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Abstract

Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, 

revealing complex associations and yielding powerful prediction models. Despite methodological 

developments and novel application domains, there has been little effort to compile benchmark 

results that researchers can reference and compare against. This study takes a significant step in 

this direction. We employed three classes of state-of-the-art MVPA algorithms and common types 

of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an 

array of clinically relevant variables (diagnosis of Alzheimer’s, schizophrenia, autism, and 

attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid–β levels and 

mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six 

publicly available datasets. The employed data and computational tools are freely distributed 
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(https://www.nmr.mgh.harvard.edu/lab/mripredict), making this the largest, most comprehensive, 

reproducible benchmark image-based prediction experiment to date in structural neuroimaging. 

Finally, we make several observations regarding the factors that influence prediction performance 

and point to future research directions. Unsurprisingly, our results suggest that the biological 

footprint (effect size) has a dramatic influence on prediction performance. Though the choice of 

image measurement and MVPA algorithm can impact the result, there was no universally optimal 

selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of 

measurement type. Finally, our results showed that cross-validation estimates of performance, 

while generally optimistic, correlate well with generalization accuracy on a new dataset.

Keywords
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INTRODUCTION

Structural Magnetic Resonance Imaging (MRI), a non-invasive and ubiquitous imaging 

modality, enables the in vivo investigation of the morphological features of the human brain 

macro-anatomy in health and disease, thus offering insights into the underlying 

neurobiological processes. A growing body of neuroimaging literature (Feinstein et al., 

2004; Frisoni et al., 2010; Ho et al., 2003) has demonstrated that markers derived from 

structural brain MRI scans can aid in clinical decision-making and treatment development, 

making this imaging technology an invaluable tool for translational science and medical 

practice.

Multivariate pattern analysis (MVPA), or machine learning, offers a powerful approach in 

neuroimage analysis, which, until recently, has been dominated by massively univariate 

(mass-univariate) methods that rely on classical statistical techniques (Ashburner and 

Friston, 2000). Although MVPA algorithms have been employed for mapping regions of the 

brain associated with a particular condition of interest (Kriegeskorte et al., 2006), their 

primary utility is for building image-based predictive models, for example for the purpose of 

computer-aided diagnosis (Kloppel et al., 2012) or “mind reading” (Friston et al., 2008; 

Mitchell et al., 2004; Mourao-Miranda et al., 2005). Over the last decade, MVPA has been 

increasingly applied to structural brain MRI scans, largely for developing models to predict 

clinical conditions at the individual level (Costafreda et al., 2009; Cuingnet et al., 2011; 

Davatzikos et al., 2008; Davatzikos et al., 2009; Duchesnay et al., 2007; Duchesne et al., 

2009; Ecker et al., 2010; Kawasaki et al., 2007; Kloppel et al., 2009; Kloppel et al., 2008; 

Koutsouleris et al., 2009; Lao et al., 2004; Lerch et al., 2008; Liu et al., 2012; Mourao-

Miranda et al., 2012; Mwangi et al., 2012; Nieuwenhuis et al., 2012; Sabuncu and Van 

Leemput, 2012; Schnack et al., 2014; Soriano-Mas et al., 2007; Vemuri et al., 2008; Wang 

et al., 2010; Wilson et al., 2009).

Many prior MVPA studies in neuroimaging have focused on proposing new methods that 

involve extracting novel types of imaging measurements or using innovative algorithms to 

improve prediction accuracy or yield more interpretable models (Batmanghelich et al., 2009; 
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Cho et al., 2012; Davatzikos et al., 2009; Duchesnay et al., 2007; Fan et al., 2007; 

