Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 18;91(2):782–786. doi: 10.1073/pnas.91.2.782

Growth hormone-releasing factor increases somatostatin release and mRNA levels in the rat periventricular nucleus via nitric oxide by activation of guanylate cyclase.

M C Aguila 1
PMCID: PMC43033  PMID: 7904758

Abstract

Previous work has shown that growth hormone-releasing factor (GRF) stimulates cGMP production and somatostatin [somatotropin (growth hormone)-release-inhibiting factor, SRIF] release without altering cAMP accumulation by fragments of median eminence incubated in vitro. Therefore, this study was undertaken to evaluate the effect of GRF and cGMP on SRIF mRNA and SRIF release in the periventricular nuclei of male rats in vitro. SRIF mRNA levels were determined in explants of periventricular nuclei incubated for 6 hr in Waymouth's medium in the presence of various substances. Steady-state levels of SRIF mRNA were measured by an S1 nuclease protection assay using a 32P-labeled rat SRIF RNA probe. SRIF release and cGMP formation were measured at 30 min and 6 hr by RIA. SRIF mRNA levels and SRIF release were significantly (P < 0.025) increased (approximately 2-fold) by 1 microM dibutyryl cGMP, whereas sodium butyrate had no effect. This augmentation was not influenced by cycloheximide, an inhibitor of protein synthesis. Sodium nitroprusside (10 microM), an activator of the guanylate cyclase pathway via its release of nitric oxide, augmented (P < 0.001) SRIF mRNA levels and significantly increased (P < 0.05) SRIF release. GRF (1 nM) increased SRIF mRNA (P < 0.001) and stimulated the release of SRIF at 30 min (P < 0.05) and 6 hr (P < 0.01). This stimulation was abolished by 10 microM NG-monomethyl-L-arginine (L-NMMA), a specific inhibitor of nitric oxide synthase, but not by NG-monomethyl-D-arginine (D-NMMA, the inactive isomer). GRF also increased cGMP formation. This effect was completely blocked by incubation with L-NMMA but not D-NMMA. These results indicate that GRF releases nitric oxide. The nitric oxide diffuses to the adjacent SRIF neurons, where it activates guanylate cyclase, leading to increased formation of cGMP. This cGMP increases SRIF mRNA and SRIF release in the periventricular nuclei of male rats.

