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Abstract

Slower recovery from perturbations near a tipping point and its indirect signatures in fluctuation 

patterns have been suggested to foreshadow catastrophes in a wide variety of systems1,2. Recent 

studies of populations in the field and in the laboratory have used time-series data to confirm some 

of the theoretically predicted early warning indicators, such as an increase in recovery time or in 

the size and timescale of fluctuations3–6. However, the predictive power of temporal warning 

signals is limited by the demand for long-term observations. Large-scale spatial data are more 

accessible, but the performance of warning signals in spatially extended systems7–10 needs to be 

examined empirically3,11–13. Here we use spatially extended yeast populations, an experimental 

system displaying a fold bifurcation6, to evaluate early warning signals based on spatio-temporal 

fluctuations and to identify a novel warning indicator in space. We found that two leading 

indicators based on fluctuations increased before collapse of connected populations; however, the 

magnitude of increase was smaller than that observed in isolated populations, possibly because 

local variation is reduced by dispersal. Furthermore, we propose a generic indicator based on 

deterministic spatial patterns, “recovery length”. As the spatial counterpart of recovery time14, 

recovery length is defined as the distance for connected populations to recover from perturbations 

in space (e.g. a region of poor quality). In our experiments, recovery length increased substantially 

before population collapse, suggesting that the spatial scale of recovery can provide a superior 

warning signal before tipping points in spatially extended systems.

Positive feedback is widespread in nature, ranging from cellular circuits to population 

growth to the melting of ice sheets. There is growing evidence that positive feedback leads 

to alternative stable states and tipping points (i.e. fold bifurcations) in various ecological 

systems15–18. Closer to a tipping point an ecosystem becomes less resilient and more likely 

to shift to an alternative state19 such as the collapse of fish stocks, eutrophication of lakes, 

and loss of vegetation20. Predicting these undesirable transitions may sound like an 

impossible task because of the inherent complexity underlying these systems. However, 
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recent advances incorporating ideas from nonlinear dynamical systems theory suggest that 

there may be signatures of “critical slowing down” in the vicinity of tipping points1,2. At the 

brink of these sudden transitions, the recovery of a system after perturbations should slow 

down14, also leading to changes in the pattern of fluctuations21. Thus, a set of indicators 

related to critical slowing down may provide advance warning of an impending transition. 

Empirical tests in the field4 and in the laboratory3,5,6 have revealed some of the early 

warning signals based on fluctuations in time series, such as temporal variation and 

autocorrelation.

However, our understanding of early warning signals in spatially extended systems is still 

limited1,2. The studies in time series typically ignore spatial interactions; in reality the 

spatial coupling between habitat patches (e.g. dispersal of populations or exchange of 

biomass) is common and may affect the performance of some warning signals22. Moreover, 

temporal warning signals rely on data from long-term observations, which are scarce and 

difficult to obtain. Large-scale spatial data, such as satellite-derived data sets17, could be 

more readily available. Spatial data not only provide a greater quantity of information, they 

also allow us to study features of the system that are not available through time series. 

Statistical indicators based on spatial fluctuations have been proposed7–10 but empirical 

studies are limited3,11,12; testing these indicators in replicated experiments, which avoid the 

bias introduced by selective sampling23, are lacking. In addition, previous studies of 

vegetation systems discovered emerging spatial patterns preceding transitions24,25. 

However, the vegetation patterns are often specific to the system studied; identifying generic 

spatial warning signals would add a powerful tool in the analysis of ecosystem stability. 

Here we address these questions using an experimental system of spatially extended yeast 

populations with alternative stable states and a tipping point leading to population collapse.

We grew laboratory populations of the budding yeast Saccharomyces cerevisiae in sucrose 

and performed daily dilution into fresh media. During the daily dilution, a fraction (e.g. 1 in 

500 for dilution factor 500) of the cells were transferred to fresh media. This is a well 

characterized system with an experimentally mapped fold bifurcation6. Yeast cells grow 

cooperatively in sucrose by sharing the hydrolysis products26, creating positive feedback 

between cells that leads to bistability and a tipping point (Supplementary Fig. 1). By 

increasing the dilution factor (equivalent to an increase in the mortality rate), we could drive 

isolated yeast populations to collapse upon crossing the tipping point (Fig. 1a).

We then connected local yeast populations spatially through controlled dispersal between 

nearest neighbors on a one dimensional array (Fig. 1b). Spatial coupling between local 

populations was introduced by adding a dispersal step during the daily dilution. In the 

dispersal step, 25% (corresponding to a dispersal rate D=2×25%=0.5) of a local population 

was transferred to each of its nearest neighbors; the rest of the population remained in the 

patch. For each dilution factor, there were 4 replicate arrays each consisting of 10 patches. A 

group of isolated populations (D=0) was grown in a similar experimental setting except that 

there was no mixing between neighbors (Methods). The isolated populations served as a 

control group and allowed us to investigate the effects of spatial coupling on warning 

signals. From dilution factor 500 to 1600, both groups of connected and isolated populations 
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survived and reached equilibrium densities in a week; at dilution factor 1700, most of the 

populations collapsed within the timescale of our experiment (Fig 1a inset).

After the populations stabilized, we tracked the fluctuations of population density around 

equilibrium for at least 5 days to calculate statistical indicators (Methods). Consistent with 

critical slowing down, we observed a clear increase in the coefficient of variation (CV) of 

connected populations towards the tipping point (Fig. 2a); however, the magnitude of 

increase in CV was smaller than in the isolated populations. We then tested lag-1 

autocorrelation, a leading indicator for the temporal correlation of fluctuations. As expected, 

we found that the temporal correlation of connected populations increased gradually to 

around 0.6 in the vicinity of the tipping point (Fig. 2b). Similar to the observation in CV, the 

signal in temporal correlation was weaker than in the isolated populations. Although 

fluctuations of population density in general became larger and more correlated before 

population collapse, we found that the two warning signals seemed to be suppressed in the 

presence of dispersal, especially at higher dilution factors.

One explanation for the observed suppression of the two leading indicators in connected 

populations is that flows between neighbors smooth out the fluctuations across different 

patches and effectively reduce the autocorrelation in any local population. Reduced size or 

timescale of fluctuations due to dispersal among populations was predicted in previous 

theoretical studies of spatially explicit ecological models8,10,22,27. We note that the smaller 

warning signals of connected populations in our experiment may be partly due to a minor 

shift in the tipping point (Supplementary Fig. 2). The averaging effect of dispersal was also 

found in an independent group of populations subject to “100% dispersal treatment”, where 

we mixed 10 populations completely each day during the dispersal step. In this extreme 

scenario, the populations showed almost no increase in variation before the tipping point 

(Supplementary Fig. 3). Moreover, we demonstrated the suppression of CV and lag-1 

autocorrelation by dispersal in analytical derivations based on a spatially explicit first-order 

autoregressive model (Supplementary Note 1) and in stochastic simulations using a 

phenomenological model of yeast growth6 (Supplementary Fig. 4).

Spatial coupling introduces the possibility of another warning indicator based on spatial 

fluctuations: spatial correlation. Long-range spatial correlation has been known to occur in 

the vicinity of some phase transitions28; recent theoretical work in spatially explicit 

ecological models found that increasing spatial correlation could be a warning signal before 

transitions to an alternative stable state8. We tested the two-point correlation between 

nearest neighbors in the connected populations but failed to observe any increase near the 

tipping point (Supplementary Fig. 5). Simulation results with varying sample size showed 

that no statistically significant increase in spatial correlation should be discerned with the 

limited samples in our experiment. Thus, our results suggest that to observe the increase in 

spatial correlation may require more data than other indicators.

Facing the potential difficulty to observe a strong warning signal based on fluctuations in 

spatially connected populations, we set out to look for possible new indicators. The existing 

warning signals can be classified into different categories, based on the nature of the 

perturbations and measurements (see Fig. 3). Measuring the recovery time after a pulse 
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perturbation (Fig. 3a) can provide a robust indicator of the distance to a tipping point5,14. In 

large complex systems, however, it is often impractical to perform such temporal 

perturbations repeatedly and measure recovery time. Still, due to stochastic perturbations 

such as demographic noise, population density constantly fluctuates around the equilibrium. 

Changes of fluctuation patterns such as an increase in variation and correlation (Fig. 3c, d), 

measured either in time or in space, are also signatures of critical slowing down and consist 

of another two categories of leading warning signals3,4,6–10,21. Surprisingly, there is one 

remaining category that has not been proposed: find or create a “pulse perturbation in space” 

(Fig. 3b) and measure the spatial counterpart of recovery time14. Adjacent to a region of 

poor quality, the neighboring good patches will not immediately have reached their carrying 

capacity; instead the carrying capacity will be reached only further from the bad region 

(Supplementary Fig. 6). Rather than an increase in the timescale to recover, critical slowing 

down here manifests itself as an increase in the spatial scale to recover (Supplementary Note 

2) , i.e. “recovery length” as compared to “recovery time”.

To test our “recovery length” hypothesis, we performed another set of experiment with 

spatially connected yeast populations (dispersal rate D=0.5), now with two different regions: 

a relatively good (lower dilution factor) region of 5 patches and a bad (high dilution factor) 

region of 1 patch (Fig. 4a). Given this sharp boundary between two regions of different 

quality, population density in the good region recovered gradually in space to the 

equilibrium value. As the condition of the good region deteriorates, we expect an increase in 

the spatial scale over which the populations recover. Indeed, we observed a clear change in 

the steady-state recovery profile of populations with increasing dilution factor of the good 

region (Fig. 4b). In agreement with our hypothesis, the spatial recovery spanned a much 

longer distance closer to the tipping point.

We quantified this spatial scale using two different indicators (Fig. 4c). The first indicator, 

“half-point recovery length”, measures the distance between the bad region and the location 

of half recovery (Methods). The half-point recovery length increased gradually with dilution 

factor from less than 0.5 to around 2. The second indicator, “exponential recovery length”, is 

obtained by fitting the recovery profile with an exponential function (Methods). Similar to 

the first indicator, the exponential recovery length increased more than 3-fold as the tipping 

point was approached. Thus, both measures suggest that the recovery length provides a 

strong warning signal before population collapse in our system. We also observed an 

increase in both indicators as we slowly deteriorated the good region and induced the 

collapse of connected populations in real time (Supplementary Fig. 7).

Recovery length completes the four categories of early warning signals and can help 

improve our assessment of spatially extended systems. Our results suggest that stronger 

spatial coupling (higher dispersal rate) suppresses early warning signals in CV and temporal 

correlation (Supplementary Fig. 4). In contrast, the magnitude of recovery length increases 

with the level of spatial coupling (Supplementary Note 2). These two categories of early 

warning signals are therefore complementary: when one signal is weak the other is strong. 

Also, although our experiment was conducted on a linear array, the use of recovery length 

can be readily generalized to two-dimensional systems by mapping the profile perpendicular 

to contours of population density. Unlike the specific spatial patterns found in two-
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dimensional vegetation systems24,25, recovery length may provide a generic measure given 

that the spatially coupled units by themselves would recover more slowly near the tipping 

point. Finally, from a practical perspective, boundaries between regions of different quality 

are ubiquitous in nature, thus providing many opportunities to measure the recovery length 

in populations of interest. One specific example of recovery length would be the “distance of 

edge influence” in landscape ecology29: it quantifies the spatial scale of edge influence on 

biota in fragmented landscapes. Data of edge influence for forests at different sites suggest 

longer recovery length of the Australian tropical forests30, which coincides with the recent 

forest collapses in Western Australia. In principle, the recovery length can also be measured 

when spatially extended populations “recover” from a region of higher quality 

(Supplementary Figs. 6 and 8), suggesting that boundaries may be introduced by 

conservation efforts (e.g. setting up marine reserves).

Our experiments were performed in the simplest spatial setting possible: homogeneous 

environments and dispersal rates, a large population size and a safe distance away from the 

tipping point. In the presence of environmental heterogeneity, measurement of recovery 

length may fail if the desired sharp boundary between regions of different quality is blurred. 

However, in this case we expect enhanced signals in spatial correlation8 and spatial variation 

before population collapse (Supplementary Fig. 9). Our experiments have also not explored 

the effects of spatial coupling on the global stability of a meta-population. On the one hand, 

spatial coupling may reduce fluctuations and the probability that a random shock will trigger 

a state shift22; on the other hand, stochastic local extinctions or the introduction of a bad 

region can possibly drive the connected populations to collapse before the tipping point of a 

local population (Supplementary Note 3).

Our work illustrates the important role of spatial coupling, such as the dispersal of 

populations, in understanding how to apply the current toolbox of warning indicators to 

natural populations. More empirical studies are required to confirm the generality and 

applicability of different indicators; nevertheless, being able to observe warning signals in 

connected populations gives us hope to develop quantitative metrics for assessing the 

fragility of spatially extended complex systems.

Methods

Experimental protocols

We grew the budding yeast Saccharomyces cerevisiae in 200 μl batch culture on BD Falcon 

96-well Microtest plates at 30.7 °C (±0.2°C, standard deviation) using synthetic media 

(Yeast Nitrogen Bases + Nitrogen, Complete Supplement Mixture) supplemented with 2% 

sucrose6. Cultures were maintained in a well-mixed condition by growing on a shaker at 825 

r.p.m. Serial dilutions were performed daily (23 hours of growth) with variable dilution 

factors. Population densities were recorded each day before the serial dilution by measuring 

optical density at 600nm using a Thermo Scientific Varioskan Flash Multimode Reader. The 

calibration between optical density and cell density was based on the previous 

characterization of this system6.
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In the group of connected populations, for each dilution factor there were 4 replicate arrays 

each consisting of 10 patches. Populations were connected by controlled dispersal between 

nearest neighbors (dispersal rate D=0.5, which is defined as the fraction of population going 

out of a patch). Reflecting boundary conditions were adopted, meaning that a population on 

the edge would have 75% of its cells remaining in the patch during the dispersal step. In the 

group of isolated populations, the experiment was performed in a similar spatial setting 

except that there was no dispersal (D=0); for each dilution factor there were 4 arrays each 

consisting of 5 patches, thus a total of 20 replicate populations isolated from each other. The 

dilution factors for the data presented in Fig. 2 are 500, 1000, 1200, 1400 and 1600. In the 

experiment to measure recovery length, populations were connected by nearest-neighbor 

dispersal (D=0.5, reflecting boundary conditions). The dilution factor for the bad region (1 

patch) was 2500; the dilution factor for the good region (5 patches) was varied as the 

environmental driver. The dilution factors for the data presented in Fig. 4 are 500, 750, 

1000, 1133, 1200, 1266, 1350 and 1400.

Calculation of statistical indicators

Statistical indicators for the connected populations were calculated among 10 populations in 

one array on each day and averaged over a span of at least 5 days, after the populations 

stabilized. The mean value of 4 replicate arrays and SEM (n=4) are shown in Figure 2. For 

the isolated populations, statistical indicators were calculated on each day among 20 

populations over 5 days. We used bootstrap to compute SEs of the indicators by resampling 

1000 times the ensemble of replicate populations (for the coefficient of variation and the 

temporal correlation) or arrays (for the spatial correlation).

The coefficient of variation (CV) was calculated as the sample standard deviation 

(Supplementary Fig. 3b) divided by the sample mean. Because the local populations in our 

experiment were grown in a homogeneous environment, in principle they could all be 

treated as replicates. Assuming the system is ergodic, the CV calculated over an ensemble of 

replicates can be interpreted either as spatial CV of many populations at one time point or 

temporal CV of a single population over many time points. The temporal correlation, 

defined as the lag-1 autocorrelation, was estimated by the Pearson’s correlation coefficient 

between the population densities at subsequent days. To correct for negative bias in small 

samples, we used a modified estimator with an additional term  for lag-1 

autocorrelation31. The sample size N=10 for connected populations; N=20 for isolated 

populations. N is a fixed number for different dilution factors, so using the modified 

estimators would not affect the trend of indicators. The spatial correlation, defined as the 

two-point correlation between all neighboring pairs, was estimated by the Moran’s 

coefficient8,32. The expectation of Moran’s coefficient is  in the absence of spatial 

correlation33; we used a modified estimator with an additional term  so that the 

expectation is 0. In this case, the sample size N is the number of patches in an array: N=10 

for connected populations; N=5 for isolated populations. For detailed formula of the 

statistical indicators, see Supplementary Note 4.
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In the analysis we ensured environmental homogeneity by removing a linear gradient of 

population density observed in connected populations. The small gradient is presumably 

caused by some heterogeneity in experimental conditions (temperature, dilution errors, etc.) 

across the plate. Removing gradient-type spatial heterogeneity before statistical analysis is 

similar to the detrending procedure commonly used in time-series analysis; it prevents 

spurious signals such as positive spatial correlation (Supplementary Fig. 10).

Recovery length

After the recovery profile stabilized, we tracked the population density profiles of at least 6 

replicates over several days. The half-point recovery length Lhalf was estimated by 

performing a shape-preserving interpolation (Matlab function PCHIP, piecewise cubic 

Hermite interpolating polynomial) to the recovery profile and then locating the position of 

half recovery at which . The population density of the bad region 

(dilution factor 2500) in our experiment was close to 0 (Fig. 4 and Supplementary Fig. 7). In 

the more general scenario with a sharp boundary between two regions of different quality 

(Supplementary Fig. 6 and 8), the position of half recovery can be defined as the midpoint 

between the equilibrium population density of the region of interest and the population 

density at the boundary. The exponential recovery length was estimated by fitting an 

exponential function with three parameters c1 exp(−x/Lexp) + c2 to the recovery profile n(x). 

The data points used for exponential fitting are from position 1 to 5 (except for dilution 

factor 500, the data for fitting are from position 0 to 5). We note that our definition of 

exponential recovery length is phenomenological, because: 1) the deviation is expected to be 

exponential only close enough to the equilibrium; 2) at higher dilution factors the profile can 

deviate from an exponential form (Supplementary Fig. 11). The “kink” in the fitted 

exponential recovery length (Fig. 4c) may be due to the limited data points used in fitting or 

experimental errors. For both the half-point recovery length and the exponential recovery 

length, we used bootstrap to compute SEs for the indicators by resampling the ensemble of 

steady-state profiles 100 times and fitting the average recovery profile.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Yeast populations with a tipping point: an experimental system to study collapse of 
connected populations
a, Isolated yeast populations collapse after crossing a tipping point. The distribution of 

population density around equilibrium is shown in spread points; the red square denotes the 

mean. Insets are traces of replicate populations at dilution factor 1000 (stable) and 1700 

(collapsed), y-axis unit: cells/µl. b, Yeast populations are spatially connected by controlled 

daily dispersal. Each circle corresponds to a habitat patch where a local population grows. A 

fraction of the local population is transferred to each of its two nearest neighbors, and the 

rest to itself.
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Figure 2. Early warning signals based on fluctuations show suppressed increase in connected 
populations
a, Coefficient of variation (CV). b, Temporal correlation (lag-1 autocorrelation). CV and 

temporal correlation of both isolated populations (red squares) and connected populations 

(blue circles) increased before the tipping point. The signals were suppressed in the 

connected populations, possibly due to the averaging effect of dispersal. Error bars are SEs 

given by bootstrap for isolated populations and SEMs (n=4) for connected populations.
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Figure 3. Early warning signals can be classified into four categories by the nature of 
perturbations and measurements
a, Recovery time; b, Recovery length; c, Statistical indicators based on temporal 

fluctuations; d, Statistical indicators based on spatial fluctuations. The unexplored category 

of early warning signals is the spatial counterpart of recovery time: “recovery length”. The 

recovery length characterizes the spatial scale over which population density recovers from 

a pulse perturbation in space, such as at a boundary with a region of lower quality (b). The 

recovery length increases towards the tipping point (Supplementary Note 2) and provides a 

novel indicator of critical slowing down in spatial data.
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Figure 4. Recovery length provides a direct measure of critical slowing down in space
a, Connected populations in a relatively good region of dilution factor 750 (left) and 1200 

(right) recover gradually in space to the equilibrium density. Blue circles denote the steady-

state profile of population density after averaging over replicates (shown in gray). b, 

Recovery profiles at dilution factor 500, 750, 1000, 1200, 1350 and 1400 show an increasing 

spatial scale of recovery. The profile is normalized by the population density of the patch 

furthest from the bad region. Lines are shape-preserving interpolations; the position of half 

recovery is marked by a red square. c, Two different measures of recovery length increase 

substantially with dilution factor. Error bars are SEs given by bootstrap.
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