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Abstract

Background

Robust malaria vector surveillance is essential for optimally selecting and targeting vector

control measures. Sixty-two vector surveillance sites were established between 2005 and

2008 by the national malaria surveillance program in China to measure Anopheles sinensis
human biting rates. Using these data to determine the primary ecological drivers of malaria

vector human biting rates in malaria epidemic-prone regions of China will allow better target-

ing of vector control resources in space and time as the country aims to eliminate malaria.

Methods

We analyzed data from 62 malaria surveillance sentinel sites from 2005 to 2008. Linear

mixed effects models were used to identify the primary ecological drivers for Anopheles
sinensis human biting rates as well as to explore the spatial-temporal variation of relevant

factors at surveillance sites throughout China.

Results

Minimum semimonthly temperature (β = 2.99; 95% confidence interval (CI) 2.07- 3.92), en-

hanced vegetation index (β =1.07; 95% CI 0.11–2.03), and paddy index (the percentage of
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rice paddy field in the total cultivated land area of each site) (β = 0.86; 95% CI 0.17–1.56)

were associated with greater An. Sinensis human biting rates, while increasing distance to

the nearest river was associated with lower An. Sinensis human biting rates (β = −1.47;

95% CI −2.88, −0.06). The temporal variation (s2
t0 ¼ 1:35) in biting rates was much larger

than the spatial variation (s2
s0 ¼ 0:83), with 19.3% of temporal variation attributable to differ-

ences in minimum temperature and enhanced vegetation index and 16.9% of spatial vari-

ance due to distance to the nearest river and the paddy index.

Discussion

Substantial spatial-temporal variation in An. Sinensis human biting rates exists in malaria

epidemic-prone regions of China, with minimum temperature and enhanced vegetation

index accounting for the greatest proportion of temporal variation and distance to nearest

river and paddy index accounting for the greatest proportion of spatial variation amongst ob-

served ecological drivers.

Conclusions

Targeted vector control measures based on these findings can support the ongoing malaria

elimination efforts in China more effectively.

Introduction
In China, Anopheles sinensis is an important malaria vector with the largest geographic distri-
bution, being present between 25°N and 33°N latitude. An. sinensis is an outdoor biting and
resting mosquito, which breeds in a wide variety of water collections and has a number of po-
tential resting sites, including rice fields, straw heaps, and low vegetation [1]. Although a rela-
tively inefficient vector because of its zoophilic habits, An. sinensis is still considered an
important vector of Plasmodium vivaxmalaria in China due to its wide distribution and high
density [2–4].

Many current malaria control and elimination interventions aim to reduce human-vector
contact [5, 6]. In China, malaria vector surveillance has been conducted recently in malaria
epidemic-prone regions to gain a basic understanding of transmission parameters, assess im-
pact of insecticide-based control measures, and identify receptive areas for malaria transmis-
sion [7, 8]. Moreover, recent surveillance results have indicated a high level of heterogeneity in
An. sinensis distribution throughout epidemic-prone regions where An. sinensis biting rates av-
eraged 6.2 bites per man per night, but ranged from 0.4 to 107 bites per man per night [9].

It is well known that malaria infections are not distributed homogenously, with some
areas within the same region showing higher incidence than others [10]. Many factors may con-
tribute to the spatial heterogeneity of transmission intensity in a community, including
the distance to larval habitats, land cover, topography, and presence of livestock [11–13].
Malaria outbreaks and re-emergences in recent years in China have only occurred in regions
where An. sinensis was the primary vector [14], but the ecological factors influencing An. sinensis
abundance in China are poorly understand. Previous studies looking at An. sinensis density have
only examined a limited set of climatic factors such as temperature and precipitation [15]. Few
studies have considered additional meteorological and socioeconomic factors when exploring
the spatial-temporal variation of An. sinensis density. Understanding the associated drivers for
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spatial-temporal dynamics of An. sinensis biting rates is crucial to the development of effective
malaria elimination measures in China.

An important task of disease vector ecology research is to determine the relative contribution
of related ecological factors on spatial-temporal heterogeneity of the vector distribution. The
use of remote sensing (RS), geographic information systems (GIS), and spatial statistics in the
study of vector-borne diseases has increased remarkably during recent years [16, 17]. This has
been especially true for studies of anopheline mosquitoes whose dependence on water in early
stages of life cycle makes them particularly amenable to study by RS. Several studies have used
low-resolution satellite imagery to monitor the climatic factors associated with malaria trans-
mission [17–19]. These models tend to result in good predictions over large areas, where the
mosquito dynamics are mainly driven by rainfall and temperature patterns.

In this evaluation, we analyzed data from China’s large national vector surveillance pro-
gram. We used linear mixed effects models to explore the relative contribution of primary eco-
logical drivers for spatial-temporal variation of An. sinensis in malaria epidemic-prone regions
of China. Both time-invariant and time-variant factors were included in the model simulta-
neously to explore their respective contribution to spatial-temporal variation in An. sinensis
human biting rate.

This is the first study in China presenting a systematic analysis of ecological drivers (includ-
ing socioeconomic, climatic, environmental factors) of the spatial-temporal distribution of An.
sinensis throughout the country, which provides an invaluable guide for targeting vector con-
trol measures to support the ongoing malaria elimination program.

Methods

Study areas
This evaluation included entomological data from 62 malaria surveillance sites established be-
tween 2005 and 2008 by the national malaria sentinel surveillance program in China (Fig. 1).
Each site is comprised of a township, which typically has a population of 10,000–30,000 and is
comprised of 40–100 natural villages. Sentinel townships were divided into the following three
categories based on the transmission levels in China [1]:

1. Unstable endemic areas: 30 townships in 6 provinces (Hainan, Yunnan, Anhui, Hubei,
Henan, Jiangsu) [5 counties/ province, 1 township/county].

2. Low endemic areas: 24 townships in 8 provinces (Sichuan, Chongqing, Guizhou, Guang-
dong, Guangxi, Hunan, Jiangxi, Fujian) [3 counties/province, 1 township/county].

3. Pre-elimination areas: 8 townships in 4 provinces (Shanghai, Zhejiang, Shandong, Liaoning)
[2 counties/province, 1 township/county].

Ethical considerations
Ethics approval was obtained from the National Institute of Parasitic Disease, Chinese Center for
Disease Control and Prevention (WHO Collaborating Center for Malaria, Schistosomiasis and
Filariasis) ethical committee. No specific permissions were required for these activities, the loca-
tion is not privately owned and the field studies did not involve endangered or protected species.

Mosquito collection
Based on the malaria prevalence during the past five years as well as ecological variation, one
representative natural village from each sentinel surveillance township was selected for the
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routine vector surveillance for malaria. Based onWHO recommendations [21], outdoor human
landing catches were made by two adult volunteers from the local population working beside a
bed net with one sleeping person. Mosquitoes coming to bite the collectors or sleeping person
were detected using a flashlight, collected using glass tubes with backpack aspirator (CDC back-
pack aspirator: JohnW. Hock Co., Florida, USA) and placed in the screened pint-sized contain-
ers. Collections were conducted for 30 min each hour from 18:00 to 06:00 every 15 days from
June to October, 2005–2008. Collectors worked in pairs in 6 hour shifts. One pair began at 18:00
and another at midnight. Mosquitoes were taken to provincial laboratory and killed by suffoca-
tion with chloroform vapor. They were counted as well as identified morphologically using taxo-
nomic keys [7]. The mosquito human biting rate was calculated as the number of female adults
landing on humans per house man-hour.

Meteorological and environmental variables
Based on previous studies demonstrating that fluctuations in anopheline abundance are driven
primarily by temperature and precipitation [13, 22, 23], four meteorological variables (average

Figure 1. The distribution of Anopheles sinensis human biting rates averaged by eachmonitoring site during 2005 to 2008 in China.

doi:10.1371/journal.pone.0116932.g001
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temperature [AT], highest temperature [HT], minimum temperature [MT] and cumulative
precipitation [CPR]), measured every day at 680 stations and aggregated to semimonthly inter-
vals for each station were used to examine the relationship between climate and An. sinensis
human biting rates in our study. Meteorological data were collected from the publicly available
Chinese Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/home.do). The
meteorological records in 40 time points (semimonthly, June to October from 2005 to 2008) at
680 stations were interpolated separately for each time period across all sites by using Inverse
Distance Weighting interpolation technique in ArcGIS 10.1 (Environmental Systems Research
Institute, Redlands, California, USA). All these meteorological variables were normalized using
the min-max normalization method, in order to adjust values measured on different scales to a
common scale [24]. Fig. 2 gives the time-series plots of these meteorological variables.

Several recent studies [25, 26] have shown significant correlations between the vegetation
indices derived fromModerate-resolution Imaging Spectroradiometer (MODIS) Terra satellite
and mosquito density. Vegetation indices could relate to surface moisture and presence of veg-
etation types which are naturally around where vectors are found [25]. Here, the 16-day com-
posite MODIS Normalized Difference Vegetation Index (NDVI) as well as Enhanced
Vegetation Index (EVI) at a resolution of 250 meters (https://lpdaac.usgs.gov/products/modis_
products_table/mod13q1) was used to explain the variation of An. sinensis human biting rates.
Normalized Difference Vegetation Index values vary between +1 and -1; the higher the NDVI
value, the denser the green vegetation [27]. EVI performs better than NDVI in dense vegetation
coverage areas because of the atmospheric and background corrections incorporated into

Figure 2. Time series plots of Anopheles sinensis human biting rates and time-variant predictors. (A) Anopheles sinensis human biting rates (Box-cox
transformed); (B) average temperature [AT]; (C) highest temperature [HT]; (D) minimum temperature [MT]; (E) cumulative precipitation [CPR]; (F) enhanced
vegetation index [EVI]. The timeid in this figure indicates the order number of semimonth from June 2005 to October 2008. For example, 1 indicates the first
half of June 2005; 11 indicates the first half of June 2006.

doi:10.1371/journal.pone.0116932.g002
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EVI’s calculation [28]. Since some studies [14, 29, 30] have found that distance to water bodies
is negatively associated with mosquito density, we generated raster maps depicting the distance
of every pixel to the nearest river by applying straight line distance interpolation function in
ArcGIS 10.1 [31]. Landform (plain, mountain, hill and basin), slope and elevation were also ex-
plored as potential predictor variables.

Socioeconomic variables
Socioeconomic factors including the number of livestock and paddy index were explored for
inclusion in models based on previous evidence of their importance in China [13, 32]. Paddy
index reflects the relative amount of land devoted to rice cultivation, and is defined as the rice
paddy field area divided by the total cultivated land area at township level according to the Na-
tional Statistical Bureau; this proportion was used to describe the potential breeding environ-
ment for mosquitos.

Categories of predictor variables
The analyzed variables were divided into two categories: the time-variant and time-invariant
factors. The time-invariant covariates included river distance, paddy index, landform, livestock,
slope and elevation which are time-invariable or change extremely slowly over time. The time-
variant covariates AT, HT, MT, NDVI and EVI were measured semimonthly during the sur-
veillance period.

Mixed effects model
Mixed effects models, also called hierarchical models, random-effects, or random-coefficient
models, have been widely used in various fields to explore determinants of spatial-temporal
variation of a number of outcomes [33]. There are three advantages to mixed effects models
compared to simple regression models: (1) they are robust to missing data and irregularly
spaced measurement occasions [34]; (2) they are able to incorporate correlation structures
that often exist within grouped data [35]; and (3) the groups can be treated as random
effects to model the covariance structure introduced by the grouping of the data. By using a
mixed effects model, we can deal with the potential unobserved heterogeneity among surveil-
lance sites.

In this study, mixed effects models were implemented using the xtmixed command in the
statistical software Stata 12 (College Station, Texas) [36]. In order to meet the Gaussian as-
sumption of normally-distributed residuals, a Box-Cox transformation was used to transform
the raw An. sinensis human biting rates data [37]. Fig. 3 shows the histogram of original and
Box-Cox transformed An. sinensis human biting rates.

Mixed effects model to analyze mosquito human biting rate
Mixed effects models were used to examine the relationship between An. sinensis human biting
rates and predictor variables. We used two types of mixed effects models: the variance compo-
nent model and random intercept model [24, 38].

In order to examine the spatial and temporal variation of An. sinensis human biting rates, a
variance component model (equation 1) was used to fit the data. A variance component model
is an “empty”model that does not include any explanatory variables but only estimates the spa-
tial and temporal differences in An. sinensis human biting rates [24].

yit ¼ ai þ ni þ uit i ¼ 1; � � � ;N; t ¼ 1; � � � ;Ti ð1Þ
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Where yit is the An. sinensis human biting rate in i-th monitoring site (township) and t-th
semimonth; where ni is the difference between average An. sinensis human biting rate in each
site and global average An. sinensis human biting rate among all sites; uit is the difference be-
tween yit and average An. sinensis human biting rate in each site; s2

n and s
2
u capture spatial and

temporal variation of An. sinensis human biting rates, respectively.
Equation 1 can be specified using a variety of assumptions about spatial heterogeneity of the

relation between independent variables and dependent variable. If only intercepts vary (αi)
among surveillance sites, fixed/ random effects estimates can be used to estimate equation 2.

yit ¼ ai þ bXit þ ni þ uiti ¼ 1; � � � ;N; t ¼ 1; � � � ;Ti ð2Þ

Equation 2 assumes that the error term is serially uncorrelated conditional on the individual
effect αi. However, unobserved variables varying systematically over time may violate this as-
sumption [39]. To provide more general autocorrelation scheme, one can relax the restriction
that uit follow a first-order autoregressive process [39],

uit ¼ ri;t�1 þ Zit ð3Þ

where r is the serial correlation coefficient; jrj< 1 and ηit is independent and identically
distributed (i.i.d.) with mean 0 and variance s2

Z;

The Lagrange-Multiplier test was used to test whether there was significant serial correla-
tion. A likelihood ratio test was used to test spatial heterogeneity by comparing the random in-
tercept model with single level regression model.

Previous studies have showed that meteorological variables with 1–2 month lag were signifi-
cantly associated with malaria incidence in China [40, 41]; we used mixed effects model to ex-
plore the lag effects of time-variant factors on An. sinensis human biting rates.

Figure 3. The histogram of the original (A) and Box-cox (B) transformed Anopheles sinensis human biting rates.

doi:10.1371/journal.pone.0116932.g003
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Proportional change in variance (PCV) for spatial and
temporal variation
The spatial and temporal variation of An. sinensis human biting rate can be attributed to differ-
ent factors including time-variant factors (e.g., MT, CPR and EVI) and time-invariant factors
(e.g., elevation, slope, paddy index). By adjusting for time-variant factors in a random intercept
model, we can calculate the proportional change in temporal variance (PCVt) by each time-
variant factor [24, 42]. The PCVt can measure how much temporal variance can be explained
by each time-variant factor. The equation for the proportional change in temporal variance
(PCVt) of An. sinensis human biting rate can be written as:

PCVt ¼
Vt0 � Vt1

Vt0

ð4Þ

Where Vt0 is the temporal variation in variance component; and Vt1 is the temporal varia-
tion in the model including time-variant factors. The equation can be adapted to calculate the
PCV at spatial dimension (PCVs), as variance in An. sinensis human biting rate among surveil-
lance sites which will also be explained by differences in the time-invariant factors used in the
study.

PCVs ¼
Vs0 � Vs1

Vs0

ð5Þ

Results

Mosquito collections
A total of 35,859 female An. sinensis were captured from the surveillance sites during 2,480
nights of collecting from 2005 to 2008. There was a significant difference in distribution and
human biting rate of An. sinensis across the surveillance sites (Fig. 1) and a seasonal peak of
abundance each year in the rainy season (July-August) (Fig. 2A). The biting rate of An. sinensis
per site averaged 2.48 bites per man per night and ranged from 0.08 to 16.70 bites per man per
night. The three highest biting rates were observed at Quanzhou site (16.69 bites per man per
night) in Guangxi Province, followed by Yixin (16.03 bites per man per night) in Jiangsu Prov-
ince and Longnan (10.79 bites per man per night) in Jiangxi Province, while the three lowest
rates were found at Weihai (0.08 bites per man per night) in Shandong Province, Jiangyang
(0.12 bites per man per night) in Sichuan Province and Wanning (0.15 bites per man per
night) in Hainan Province.

Model evaluation
The Lagrange-Multiplier test (F = 65.3, df = 60, P<0.001) showed that significant serial correla-
tion and first-order autoregressive structure (AR1) should be used in the error term. A likeli-
hood ratio test indicated that all random intercept models were appropriate over single level
regression models (Table 1, 2, 3). Fig. 4 shows that the residuals derived from multivariate anal-
ysis indicate good performance of our model.

Spatial and temporal variation
Table 1 shows the spatial-temporal variation of An. sinensis human biting rates in China from
2005 to 2008 from a total of 62 sites over 40 time points which were utilized to construct the
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panel model. According to the variance component model, the temporal variation
(s2

t0 ¼ 1:35) of An. sinensis human biting rates was more than 1.5 times larger than the spatial
variation (s2

s0 ¼ 0:83).

Univariate analysis
All the related variables, including the four meteorological variables (AT, HT, MT and CPR)
and two vegetation indices (NDVI and EVI), were used in the univariate analysis. Scatterplots
suggested that there were plausible linear relationships between An. sinensis human biting rate
and these time-variant predictors (Fig. 5). In order to avoid collinearity between these vari-
ables, MT, CPR and EVI were selected for further analysis by Akaike Information Criterion

Table 1. Variance component model.

Estimate (95% Confidence Interval)

Fixed effects
Constant -0.18 (-0.42, 0.06)

Random effects

s2
s0 0.83 (0.55,1.24)

s2
t0 1.35 (1.23,1.49)

ρ 0.61 (0.57,0.65)

LR test 1371.5 (P<0.001)

AIC 5123.4

s2
s0 indicates spatial variation; s2

t0 indicates temporal variation; ρ is the serial correlation coefficient; LR test

indicates likelihood ratio test for monitoring site effects; AIC indicates Akaike Information Criterion.

doi:10.1371/journal.pone.0116932.t001

Table 2. The effects of time-variant and time-invariant covariates on An. sinensis human biting rates.

Fixed effects Estimate(95% CI) Random effects AIC LR test

s2
s0 s2

t0

MT 3.56(2.84, 4.29)* 0.90(0.62, 1.30) 1.10(0.97, 1.26) 4953.5 1493.4**

CPR 0.56(0.15, 0.97)* 0.77(0.52, 1.14) 1.25(1.09, 1.44) 5113.7 1383.1**

EVI 2.88(1.98, 3.77)* 0.86(0.59, 1.28) 1.15(1.01, 1.32) 5030.4 1453.5**

Landform 0.79(0.53, 1.20) 1.35(1.23, 1.46) 5121.0 1363.6**

Plain #

Mountain -0.10(-0.25, 0.46)

Hill 0.05(-0.52, 0.62)

Basin 0.46(0.18, 0.74)*

Livestock 0.23(-0.75, 1.21) 0.74(0.49, 0.63) 1.35(1.23, 1.46) 5125.2 1370.7**

Slope -0.19(-0.88, 0.48) 0.74(0.49, 1.11) 1.35(1.23, 1.49) 5125.3 1364.5**

River Distance -1.17(-2.18, -0.16)* 0.74(0.49, 1.13) 1.35(1.23, 1.48) 5121.2 1309.1**

Elevation 0.23(-0.44, 0.90) 0.74(0.50, 1.11) 1.35(1.23, 1.49) 5125.2 1370.6**

Paddy Index 1.16(0.49, 1.83)* 0.71(0.50, 1.09) 1.35(1.23, 1.48) 5110.2 1367.5**

* p<0.05,

** p<0.001.
# Reference category.

Abbreviations: MT- minimum temperature; CPR- cumulative precipitation; EVI- enhanced vegetation index.

doi:10.1371/journal.pone.0116932.t002
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(AIC) derived from all the univariate analyses (results not shown). All significant variables in
Table 2 were used in the multivariate analysis (Table 3). Table 2 shows the relationship between
An. sinensis human biting rate and predictor variables from the mixed effects model.