Full text

PDF
782

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguila M. C., McCann S. M. Calmodulin dependence of somatostatin release stimulated by growth hormone-releasing factor. Endocrinology. 1988 Jul;123(1):305–309. doi: 10.1210/endo-123-1-305. [DOI] [PubMed] [Google Scholar]
  2. Aguila M. C., McCann S. M. Calmodulin dependence of somatostatin release stimulated by growth hormone-releasing factor. Endocrinology. 1988 Jul;123(1):305–309. doi: 10.1210/endo-123-1-305. [DOI] [PubMed] [Google Scholar]
  3. Aguila M. C., McCann S. M. Evidence that growth hormone-releasing factor stimulates somatostatin release in vitro via beta-endorphin. Endocrinology. 1987 Jan;120(1):341–344. doi: 10.1210/endo-120-1-341. [DOI] [PubMed] [Google Scholar]
  4. Aguila M. C., McCann S. M. Growth hormone increases somatostatin release and messenger ribonucleic acid levels in the rat hypothalamus. Brain Res. 1993 Sep 24;623(1):89–94. doi: 10.1016/0006-8993(93)90014-e. [DOI] [PubMed] [Google Scholar]
  5. Aguila M. C., McCann S. M. Stimulation of somatostatin release in vitro by synthetic human growth hormone-releasing factor by a nondopaminergic mechanism. Endocrinology. 1985 Aug;117(2):762–765. doi: 10.1210/endo-117-2-762. [DOI] [PubMed] [Google Scholar]
  6. Aguila M. C., Milenkovic L., McCann S. M., Snyder G. D. Role of arachidonic acid or its metabolites in growth-hormone-releasing factor-induced release of somatostatin from the median eminence. Neuroendocrinology. 1990 Sep;52(3):238–242. doi: 10.1159/000125592. [DOI] [PubMed] [Google Scholar]
  7. Aguila M. C., Snyder G. D., McCann S. M. Rat growth hormone-releasing factor stimulates cyclic GMP formation and phosphatidylinositol metabolism in the median eminence. Life Sci. 1991;49(1):67–74. doi: 10.1016/0024-3205(91)90580-5. [DOI] [PubMed] [Google Scholar]
  8. Arimura A., Sato H., Coy D. H., Schally A. V. Radioimmunoassay for GH-release inhibiting hormone. Proc Soc Exp Biol Med. 1975 Mar;148(3):784–789. doi: 10.3181/00379727-148-38631. [DOI] [PubMed] [Google Scholar]
  9. Brazeau P., Rivier J., Vale W., Guillemin R. Inhibition of growth hormone secretion in the rat by synthetic somatostatin. Endocrinology. 1974 Jan;94(1):184–187. doi: 10.1210/endo-94-1-184. [DOI] [PubMed] [Google Scholar]
  10. Bredt D. S., Glatt C. E., Hwang P. M., Fotuhi M., Dawson T. M., Snyder S. H. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. 1991 Oct;7(4):615–624. doi: 10.1016/0896-6273(91)90374-9. [DOI] [PubMed] [Google Scholar]
  11. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  12. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  13. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  14. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9030–9033. doi: 10.1073/pnas.86.22.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bredt D. S., Snyder S. H. Nitric oxide, a novel neuronal messenger. Neuron. 1992 Jan;8(1):3–11. doi: 10.1016/0896-6273(92)90104-l. [DOI] [PubMed] [Google Scholar]
  17. Feramisco J. R., Smart J. E., Burridge K., Helfman D. M., Thomas G. P. Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J Biol Chem. 1982 Sep 25;257(18):11024–11031. [PubMed] [Google Scholar]
  18. Garthwaite J., Garthwaite G., Palmer R. M., Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol. 1989 Oct 17;172(4-5):413–416. doi: 10.1016/0922-4106(89)90023-0. [DOI] [PubMed] [Google Scholar]
  19. Goy M. F. cGMP: the wayward child of the cyclic nucleotide family. Trends Neurosci. 1991 Jul;14(7):293–299. doi: 10.1016/0166-2236(91)90140-p. [DOI] [PubMed] [Google Scholar]
  20. Horváth S., Palkovits M., Görcs T., Arimura A. Electron microscopic immunocytochemical evidence for the existence of bidirectional synaptic connections between growth hormone-releasing hormone- and somatostatin-containing neurons in the hypothalamus of the rat. Brain Res. 1989 Feb 27;481(1):8–15. doi: 10.1016/0006-8993(89)90479-4. [DOI] [PubMed] [Google Scholar]
  21. Katakami H., Arimura A., Frohman L. A. Growth hormone (GH)-releasing factor stimulates hypothalamic somatostatin release: an inhibitory feedback effect on GH secretion. Endocrinology. 1986 May;118(5):1872–1877. doi: 10.1210/endo-118-5-1872. [DOI] [PubMed] [Google Scholar]
  22. Kedzierski W., Porter J. C. Quantitative study of tyrosine hydroxylase mRNA in catecholaminergic neurons and adrenals during development and aging. Brain Res Mol Brain Res. 1990 Jan;7(1):45–51. doi: 10.1016/0169-328x(90)90072-l. [DOI] [PubMed] [Google Scholar]
  23. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  24. Krulich L., Dhariwal A. P., McCann S. M. Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology. 1968 Oct;83(4):783–790. doi: 10.1210/endo-83-4-783. [DOI] [PubMed] [Google Scholar]
  25. Lumpkin M. D., Gegro-Vilar A., McCann S. M. Paradoxical elevation of growth hormone by intraventricular somatostatin: possible ultrashort-loop feedback. Science. 1981 Mar 6;211(4486):1072–1074. doi: 10.1126/science.6110244. [DOI] [PubMed] [Google Scholar]
  26. Lumpkin M. D., Samson W. K., McCann S. M. Effects of intraventricular growth hormone-releasing factor on growth hormone release: further evidence for ultrashort loop feedback. Endocrinology. 1985 May;116(5):2070–2074. doi: 10.1210/endo-116-5-2070. [DOI] [PubMed] [Google Scholar]
  27. Martin J. B., Renaud L. P., Brazeau P., Jr Pulsatile growth hormone secretion: suppression by hypothalamic ventromedial lesions and by long-acting somatostatin. Science. 1974 Nov 8;186(4163):538–540. doi: 10.1126/science.186.4163.538. [DOI] [PubMed] [Google Scholar]
  28. Montminy M. R., Low M. J., Tapia-Arancibia L., Reichlin S., Mandel G., Goodman R. H. Cyclic AMP regulates somatostatin mRNA accumulation in primary diencephalic cultures and in transfected fibroblast cells. J Neurosci. 1986 Apr;6(4):1171–1176. doi: 10.1523/JNEUROSCI.06-04-01171.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zeytin F. N., Rusk S. F., De Lellis R. Growth hormone-releasing factor and fibroblast growth factor regulate somatostatin gene expression. Endocrinology. 1988 Mar;122(3):1133–1136. doi: 10.1210/endo-122-3-1133. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES