol/L NaCl, 

0.3% Nonidet P-40, 1 μg/mL aprotinin, 1 μg/mL leupeptin, 1 μg/mL pepstatin, 1 mmol/L 

Na3 VO4, and 1 mmol/L phenylmethylsulfonylfluoride (PMSF). Cell lysates were incubated 

with anti-Flag beads (Sigma) for 3 hours at 4°C, the beads were washed with NP-40 buffer 3 

times and then subjected to SDS-PAGE or eluted by Flag peptides for enzyme activity 

assay. Western blotting was performed according to standard protocol.

Antibodies specific to Flag (Sigma), HA (Santa Cruz), PGAM2 (Abcam), and β-actin 

(Sigma) were commercial. Rabbit anti-pan-acetyl lysine antibody and anti-acetyl-PGAM2 

K100 antibody (antigen peptide sequence: TGLNKAETAAKH) were generated at Shanghai 

Genomic Inc.

PGAM2 enzyme activity assay

Purified Flag-PGAM2 protein were incubated with the buffer containing 79 mmol/L 

triethanolamine, 0.70 mmol/L ADP, 0.15 mmol/L NADH, 6.6 mmol/L 3-phosphoglycerate, 

1.3 mmol/L 2,3-diphosphoglycerate, 2.5 mmol/L MgSO4, 99 mmol/L KCl, 4 units pyruvate 

kinase, 20 units L-lactate dehydrogenase, and 3 units enolase. Activity was measured by the 

change of absorbance resulting from NADH oxidation in F-4600 Fluorescence 

Spectrophotometer (HITACHI). All the regents described above were purchased from 

Sigma.
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In vitro deacetylation assay

His-CobB (10 μg/mL) purified from Escherichia coli or HA-SIRT1 and HA-SIRT2 purified 

from HEK293T cells were incubated with Flag-PGAM2 (10 μg/mL) in a HEPES buffer [40 

mmol/L HEPES, 1 mmol/L MgCl2, 1 mmol/L dithiothreitol (DTT), 5 mmol/L NAD+] at 

37°C for 1 hour. The effect of CobB deacetylation of PGAM2 was analyzed by Western 

blotting and measurement of PGAM2 activity.

Preparation of K100-acetylated PGAM2 protein

K100-acetylated PGAM2 was generated by a method described previously (17, 18). Briefly, 

the clone pTEV8-PGAM2 was constructed to replace the Lys100 with an amber codon that 

was then co-transformed with pAcKRS-3 and pCDF PylT-1 to BL21. Bacterial cells were 

grown in LB supplemented with kanamycin (50 mg/mL), spectinomycin (50 mg/mL), and 

ampicillin (150 mg/mL) and induced with 0.5 mmol/L IPTG, 20 mmol/L nicotinamide 

(NAM), and 2 mmol/L Nε-acetyl lysine (Sigma) when the concentration of E. coli cells 

reached to OD600 of 0.6 (early logarithmic phase). After induction overnight, E. coli cells 

were harvested. Both the wild-type (WT) and K100-acetylated PGAM2 protein were 

purified by nickel beads for enzyme activity analysis.

Measurement of intracellular reactive oxygen species level

Reactive oxygen species (ROS) production was determined by incubating the A549 stable 

cells in serum-free medium containing 10 μmol/L fluorescent dye 2′,7′-dichlorofluorescein 

diacetate (DCF; Sigma) at 37°C for 30 minutes, washing by serum-free medium for three 

times, followed by fluorescence analysis.

Establishment of knocking-down and putting-back stable cell lines

All retroviruses were produced by co-transfecting the package vector expressing gag and 

vsvg genes with the indicated plasmids into HEK293T cells and harvested 48 hours after 

transfection. A549 cells were transduced with the retrovirus in the presence of 8 μg/mL 

polybrene. The shRNA plasmid–produced retrovirus-infected cells were selected in 

puromycin (2 μg/mL) for knocking-down and the pQCXIH plasmid–produced retrovirus-

infected cells were selected in hygromycin (350 mg/mL) for putting-back. After 7 to 12 days 

of selection, the expression levels of PGAM2 were determined by Western blotting.