For time-variant factors, higher MT was associated with higher An. sinensis human biting
rate (β = 3.56; 95% CI 2.84 − 4.29). Similar to MT, a significant positive association between pre-
cipitation and An. sinensis human biting rate (β = 0.56; 95% CI 0.15 − 0.97) was observed. It was
also found that An. sinensis biting rate increased (β = 2.88; 95% CI 1.98 − 3.77) with increasing
EVI. Table 4 shows that only CPR has 1–3 semimonthly lag effects on An. sinensis human biting
rate, while MT and EVI had no lag effects. This suggests that temperature has short effects,
while precipitation may have relatively delayed effects on An. sinensis human biting rate.

For time-invariant factors, An. sinensis biting rate in the basin regions was higher than that
of plain regions (β = 0.46; 95% CI 0.18 − 0.74). In addition, lower An. sinensis human biting
rate was found in the regions farther from water bodies than in regions closer to water bodies
(β = −1.17; 95% CI − 2.18, −0.16) (Table 2). Sites with a higher paddy index were also more
likely to have higher An. sinensis human biting rate (β = 1.16; 95% CI 0.49 − 1.83). Livestock,
elevation and slope were not significantly associated with An. sinensis human biting rate.

Attribution of spatial and temporal variation
Table 5 shows the proportion of spatial and temporal variation explained by the different fac-
tors. The inclusion of time-invariant factors did not decrease residual temporal variation, but

Table 3. Multivariate analysis.

Fixed effects Estimate (95% Confidence Interval)

MT 2.99 (2.07, 3.92)*

CPR 0.15 (-0.35, 0.66)

CPR_lag1 0.08 (-0.31, 0.48)

CPR_lag2 -0.14 (-0.46, 0.18)

CPR_lag3 0.17 (-0.14, 0.48)

EVI 1.07 (0.11, 2.03)*

Landform

Plain#

Mountain -0.16 (-0.71, 0.39)

Hill 0.03 (-0.42, 0.49)

Basin 0.49 (-1.58, 2.57)

River Distance -1.47 (-2.88, -0.06)*

Paddy Index 0.86 (0.17, 1.56)*

Random effects

s2
s0 0.69 (0.45, 1.04)

s2
t0 1.09 (0.99, 1.20)

ρ 0.55 (0.51, 0.60)

LR test 1338.1 (P<0.001)

PCVt(%) 19.3

PCVs(%) 16.9

Abbreviations: MT- minimum temperature; CPR- cumulative precipitation; EVI- enhanced vegetation index;

LR test- likelihood ratio test. PCVt: Proportional change in temporal variance; PCVs: Proportional change in

spatial variance.

doi:10.1371/journal.pone.0116932.t003

Spatial-Temporal Variation, Anopheles sinensis, China

PLOS ONE | DOI:10.1371/journal.pone.0116932 January 22, 2015 10 / 17



Figure 4. Checking the residuals for multivariate analysis. A. histogram of residuals. B. Q-Q plot of residuals.

doi:10.1371/journal.pone.0116932.g004

Figure 5. Scatterplots of Anopheles sinensis human biting rates and time-variant predictors. Anopheles sinensis human biting rates (Box-cox
transformed) against (A) average temperature [AT]; (B) highest temperature [HT]; (C) minimum temperature [MT]; (D) cumulative precipitation [CPR]; (E)
enhanced vegetation index [EVI].

doi:10.1371/journal.pone.0116932.g005
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reduced the spatial variation more or less in terms of whether the coefficients significantly dif-
fered from 0 as was expected (Table 2). For example, inclusion of paddy index decreased the re-
sidual variance across surveillance sites from 0.83 to 0.71, while the temporal variation did not
change. The largest proportion of spatial variation of An. sinensis human biting rate was ex-
plained by variation in paddy index (14.5%), whereas the landform and river distance ex-
plained 4.8% and 10.8% of the variation across surveillance sites, respectively.

Similarly, time-variant factors explained the temporal variation other than spatial variation
of An. sinensis human biting rate. Table 5 indicates MT explained the majority of the temporal
variation (PCVt = 18.5%) of An. sinensis density in the variance component model, while only
7.4% of the temporal variation was attributable to CPR. However, the EVI explained 14.8% of
the temporal variation, indicating that EVI was a better index to model temporal changes in
An. sinensis human biting rate than CPR.

Multivariate analysis
Six ecological factors were included in the multivariate mixed effects model based on the uni-
variate analyses (Table 2). For time-variant factors, the multivariate analysis (Table 3) indicated
that MT and EVI had a substantial effect (coefficient is β = 2.99; 95% CI 2.07 − 3.92 and β =
1.07 95% CI 0.11 − 2.03, respectively) on An. sinensis human biting rate. Although CPR was an
important factor for An. sinensis human biting rate in the univariate analysis, the relationship
was not significant in the multivariate model (Table 3). In addition, there was no lag effect of
CPR according to multivariate analysis, despite relatively long lag effects in the univariate anal-
ysis (Table 4). For time-invariant factors, a significant negative association between river dis-
tance and human biting rate (β = −1.47; 95% CI −2.88, −0.06) was observed, while a significant
positive association with paddy index (β = 0.86; 95% CI 0.17 − 1.56) was found.

Table 4. The semimonthly lag effects of time-variant covariates on Anopheles sinensis human biting
rates.

Lag effects MT CPR EVI

Lag0 3.59 (2.72, 4.47) * 0.99 (0.44, 1.56) * 2.48 (1.25, 3.71) *

Lag1 -0.09 (-0.71, 0.54) 0.82 (0.38, 1.26) * 0.59 (-0.36, 1.54)

Lag2 -0.22 (-0.65, 0.21) 0.59 (0.28, 0.92) * -0.14 (-0.85, 0.57)

Lag3 0.14 (-0.34, 0.62) 0.49 (0.16, 0.83) * -0.19 (-0.96, 0.57)

Lag4 -0.28 (-0.76, 0.21) -0.06 (-0.48, 0.35) -0.28 (-1.09, 0.53)

* p<0.05.

Abbreviations: MT- minimum temperature; CPR- cumulative precipitation; EVI- enhanced vegetation index.

doi:10.1371/journal.pone.0116932.t004

Table 5. Proportional change in variance at spatial and temporal dimensions.

Covariates PCVt (%) Covariates PCVs (%)

MT 18.5 Landform 4.8

CPR 7.4 River Distance 10.8

EVI 14.8 Paddy index 14.5

PCVt: Proportional change in temporal variance.

PCVs: Proportional change in spatial variance.

Abbreviations: MT- minimum temperature; CPR- cumulative precipitation; EVI- enhanced vegetation index.

doi:10.1371/journal.pone.0116932.t005
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After taking into account time-variant factors (MT and EVI), Table 3 shows 19.3% of the
temporal variance of An. sinensis human biting rate in the variance component model was at-
tributable to differences in MT and EVI, with 16.9% of the spatial variance due to time-invari-
ant factors including river distance and paddy index.

Discussion
In this study, we analyzed data from China’s national vector surveillance program to assess the
association between An. sinensis human biting rates and various ecological predictors. While
previous research [13] has explored ecological associations with An. sinensis human biting rate
over smaller scales, this study explores the influence of socioeconomic, environmental and cli-
matic factors at a country-wide level in China. Moreover, this study proposes a simple ap-
proach to estimate the effects of time-variant and time-invariant factors on An. sinensis human
biting rate using a mixed effects model. This approach can help researchers understand the in-
fluence of different types of factors on An. sinensis human biting rates.

Importantly, we have identified key ecological factors responsible for An. sinensis human
biting rate that are of major epidemiological significance. This information can be used to
make spatial and temporal predictions, facilitating targeted interventions. Minimum tempera-
ture, EVI and paddy index had significant positive effects on the human biting rate of An.
sinensis, while a significant negative association between river distance and An. sinensis human
biting rate was observed. The study found that the temporal variation (s2

t0 ¼ 1:35) of An.
sinensis human biting rate was larger than the spatial variation (s2

s0 ¼ 0:82) based on the vari-
ance component model, and 14.1% of the temporal variation of An. sinensis human biting rate
was attributable to the differences in MT and EVI, while 15.8% of the spatial variance was due
to the river distance and the paddy index in the surveillance sites in China.

Over a large geographic scale, this study suggests that human biting rate of An. sinensis is
mainly driven by climatic factors and environmental factors such as MT and EVI as well as
paddy index. Several studies from Africa [43–45] noted that the temporal variation of malaria
vectors varied with seasonal variations, while temperature did not have a simple linear relation-
ship with malaria vector human biting rate: within a certain range of temperature, malaria vec-
tor human biting rate increases with temperature, while extreme low and high temperature
decreases the rate.

The spatial variation in An. sinensis human biting rate was attributed to environmental het-
erogeneity including distance from a river as well as paddy index. In China, numerous studies
[13, 32, 46] have shown that the primary habitat of An. sinensis is rice fields and the related irri-
gation system. The survey by Chen and Yang [47] demonstrated that rice fields constituted
about 93% of breeding sites for An. sinensis in some regions. Similarly, other studies found that
the distance of sample sites to rice fields was an important factor in China [1, 48]. The associa-
tion between distance from the river and mosquito density is consistent with observations
from other malaria settings, such as Cameroon, where the main malaria vectors are particularly
associated with river beds [49].

This study also found that human biting rate of An. sinensis was significantly related to EVI,
although these relationships have seldom been elucidated until now. A plausible explanation
may be that EVI is a surrogate for more availability of suitable larval habitats of An. sinensis in
China.

Although the amount of rainfall is a well-known factor related to presence and survival of
malaria vectors [50, 51], no clear association was observed between rainfall and An. sinensis
human biting rate in this study. The difference between our findings, and those of others, may
be due to topography or climatologic differences. Equally, the pattern of rainfall might be more
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important than the amount of rainfall, as light, infrequent rains seem to be most favorable for
larval development [52, 53].

As this study suggests that An. sinensis are aggregated in specific environmental niches
(river distance, paddy index), larval control could be considered as a supplemental measure to
insecticide-treated nets or indoor residual spraying [54]. Further study assessing how few, fixed
and findable larval sites are would help to determine the applicability of this approach.

Although we present results frommixed effects models with socioeconomic, environmental
and climatic factors simultaneously, future research could take into account malaria-control in-
terventions to model the transmission mechanism more accurately. For example, mathematical
[55] and agent-based models [56] have been used to estimate the effects of malaria-control inter-
ventions. One benefit of these models is that they can model basic behavior of individual mos-
quitoes (including interactions within agents and to their environment [55, 56]), but dozens of
simulation parameters must be available. A continuous surface of An. sinensis biting rates could
be created by using Bayesian statistical framework in future studies, to provide a rational basis
for control and spatial targeting [56, 58]. Maps of An. sinensis human biting rates may be very
useful in vector management, but also could be used to generate a malaria risk map.

Conclusion
Overall, our study found substantial spatial-temporal variation in mosquito human biting
rates, which may help to explain the observed heterogeneity of malaria incidence in the surveil-
lance regions. The temporal variation in An. sinensis human biting rate was mainly attributed
to MT and EVI, while the most spatial variation in An. sinensis human biting rate resulted
from river distance and paddy index. Continued entomologic monitoring to better understand
the spatial-temporal variations of An. sinensis human biting rate will be vital to targeting vector
control approaches to high risk areas and appropriate times of the year. More efficient target-
ing, supplemented with larval control activities where appropriate, may be a cost-effective ap-
proach for the ongoing malaria elimination program in China.
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