Cell proliferation and xenograft studies

A total of 5 × 104 indicated stable cells were seeded in triplicate in 6-well plates, and cell 

numbers were counted every day over a 4-day period. Nude mice (nu/nu, male, 6- to 7-

week-old) were injected subcutaneously with 3 × 106 A549 PGAM2 knocking-down and 

WT or K100Q-mutant putting-back stable cells. Seven weeks later, the tumors were 

harvested, and the volume and weight of tumors were measured.
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Results

PGAM2 is acetylated at an evolutionarily conserved residue, Lys100

We and others recently discovered that most enzymes in the cellular metabolic pathways are 

acetylated by large-scale mass spectrometry studies (10, 13, 14). Among these, lysine 100 

(K100) was identified as a putative acetylation site in a peptide (HYGGLTGLNKAETAAK, 

with K100 underlined) that could correspond to either PGAM1 or PGAM2 and is highly 

conserved during the evolution (Fig. 1A; ref. 10). K100 binds to substrate 3-PG as well as 

intermediate 2,3-PG (19, 20). Molecular modeling suggests that acetylation at K100, if it 

occurs, could significantly neutralize the charge on the lysine side chain, likely causing a 

steric hindrance to the binding with substrate 3-PG and thereby inhibiting PGAM activity 

(Fig. 1B).

To confirm the acetylation of PGAM, we expressed Flag-PGAM2 in HEK293T cells and 

then treated cells with trichostatin A (TSA) and NAM, two commonly used deacetylase 

inhibitors that inhibit histone deacetylase HDAC I and II (21) and the SIRT family 

deacetylases (22), respectively. We found that PGAM2 was indeed acetylated (Fig. 1C), and 

its acetylation level was enhanced approximately 2.3-fold after treatment of cells with 

combined NAM (4 hours) and TSA (16 hours). We then mutated K100 to either arginine 

(K100R) or glutamine (K100Q) and found that both mutations evidently decreased the 

overall acetylation level of PGAM2 by 58.7% and 62.5%, respectively (Fig. 1D). K100 

mutation did not completely abolish the acetylation of PGAM2, indicating that there might 

be other acetylated sites in PGAM2. As the mutation of K100 reduced 60% of total 

acetylation level, we concluded that K100 is the major acetylation site of PGAM2.

To confirm K100 acetylation in vivo, we generated an antibody specific to the acetylated 

K100. We first performed dot blot to characterize the specificity of this antibody and found 

that the anti-AcPGAM2(K100) antibody preferentially recognized the K100-acetylated 

peptide, but not the unmodified peptide (Supplementary Fig. S1A). Pre-incubation of the 

anti-AcPGAM2(K100) antibody with the K100-acetylated antigen peptide, but not the 

unmodified peptide, abolished the signal (Supplementary Fig. S1B), confirming the 

specificity of the antibody in recognition of the K100-acetylated PGAM2. Western blotting 

using this antibody detected strong signal of ectopically expressed WT PGAM2 but only 

weakly recognized the K100R mutant (Fig. 1E). Endogenous K100-acetylated PGAM2 

could be readily detected by this antibody, including A549 adenocarcinomic human alveolar 

basal epithelial cells and HEK293T human embryonic kidney cells (Supplementary Fig. 

S1C and Fig. 1F). Knocking down PGAM2 abolished the signals detected by the anti-

AcPGAM2(K100) antibody (Supplementary Fig. S1C), and conversely treatment of cells 

with combined deacetylase inhibitors TSA and NAM increased the signals (Fig. 1F). Taking 

together, we conclude that PGAM is acetylated in vivo at lysine 100.

K100 is evolutionarily conserved in PGAM from bacteria, yeast, plant to mammals (Fig. 

1A). To determine whether acetylation of K100 is evolutionarily conserved, we treated 

human A549 lung cancer cells, MEFs, and Drosophila S2 cells with deacetylase inhibitors 

and determined K100 acetylation of endogenous PGAM (Fig. 1G). This experiment 

demonstrates that K100-acetylated PGAM is readily detected in mouse and fly cells and that 
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K100 acetylation is dynamically affected by the deacetylase activity in these cells. Finally, 

taking the advantage of the anti-AcPGAM(K100) antibody, we demonstrate that PGAM is 

acetylated at K100 differentially in multiple different tissues, highly acetylated in several 

tissues such as liver, brain, and kidney, and substantially lower in other tissues such as lung, 

heart, muscle, and spleen (Fig. 1H). Collectively, these experiments demonstrate that K100 

acetylation represents an evolutionary conserved regulation on PGAM.

Acetylation at K100 inhibits PGAM2 enzyme activity

To determine the effect of K100 acetylation on PGAM2 enzyme activity, we 

immunopurified ectopically expressed Flag-PGAM2 from cells that were either untreated or 

treated with combination of TSA and NAM and then assayed enzyme activity. We found 

that the activity of PGAM2 decreased approximately 40% after TSA and NAM treatment 

(Fig. 2A). When purified PGAM2 was incubated with bacterial deacetylase CobB in vitro, 

the activity of PGAM2 increased by as much as 85% (Fig. 2B). These results indicate that 

K100 acetylation has an inhibitory effect on PGAM2 activity. To further test this notion, we 

transfected HEK293T cells with WT, K100R or K100Q mutants PGAM2 and then 

immunopurified to measure their activity. We found that mutation of Lys100 to Arg 

substantially reduced the activity of PGAM2, whereas notably the acetylation mimic mutant 

PGAM2K100Q nearly completely (97%) abolished PGAM2 activity (Fig. 2C). Moreover, 

treatment of TSA and NAM or incubation with bacterial deacetylase CobB, while 

significantly affected the activity of WT PGAM2, had little effect on the activity of either 

PGAM2K100R or PGAM2K100Q mutants (Fig. 2D and E). Taking together, these results 

indicate that Lys100 is critically important for the activity of PGAM. To determine how 

K100 acetylation affects PGAM2 activity, we expressed wild-type PGAM2 and acetylation 

mimetic K100Q mutant in the cells and then did the gel filtration assay and binding assay. 

We found that K100 acetylation does not affect PGAM dimerization (Supplementary Fig. 

S3), suggesting that acetylation at K100 could neutralize the charge on the lysine side chain, 

likely causing a steric hindrance to the binding with substrate 3-PG and thereby inhibiting 

PGAM activity as the modeling showed (Fig. 1B). We also found that there is an inverse 

correlation between K100 acetylation and PGAM activity in different mouse tissues. For 

example, both lungs and muscle have relatively high PGAM enzymatic activity and low 

K100 acetylation, whereas the brain, liver, and kidneys have relatively low activity and high 

K100 acetylation level (Fig. 1H and Supplementary Fig. S2). This result is consistent with 

the notion that the K100 acetylation negatively regulates the activity of PGAM in vivo.

To provide definitive evidence that acetylation at K100 inhibits PGAM activity, we used the 

genetic encoding system that can generate homogeneous acetylated recombinant protein at 

specific lysine (23, 24). We found that K100-acetylated PGAM2 protein has substantially 

reduced (by 96%) enzymatic activity when compared with the WT PGAM2 (Fig. 2F). 

Collectively, these observations supported the conclusion that acetylation at K100 inhibits 

PGAM2 activity.

SIRT2 is responsible for deacetylation of PGAM2 at K100

Lysine acetylation is a reversible process, which is catalyzed by the acetyl transferases and 

deacetylases. To identify the deacetylase responsible for PGAM2 K100 acetylation, we 

Xu et al. Page 6

Cancer Res. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



treated HEK293T cells with TSA or NAM separately and found that levels of K100 

acetylation were unchanged in HDAC inhibitor TSA-treated cells but were increased in cells 

treated with SIRT inhibitor NAM (Fig. 3A). Treatment of cells with combination of TSA 

and NAM did not further increase K100 acetylation appreciably compared with that in cells 

treated with NAM alone. These results indicate that an NAD+-dependent sirtuin family 

deacetylase is likely involved in K100 deacetylation.

Given that PGAM2 is a cytosolic protein, we first determined the interactions between 

PGAM2 and the 2 cytoplasmic localized SIRTs—SIRT1 and SIRT2 and found that SIRT2, 

but not SIRT1, binds to PGAM2 (Fig. 3B). Upon expression of SIRT1, SIRT2, and the 

SIRT2 catalytic inactive mutant H187Y in HEK293T cells, only the WT SIRT2 could 

decrease the levels of K100 acetylation of both exogenously and endogenously expressed 

PGAM (Fig. 3C and Supplementary Fig. S4), supporting that SIRT2 is a deacetylase for 

PGAM2. To further strengthen this finding, we treated cells with SIRT2-specific inhibitor, 

salermide (17), and found that salermide treatment increased the K100 acetylation level in a 

dose-dependent manner (Fig. 3D). Similarly, knocking down SIRT2 significantly increased 

K100 acetylation (Fig. 3E). Moreover, Sirt2 knockout (KO) MEFs have higher acetylation 

levels at K100 of PGAM than WT MEFs. Putting-back of human SIRT2 partially restored 

K100 acetylation of PGAM (Fig. 3F). The K100 acetylation level is conversely correlated 

with the SIRT2 protein level. Taken together, these results demonstrated that SIRT2 is the 

main deacetylase that acts on PGAM K100 deacetylation.

SIRT2 regulates PGAM2 activity via K100 acetylation

Because K100 acetylation inhibits PGAM activity, SIRT2 may therefore act as a positive 

regulator of PGAM. To test this possibility, we examined the role of SIRT2 in regulation of 

PGAM2 enzyme activity. First, we immunopurified ectopically expressed Flag-PGAM2 

from HEK293T cells treated with deacetylase inhibitors and measured the activity. 

Consistent with the suggestion that SIRT2 stimulates PGAM2 activity, treatment of cells 

with NAM, but not TSA, decreased the activity of PGAM2 (Supplementary Fig. S5). Next, 

we co-expressed PGAM2 with either SIRT1 or SIRT2 in HEK293T cells and found that 

SIRT2, but not SIRT1, decreased K100 acetylation and increased the activity of PGAM2 

approximately by 60% (Fig. 4A). Conversely, knocking down SIRT2 or inhibiting SIRT2 

with salermide reduced PGAM2 activity (Fig. 4B and C). Together, these data show that 

SIRT2 activates PGAM2 activity.

SIRT2 co-expression, however, had little effect on the activity of PGAM2K100R and 

PGAM2K100Q mutants (Fig. 4D), suggesting that SIRT2 activates PGAM2 mostly via 

deacetylating K100. To further support this notion, we carried out in vitro deacetylation 

assay and then measured PGAM2 activity. We found that SIRT2, but not SIRT1, 

deacetylated and activated PGAM2 in an NAD+-dependent manner (Fig. 4E), providing a 

direct evidence supporting SIRT2 in PGAM2 activation.

Oxidative stress induces PGAM2 activity through decreasing K100 acetylation levels

Ectopic overexpression of PGAM2 has been reported to cause immortalization of MEFs, 

and this process is attributed to the reduced ROS production that protects cells from 
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oxidative damage (6). To determine whether the K100 acetylation of PGAM is regulated in 

vivo, we treated cells with hydrogen peroxide (H2O2) to induce oxidative stress and 

examined PGAM acetylation and enzymatic activity. We observed that endogenous levels of 

K100 acetylation were decreased in a time-dependent manner in both HEK239T and A549 

cells (Fig. 5A). We immunopurified ectopically expressed Flag-PGAM2 from H2O2 treated 

cells and found that along with a reduction of K100 acetylation, PGAM2 activity was 

increased more than 2-fold upon H2O2 treatment (Fig. 5B). Moreover, H2O2 treatment had 

no significant effect on the activity of PGAM2K100Q and PGAM2K100R mutants (Fig. 5C), 

indicating that oxidative stress enhanced PGAM2 activity via K100 deacetylation. To 

determine whether the endogenous PGAM activity is regulated by oxidative stress, we 

treated HEK293T and MEF cells with H2O2 or another oxidative stressor, menadione, a 

polycyclic aromatic ketone that generates intracellular ROS at multiple cellular sites through 

futile redox cycling. We found that either H2O2 or menadione treatments reduced K100 

acetylation of endogenous PGAM, which is associated with an increase of PGAM activity 

(Fig. 5D). We therefore conclude that oxidative stress enhanced PGAM activity via reducing 

K100 acetylation.

To elucidate how K100 acetylation was changed in response to oxidative stress, we 

determined the interaction of PGAM2 and SIRT2 in the cells after H2O2 treatment. 

Immunoprecipitation and Western blot analyses demonstrated that increased oxidative stress 

promoted the SIRT2 binding to PGAM2 (Fig. 5E). Notably, H2O2 treatment did not affect 

K100 acetylation in Sirt2 knocking-out MEFs but decreased K100 acetylation after putting 

back human SIRT2 in Sirt2−/− MEFs (Fig. 5F). These results demonstrate that the oxidative 

stress–induced reduction of PGAM2 K100 acetylation is SIRT2-dependent.

Acetylation mimetic K100Q mutant reduces NADPH and impairs oxidative stress response

3-PG and 2-PG are the substrate and product of phosphoglycerate mutase, respectively, and 

are two important metabolites in cell metabolism. 3-PG can bind to and inhibit the activity 

of 6PGD, which is a critical enzyme for NADPH production in the PPP and functions to 

protect cells from oxidative damage (5). To explore the physiologic significance of 

acetylation in the regulation of PGAM, we established stable cell lines in A549 cells with 

knocking down of endogenous PGAM2 and putting back of Flag-tagged WT or K100Q 

mutant of PGAM2, respectively (Fig. 6A), followed by the measurement of NADPH. We 

found that the NADPH level decreased 48% in A549 cells expressing PGAM2K100Q 

compared with cells expressing WT PGAM2 (Fig. 6B). This data indicates that acetylation-

mimetic mutation at Lys100 impaired the function of PGAM2 in NADPH production, 

possibly by accumulating its substrate, 3-PG, and thereby increasing the inhibitory effect 

toward 6PGD. We also compared ROS levels in these two cell lines by DCF, a chemically 

reduced form of fluorescein that upon cleavage of the acetate groups by intracellular esterase 

and oxidation can be used as an indicator for ROS in cells. Consistent with the notion that 

acetylation mimetic K100Q mutant impaired the function of PGAM2 in NADPH 

production, the A549 cells expressing PGAM2K100Q mutant showed 73% increased DCF 

staining (Fig. 6C). Supporting the functional importance of K100 acetylation in regulating 

cellular response to oxidative response, A549 cells expressing PGAM2K100Q mutant were 

much more sensitive to H2O2 than that cell expressing WT PGAM2 (Fig. 6D). Collectively, 
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the above data show that acetylation at K100 of PGAM2 impaired the ability of cells to 

respond to oxidative stress.

As SIRT2 catalyzes K100 deacetylation of PGAM2, next we examined the oxidative stress 

response of both sirt2 KO MEFs. We found that sirt2 KO MEFs are more sensitive to 

oxidative stress than human SIRT2 putting-back MEFs (Fig. 6E). To test whether this 

observation is due to PGAM2 K100 acetylation, we overexpressed WT or K100Q-mutant 

PGAM2 in sirt2 KO MEFs and found that cells overexpressing WT PGAM2, but not cells 

overexpressing K100Q mutant, could partially rescue the viability of sirt2 KO MEF cells 

after oxidative stress (Fig. 6F). These results demonstrate that the sensitivity of sirt2 KO 

MEFs to oxidative stress is, at least partially, due to PGAM2 K100 acetylation.

Acetylation mimetic K100Q mutant suppressed cell proliferation and tumor growth

Given the high activity of phosphoglycerate mutase in cancer cells, we examined the effect 

of K100 acetylation of PGAM2 on cell proliferation and tumor growth. We found that A549 

cells that knocked down endogenous PGAM2 and ectopically expressed acetylation-mimetic 

PGAM2K100Q proliferated significantly slower than cells expressing WT PGAM2, 

indicating that acetylation of K100 regulates cell growth (Fig. 7A). To further determine 

whether K100 acetylation of PGAM2 plays a critical role in tumor growth, we performed 

xenograft assay in immunodeficient nude mice using the A549 stable cell lines described 

above. Three million cells with putting-back of either WT or K100Q-mutant PGAM2 were 

injected into nude mice subcutaneously, and tumors were dissected after around 7 weeks. 

The expression levels of putting-back Flag-tagged WT PGAM2 and K100Q mutant in 

xenograft tumors were verified by Western blot analysis (Fig. 7B). We found that cells 

expressing PGAM2K100Q developed tumors much slower than cells expressing WT 

PGAM2, as determined by both tumor volume (Fig. 7C and D) and tumor weight (Fig. 7E). 

Taken together, these results demonstrate that PGAM2 K100 acetylation inhibits tumor cell 

growth in vivo.

Discussion

In this article, we provide 4 lines of evidence to demonstrate that acetylation plays a critical 

role in the regulation of PGAM enzyme activity. First, K100, a highly conserved residue in 

PGAM, is acetylated in vivo in multiple tissues and K100 acetylation is an evolutionarily 

conserved modification from fly to mammals. Second, K100 acetylation inhibits the activity 

of PGAM. Third, SIRT2 directly binds to and deacetylates PGAM, leading to its activation 

and, importantly, oxidative stress promotes SIRT2-PGAM binding, induces deacetylation at 

K100, and activates PGAM activity. Finally, replacement of endogenous PGAM with an 

acetylation mimetic mutant, like the inhibition of PGAM by RNAi-mediated depletion or 

pharmacologic inhibitor, suppresses cell proliferation and tumor growth.

PGAM catalyzes the 3-PG-to-2-PG isomerization via a 2-step process, as opposed to a direct 

transfer of a phosphate; first, a transfer of phosphate group from phosphohistidine (H11 in 

human PGAM) in the active site to the C-2 carbon of 3-PG to form 2,3-bisphosglycerate 

(2,3-PG) and then the transfer of the phosphate group linked on C-3 carbon of 2,3-PG to the 

catalytic histidine, resulting in the regeneration of phosphohistidine and the release of 
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product, 2-PG. Because of this prominent enzyme substitution catalytic feature and its 

critical role in metabolic pathway, PGAM has been the subject of extensive investigation by 

X-ray crystallography. These studies have demonstrated a highly conserved structure of 

PGAM, in particular the active site (18–20). Lys100 is a key residue of the active site and 

contacts directly with both the substrate, 3PG, and the intermediate, 2,3-PG (25). As 

acetylation would neutralize the positive charge of the lysine side chain, a likely molecular 

basis for the inhibition of PGAM activity by K100 acetylation is that covalent linkage of the 

acetyl group on K100 interferes with the binding of PGAM with both the substrate and the 

intermediate. An alternative possibility is that acetylation of K100, which is close to the 

His11, could conceivably affect either the phosphorylation of the catalytic histidine or the 

transfer of phosphate group to the substrate.

Increased expression of PGAM, by a mere of 2-fold, results in MEF immortalization and, 

conversely, inhibition of PGAM, by either small RNAi or small molecule, attenuates cell 

proliferation and tumor growth (5, 6). Supporting the role of PGAM in limiting cell 

proliferation, we show in this study that replacement of endogenous of PGAM with an 

acetylation-mimetic K100Q mutant results in significant decrease in cell proliferation and 

tumor growth in a nude mice xenograft tumor model. Our study further links the regulation 

of PGAM activity to cellular response to oxidative stress. This is evidenced by the findings 

that oxidative stress increases the PGAM-SIRT2 binding, leading to a decrease of K100 

acetylation and enhanced PGAM enzyme activity. Cellular response to oxidative stress, 

including angiogenesis and tumorigenesis, is mediated by the HIF-1α (26, 27), which is 

required for the upregulation of mRNAs encoding glucose transporters and glycolytic 

enzymes, with notably exception of PGAM (9). Our study, therefore, not only reveals a 

previously unrecognized regulatory mechanism on PGAM via a posttranslational 

modification but also a distinctive regulation of PGAM that would allow cells to 

coordinatively regulate glycolytic pathway genes for metabolic adaptation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PGAM2 is acetylated at K100. A, sequence alignment of PGAM surrounding K100 from 

various species, including human (Homo sapiens, NCBI reference number: NP_002620.1), 

mouse (Mus musculus, NP_0075907), chicken (Gallus gallus, NP_001026727), frog 

(Xenopus laevis, NP_001084996), zebrafish (Danio rerio, NP_942099.1), fruitfly 

(Drosophila melanogaster, AAF56866.2), thale cress (Arabidopsis thaliana, O04499), 

budding yeast (Saccharomyces cerevisiae, P00950), fission yeast (Schizosaccharomyces 

pombe, P36623), and bacterial (E. coli, WP_001333397.1). Bold, lysine 100. B, molecular 

modeling of acetylation of K100 in PGAM. The 3-PG binding site of PGAM (from 

Burkholderia pseudomallei, which shares 60% sequence identity with human PGAM) is 

rendered in the slate blue cartoon. The phosphorylated H11 is shown in slate blue (carbon), 

blue (nitrogen), red (oxygen), and orange (phosphorus). 3-PG is shown in sticks with carbon 
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atoms colored white, oxygen atoms colored red, and phosphorus atoms colored orange. The 

green dashed lines represent critical electrostatic interactions between the lysine side chain 

and the oxygen of the phosphate of 3-PG. The acetyl group is colored in yellow (carbons). 

C, PGAM2 is acetylated. Flag-PGAM2 was transfected into HEK293T cells followed by 

treatment with TSA and NAM for indicated time. PGAM2 acetylation and protein levels 

were analyzed by Western blotting with indicated antibody. D, K100 is the primary 

acetylation site of PGAM2. The indicated plasmids were transfected into HEK293T cells 

and proteins were immunoprecipitated, followed by Western blot for acetylation analyses. E, 

the plasmids were transfected into HEK293T cells; acetylation levels of immunoprecipitated 

Flag-PGAM2 and K100R mutant were probed with the site-specific K100 acetylation 

antibody (α-K100Ac). F, endogenous PGAM2 is acetylated at K100. The HEK293T cells 

lysate were prepared after TSA and NAM treatment. Endogenous PGAM2 protein and K100 

acetylation levels were determined by Western blotting with indicated antibodies. G, K100 

acetylation is evolutionarily conserved. The A549, MEF, and S2 cells lysate were prepared 

after TSA and NAM treatment, respectively. Endogenous PGAM2 protein and K100 

acetylation levels were determined by Western blotting with indicated antibodies. H, K100 

acetylation is broadly distributed in different tissues. The indicated tissues were isolated 

from C57BL6 mouse and the lysate was prepared after homogenized. Endogenous PGAM2 

protein and K100 acetylation levels were determined by Western blotting with indicated 

antibodies. IP, immunoprecipitation.
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Figure 2. 
Acetylation at K100 reduces PGAM2 activity. A, inhibition of deacetylases decreases 

PGAM2 enzyme activity. Flag-tagged PGAM2 was expressed in HEK293T cells, which 

were treated with or without TSA and NAM, followed by immunoprecipitation, and enzyme 

activity was measured and normalized against protein levels. The protein levels and 

acetylation levels were determined by Western blotting. Mean values ± SD of relative 

enzyme activity of triplicate experiments are presented. B, PGAM2 is activated by in vitro 

deacetylation. Flag-PGAM2 was expressed in HEK293T cells, purified, and incubated with 

recombinant CobB. Samples were analyzed for acetylation levels and PGAM2 enzyme 

activity. Relative enzyme activities of triplicate experiments ± SD are presented. C, K100 

mutation decreases PKM2 enzyme activity. Flag-tagged WT and mutant PGAM2 proteins 

were expressed in HEK293T cells and purified by immunoprecipitation. The enzyme 

activity was measured and normalized against protein level. Error bars represent ± SD for 
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triplicate experiments. D, inhibition of deacetylases with TSA and NAM treatment decreases 

the activity of WT, but not K100-mutant PGAM2. Flag-tagged WT and mutant PGAM2 

proteins were expressed in HEK293T cells, followed by treatment with TSA and NAM, and 

then purified by immunoprecipitation. The PGAM2 enzyme activity was measured and 

normalized against protein level. The mean value of triplicates and ± SD are presented. E, 

WT PGAM2, but not K100-mutant PGAM2, is activated by in vitro deacetylation. Flag-

tagged WT and mutant PGAM2 proteins were expressed in HEK293T cells, then purified 

and incubated with recombinant CobB, followed by enzyme activity assay. Relative enzyme 

activities of triplicate experiments ± SD are presented. F, K100-acetylated PGAM2 has 

lower enzyme activity. Recombinant WT and K100-acetylated PGAM2 protein were 

purified in E. coli. The enzyme activity was measured and normalized against protein level. 

Mean values of relative enzyme activity of triplicate experiments with ± SD are presented.
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Figure 3. 
SIRT2 deacetylates PGAM2 at K100. A, NAM, but not TSA, increases PGAM2 K100 

acetylation. HEK293T cells were treated with either NAM or TSA, endogenous PGAM2 

protein and K100 acetylation levels were determined by Western blotting with PGAM2 

antibody or anti-acetyl-K100 antibody, respectively. B, SIRT2 interacts with PGAM2. 

HEK293T cells were transfected with indicated plasmids, and interactions between PGAM2 

and SIRT1 or SIRT2 were examined by immunoprecipitation and Western blot analysis. C, 

WT SIRT2 overexpression decreases PGAM2 K100 acetylation. K100 acetylation levels of 

PGAM2 in HEK293T cells expressing indicated plasmids were detected by Western 

blotting. D, salermide, the SIRT2 inhibitor, increases the K100 acetylation of PGAM2. 

HEK293T cells were cultured at different concentrations of salermide. The K100 acetylation 

levels were probed by anti-acetyl-K100 antibody. E, knocking down SIRT2 increases 

endogenous K100 acetylation of PGAM2. HEK293T cells were infected with retrovirus 

targeting SIRT2, and the levels of PGAM2 protein and K100 acetylation were determined 

by Western blotting. SIRT2 knockdown efficiency was determined by quantitative PCR. 

Error bars represent ± SD for triplicate experiments. F, the K100 acetylation level of 

PGAM2 is increased in sirt2 knockout MEFs and decreased in hSIRT2 putting-back MEFs. 

Xu et al. Page 17

Cancer Res. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The indicated cell lysates were prepared, and levels of PGAM2 protein and K100 

acetylation were detected by Western blotting using indicated antibodies.
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Figure 4. 
SIRT2 activates PGAM2. A, SIRT2 increases PGAM2 activity. HEK293T cells were 

transfected with indicated plasmids, Flag-PGAM2 was immunoprecipitated, and PGAM2 

activity was assayed. Mean values of relative enzyme activity of triplicate experiments with 

± SD are presented. B, SIRT2 knockdown decreases PGAM2 activity. Scramble and SIRT2 

knocking-down stable HEK293T cells were transfected with Flag-PGAM2, and PGAM2 

protein was immunoprecipitated and activity was assayed. Error bars represent ± SD for 

triplicate experiments. C, inhibition of SIRT2 decreases PGAM2 activity. HEK293T cells 

were transfected with Flag-PGAM2, followed by treatment with salermide. Flag-PGAM2 

was immunoprecipitated, and PGAM2 activity was measured. Relative enzyme activities of 

triplicate experiments ± SD are presented. D, SIRT2 overexpression does not activate K100 

mutants of PGAM2. WT and mutant PGAM2 were co-expressed in HEK293T cells with 

SIRT2, respectively, and purified by Flag beads, followed by enzyme assay and Western 

blotting. The mean value of triplicates and ± SD are presented. E, SIRT2 deacetylates and 

activates PGAM2 in vitro. Flag-PGAM2, HA-SIRT1, and HA-SIRT2 were purified from 

HEK293T cells, respectively, and the in vitro deacetylation assay was performed as 

described. Samples were determined by Western blotting with indicated antibodies.
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Figure 5. 
Oxidative stress decreases K100 acetylation levels and induces PGAM2 activity. A, H2O2 

treatment decreases endogenous K100 acetylation level. HEK293T and A549 cells were 

treated with H2O2 for different lengths of time as indicated. The levels of K100 acetylation 

were determined by Western blotting with anti-acetyl-PGAM2 (K100) antibody. B, H2O2-

induced oxidative stress increases PGAM2 activity. HEK293T cells were transfected with 

Flag-PGAM2 and then treated with H2O2 for indicated time, followed by 

immunoprecipitation, and enzyme activity was measured and normalized against protein 

levels. Mean values of relative enzyme activity of triplicate experiments with ± SD are 

presented. C, H2O2 increases WT PGAM2 activity, but not K100 mutants. HEK293T cells 

were transfected with indicated plasmids, followed by H2O2 treatment for 2 hours, 
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immunoprecipitated, and then PGAM2 activity was assayed. Relative enzyme activities of 

triplicate experiments ± SD are presented. D, oxidative stress increases the endogenous 

PGAM activity via reducing the K100 acetylation level. HEK293T cells or WT MEF cells 

were treated with H2O2 for 2 hours or Menadione (Mena) for 30 minutes, respectively, and 

then endogenous PGAM activity was assayed. The K100 acetylation levels of PGAM2 were 

determined by Western blot analysis. Relative enzyme activities of triplicate experiments ± 

SD are presented. E, oxidative stress increases the interaction between SIRT2 and PGAM2. 

HEK293T cells were transfected with indicated plasmids, and the SIRT2–PGAM2 

association was examined by immunoprecipitation (IP)–Western blot analysis. F, Sirt2 

mediates K100 deacetylation in response to oxidative stress. Sirt2−/− MEFs and Sirt2−/− 

MEFs stably expressing human SIRT2 were treated with H2O2 for indicated time. The 

change of K100 acetylation levels of PGAM2 was determined by Western blot analysis.
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Figure 6. 
Acetylation mimetic K100Q mutant reduces NADPH amount and impairs the ability of cells 

protection from oxidative damage. A, identification of PGAM2 knocking-down and putting-

back cell lines. Whole-cell lysates were prepared from PGAM2 knocking-down and putting-

back stable cells, PGAM2 knockdown efficiency and re-expression were determined by 

Western blotting with indicated antibodies. B, A549 cells stably expressing acetylation 

mimetic K100Q mutant reduces NADPH production. Stable cells identified above were 

prepared, and NADPH was measured using an NADPH kit. Error bars represent ± SD for 

triplicate experiments. C, A549 cells expressing acetylation mimetic K100Q mutant 

accumulates ROS. The same stable cells identified above were prepared, and DCF staining 

was performed to measure ROS levels. Error bars represent ± SD for triplicate experiments. 

D, acetylation mimetic K100Q mutant impairs the ability of cells protection from oxidative 

damage. Stable cells were exposed to different concentrations of H2O2 for 24 hours, and the 

viability of cells was measured by trypan blue exclusion. Error bars represent ± SD for 
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triplicate experiments. E, sirt2 KO MEFs are more sensitive to oxidative stress. sirt2 KO 

MEFs and human SIRT2 putting-back (PB) MEFs were exposed to different concentrations 

of H2O2 as indicated for 24 hours, and the viability of cells was measured applying trypan 

blue exclusion. Error bars represent ± SD for triplicate experiments. F, overexpression of 

WT PGAM2 in sirt2 KO MEFs can partially rescue the viability of sirt2 KO MEFs in 

response to oxidative stress. Indicated cells were infected with virus expressing PGAM2 

wild-type or K100Q mutant for 30 hours, dispersed to 6-well plates, and then exposed to 

different concentrations of H2O2 for 24 hours. The viability of cells was measured by trypan 

blue exclusion. Error bars represent ± SD for triplicate experiments.

Xu et al. Page 23

Cancer Res. Author manuscript; available in PMC 2015 January 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. 
Acetylation mimetic K100Q mutant inhibits cell proliferation and tumor growth. A, 

acetylation mimic mutant K100Q suppresses cell proliferation. A total of 5 × 104 indicated 

stable cells were seeded in each well. Cell numbers were counted every 24 hours. Error bars 

represent cell numbers ± SD for triplicate experiments. B, the expression of PGAM2 and 

PGAM2K100Q in stable cell lines and xenograft tumors. Whole-cell extracts were prepared 

from either original A549 stable cell pools or xenograft tumors, followed analysis by 

Western blotting. C, acetylation mimic mutant K100Q inhibits xenograft tumor growth in 

vivo. Nude mice were injected with A549 PGAM2 cells or PGAM2K100Q cells. The 

xenograft tumors were dissected and measured after 7 weeks and shown. D and E, 

quantification of average volume and weight of xenograft tumors are shown in D and E, 

respectively. Error bars represent ± SD for 7 tumors.
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