Nouretdinov et al., 2011; Sabuncu and Van Leemput, 2012; Teipel et al., 2007). However, 

with notable exceptions (Brown et al., 2012; Cuingnet et al., 2011), there has been little 

effort to publish benchmark results that researchers can replicate, reference, and objectively 

compare against. Today, the increasing availability of several widely used, thoroughly 

validated, and freely distributed

• large-scale clinical neuroimage databases, such as the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (Jack et al., 2008), made available through web-

based data sharing platforms, such as COINS (Scott et al., 2011) and XNAT 

(Marcus et al., 2007a),

• neuroimage processing software packages, such as FreeSurfer (Fischl, 2012) and 

SPM (Friston et al., 1994), and

• implementations of cutting-edge machine learning algorithms, such as LibSVM 

(Chang and Lin, 2011),

makes such a study possible. This article presents the results of a carefully designed 

empirical study that employs publicly available computational tools and large-scale multi-

site data to report state-of-the-art prediction accuracies and to serve as a reproducible 

benchmark reference for future MVPA studies in structural neuroimaging. In this study, we 

analyzed data from over 2,800 individuals obtained from six large clinical neuroimaging 

studies. We used FreeSurfer to extract imaging measurements and publicly available 

implementations of three different classes of MVPA algorithms to predict clinical diagnoses, 

for instance of schizophrenia and Alzheimer’s disease, and clinically relevant graded 

variables, such as cognitive performance scores.

The constructed prediction models can directly be useful in clinical practice, e.g., for 

identifying high-risk subjects, tracking disease progression, or replacing less reliable, more 

invasive, and/or more expensive diagnostic tests. Furthermore image-based prediction 

models can also serve basic scientific goals by revealing and quantifying the macro-

anatomical footprint of clinical/experimental/behavioral conditions and measuring the 

information overlap between the image content and non-imaging variables, such as clinical 

test results.

In addition to reporting experimental results, we also analyze the factors that influence the 

prediction performance in the domains we considered. We believe that the reported 

benchmark results, shared data, and presented analyses will catalyze progress and prompt 

new research in biomedical image analysis, neuroscience, neurology and the intersections 

between these fields.

MATERIALS AND METHODS

The computational tools and data described in this work have been assembled and made 

available for download at https://www.nmr.mgh.harvard.edu/lab/mripredict. This website 

includes instructions and data to reproduce the results presented in this manuscript.

Sabuncu and Konukoglu Page 3

Neuroinformatics. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

https://www.nmr.mgh.harvard.edu/lab/mripredict


Data

In our experiments, we analyzed data from over 2,800 individuals obtained from six large 

clinical neuroimaging studies: the Alzheimer’s Disease Neuroimaging Initiative, or ADNI 

(Jack et al., 2008), the Open-Access Series of Imaging Studies (OASIS, oasis-brains.org) 

(Marcus et al., 2007b), the Autism Brain Imaging Data Exchange (ABIDE, tinyurl.com/

fcon1000-abide), the Attention Deficit Hyperactivity Disorder (ADHD) sample from the 

ADHD-200 Consortium (Milham et al., 2012) (tinyurl.com/fcon1000-adhd), the Center for 

Biomedical Research Excellence (COBRE) schizophrenia sample (tinyurl.com/fcon1000-

cobre), and the MIND Clinical Imaging Consortium (MCIC) schizophrenia sample (Gollub 

et al., 2013). Table 1 summarizes these data, which are publicly available for download via 

corresponding websites. We employed the T1-weighted structural brain MRI scans, 

demographic data (age and gender), site information, and clinical assessments in our 

analyses. For details of these data, we refer the reader to the associated studies.

We restricted all our analyses to the subjects for which the automatic image processing steps 

of FreeSurfer (see next sub-section) completed successfully. In the OASIS sample, the AD 

diagnosis was defined as CDR >= 1 and “AD mild” was defined as CDR > 0, which include 

subjects suffering from Mild Cognitive Impairment (MCI) (Petersen et al., 1999) and not 

clinically demented. In the ADHD sample, cases were defined as those with evidence of 

non-typical development and an ADHD diagnosis, as per the ADHD 200 phenotypic key1. 

Schizophrenia (SCZ) cases in the Center for Biomedical Research Excellence (COBRE) 

sample were those identified as “Patient” in the COBRE phenotypic key. The ABIDE 

analyses were restricted to subjects who were at least 10 years old, since we were more 

confident that the imaging measurements automatically computed from scans in this age 

group were reliable. In the ABIDE sample, cases were defined as those having a non-zero 

diagnostic group entry in the phenotype table.

In addition to the binary clinical diagnosis (patient versus control), we analyzed continuous 

measures derived from non-imaging data (age, mini-mental state exam –MMSE- score, and 

cerebro-spinal fluid based amyloid-β1-42, -CSF-Aβ1-42–). Table 2 provides a list of all 

(binary and continuous) target variables along with additional information regarding group 

characteristics. For age, we employed only the control subjects within each dataset. In the 

ABIDE data, we restricted the age sample to the largest healthy cohort from a single site. 

The other two continuous variables, MMSE and CSF Aβ1-42 levels, are markers of 

dementia, and demonstrate meaningful variation across clinical groups, but not necessarily 

within controls. Hence, for these variables, we combined data across clinical groups.

MRI Processing

We used FreeSurfer (freesurfer.nmr.mgh.harvard.edu) (Fischl, 2012) -version 5.1 – a freely 

available, widely used and extensively validated brain MRI analysis software package - to 

process the structural brain MRI scans and compute morphological measurements. The 

FreeSurfer pipeline is fully automatic and includes steps to compute a representation of the 

cortical surface between white and gray matter, a representation of the pial surface (Dale et 

1http://fcon_1000.projects.nitrc.org/indi/adhd200/general/ADHD-200_PhenotypicKey.pdf.
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al., 1999; Fischl et al., 1999a), and a segmentation of white matter regions; to perform skull 

stripping, B1 bias field correction, nonlinear registration of the cortical surface of an 

individual with a stereotaxic atlas (Fischl et al., 1999b), labeling of regions of the cortical 

surface (Fischl et al., 2004), and labeling of subcortical brain structures (Fischl et al., 2002). 

Furthermore, for each MRI scan, FreeSurfer automatically computes subject-specific 

thickness measurements across the entire cortical mantle and within anatomically defined 

cortical regions of interest (ROIs), volume estimates of a wide range of sub-cortical 

structures and estimates of the intra-cranial volume (ICV) and measures of image quality, 

such as white-matter signal to noise ratio (WM-SNR), which is computed based on the noise 

level (standard deviation of intensities) within the white matter.

In our analyses, we defined four sets of features to be used by the prediction models.

1. Feature set 1 (aseg; 45 dimensional vector): Volumes of the 45 anatomical 

structures saved as stats/aseg.stats under the FreeSurfer subject directory, which 

were normalized with each subject’s ICV to account for head size variation. The 

structures we used are: Left and right cerebral white matter, cerebral cortex, lateral 

ventricle, inferior lateral ventricle, cerebellum white matter, cerebellum cortex, 

thalamus proper, caudate, putamen, pallidum, hippocampus, and amygdala, plus the 

3rd and 4th ventricles.

2. Feature set 2 (aparc; 68 dimensional vector): Average thickness within the 

following cortical parcellations (saved as stats/lh.aparc.stats and stats/

rh.aparc.stats under the FreeSurfer subject directory. There are 34 measurements 

per hemisphere). Superior frontal, rostral middle frontal, caudal middle frontal, pars 

opercularis, pars triangularis, pars orbitalis, lateral orbitofrontal, medial 

orbitofrontal, precentral, paracentral, frontal pole, superior parietal, inferior 

parietal, supramarginal, postcentral, precuneus, superior temporal, middle temporal, 

inferior temporal, banks of the superior temporal sulcus, fusiform, transverse 

temporal, entorhinal, temporal pole, parahippocampal, lateral occipital, lingual, 

cuneus, pericalcarine, rostral anterior frontal, caudal anterior frontal, posterior 

parietal, isthmus parietal, and insula.

3. Feature set 3 (aparc+aseg; 113 dimensional vector): The union of the first two 

feature sets.

4. Feature set 4 (thick; 20,484 dimensional vector): Cortical thickness values sampled 

onto the fsaverage5 template (10,242 vertices per hemisphere) and smoothed on the 

surface with an approximate Gaussian kernel (Han et al., 2006) of a full-width-

half-max (FWHM) of 5mm.

Multivariate Pattern Analysis Algorithms

We employed publicly available implementations of three different classes of MVPA 

algorithms: Support Vector Machines, Neighborhood Approximation Forests, and 

Relevance Vector Machines. These three algorithms were selected because they have been 

applied to neuroimage data in prior studies and represent a wide range of methods; each 

algorithm was derived using a different modeling approach and relying on distinct 
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assumptions about the data. We emphasize that there is a rich pool of potential algorithms 

that can be used on these data and we hope that by publicly distributing the data2 we used in 

the presented analyses, we will enable other researchers to test, benchmark and publicize 

other method(s), thus allowing the exploration of a much wider class of machine learning 

algorithms than we could achieve by our own means. Our primary experiment and 

associated analyses were constrained to the following three algorithms.

1. The Support Vector Machine (SVM) is one of the most popular generic machine 

learning methods (Cortes and Vapnik, 1995; Scholkopf and Smola, 2002). In our 

experiments we used the publicly available implementation LibSVM 

(csie.ntu.edu.tw/~cjlin/libsvm). We employed the linear kernel, which has been 

demonstrated to yield good accuracy in prior neuroimaging studies. The hyper-

parameters were optimized using a (“nested”) cross-validation loop over the 

training dataset (using the “grid.py” tool available on the LibSVM website). We 

trained the SVM model for probability estimates. These estimates are directly used 

for the ROC analysis and thresholded at p=0.5 to compute the correct classification 

ratio.

2. The Neighborhood Approximation Forest (NAF) (www.nmr.mgh.harvard.edu/

~enderk/software.html) (Konukoglu et al., 2013) is a generic variant of random 

decision forests (Criminisi et al., 2011) that can be applied to regression and 

classification without any modification of the underlying algorithm. The underlying 

principle of NAF is to approximate the “closest” training images to a given test 

image. The proximity between images is defined based on the variable of interest, 

such as diagnosis. During training, NAF learns to estimate the closest neighbors 

based on the image-derived measurements, such as ROI volumes or cortical 

thickness measurements. For a test image, NAF estimates its closest neighbors 

within the training set along with a weight associated with each neighbor indicating 

its approximate proximity to the test image. The prediction is then given as the 

weighted average of the labels of these closest neighbors. To identify the number of 

closest neighbors used in prediction, we ran a “nested” cross-validation on the 

training dataset only, similar to our SVM implementation. The remaining hyper-

parameters of NAF were set heuristically based on experiments provided in 

previous publications (Konukoglu et al., 2013). These are: number of trees = 800, 

maximum tree depth = 12, stopping criteria = 10 samples and number of random 

samples per node = 20 for feature sets 1–3 and 1000 for feature set 4.

3. The Relevance Voxel Machine (RVoxM, tinyurl.com/rvoxm)(Sabuncu and Van 

Leemput, 2012), is an adaptation of the Bayesian Relevance Vector Machine 

(RVM)(Tipping, 2001) customized to handle image data. The RVM model assumes 

that the target variable is a noisy observation of a linear weighted sum of the 

feature data. For regression, the noise is an additive Gaussian model. For 

classification, a logistic link function is used. RVM builds on MacKay’s Automatic 

Relevance Determination (ARD) framework (MacKay, 1992) and employs a 

Gaussian prior on the weight parameters, which are (approximately) integrated (or 

2https://www.nmr.mgh.harvard.edu/lab/mripredict
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marginalized) out during learning and prediction. RVM’s prior encourages sparsity, 

i.e., a small number of non-zero weights. RVoxM modifies this prior to also 

encourage spatial smoothness. We note that for Feature set 4 (thick), we utilized the 

neighborhood structure of the fsaverage5 surface mesh to define the Laplacian 

matrix that encourages the weights to be spatially smooth. For feature sets 1–3, we 

used no spatial smoothness, i.e., Laplacian term. Thus for the aseg and aparc 

features, the RVoxM model was essentially equivalent to a RVM model on the 

feature dimensions. We therefore refer to this algorithm as RVM throughout the 

manuscript.

In total, there were 12 (=3×4) different combinations of algorithm and image feature pairs, 

or MVPA models, which we applied to the data.

Univariate Prediction Models

Most common image-derived structural biomarkers are univariate descriptions of 

morphology, such as the volume of a region of interest (ROI). To implement such a 

biomarker, we used the aseg and aparc features, which are volume and thickness estimates 

of anatomical ROIs. These measurements, such as the volume of the hippocampus or size of 

ventricles, represent most of the classical MRI-derived biomarkers associated with 

neurological disorders, such as dementia or schizophrenia.

To identify the univariate predictive marker for each variable of interest, we conducted the 

following unbiased, data-driven analysis. At each cross-validation session, we determined 

the feature (out of the 113 aparc+aseg measurements) that was most significantly associated 

with the variable of interest on the training data (based on t-test between two samples for 

classification; based on Pearson’s linear correlation for regression). Next, we computed the 

affine transformation (scale and shift) that converted the corresponding measurements to 

best agree with the training labels, which was assessed via the correct classification ratio 

(the binary prediction was computed by thresholding at zero) or mean squared error. For 

classification, the scale was restricted to −1/std(measurements) or 1/std(measurements), 

where the standard deviation was computed on the training sample. The index of the ROI 

(i.e., identity of the feature), and optimal affine parameters were then saved as the univariate 

prediction model, to be used on test data. Finally, predictions were computed on the test data 

by applying the affine transformation to the corresponding measurements. The agreement 

between these values and ground truth was then computed as in the MVPA case. This whole 

procedure was repeated across the different cross-validation sessions.

Cross-validation

To quantify the accuracy of an image-based prediction model we utilized 5-fold cross-

validation on each sample. For classification, we conducted stratified and balanced cross-

validation (Parker et al., 2007), where each partition contained the same number of cases 

and controls (i.e., was balanced). In each partition, the two groups were also matched based 

on age, gender and site data, where appropriate. For regression, we partitioned the data into 

5 (almost) equally sized groups (if needed, the last partition was allowed to be larger than 
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the rest to account for all subjects). In each fold, each partition was treated as test data and 

the remaining subjects constituted training data.

In cross-validation, prediction accuracy was computed by aggregating predictions across the 

5 folds, which yielded a single prediction per sample. Binary classification accuracy was 

then quantified using correct classification rate (CCR), i.e., the empirical ratio of correct 

predictions across all samples. Regression accuracy was measured with the root mean 

squared error (RMSE) of the predictions. To normalize RMSE scores, we divided by the 

range of the target variable in the sample. This allowed a comparison across different 

variables with different units.

The statistical significance of prediction accuracies for the classification problems were 

computed using DeLong’s method (DeLong et al., 1988) based on the receiver operating 

characteristic (ROC) analysis. DeLong’s test is a non-parametric statistical test for 

comparing areas-under-the-curve (AUC) for two ROC curves. It is based on estimating an 

AUC value (which we computed using Matlab’s perfcurve function) and an associated 

variance using the probabilistic predictions for positive and negative samples. A z-score, 

which has a standard normal distribution, can then be computed for the AUC estimate using 

the calculated variance and the fact that under the null AUC should equal to 0.5. To compute 

the p-values we performed a one-sided test on these resulting z-scores. We choose to use the 

ROC analysis to compute statistical significance because it captures more information than 

CCR, in particular about how the probabilistic predictions are distributed.

In the regression problems the statistical significance values were computed using Pearson’s 

linear correlation coefficient, r, corresponding t-test.

To assess the uncertainty in the cross-validation based estimates of performance metrics, we 

repeated the 5-fold cross-validation procedure for the best MVPA models using 100 

different 5-fold partitions. The best MVPA models were identified as the ones that yielded 

the predictions that were most significantly associated with the ground truth variables on the 

first 5-fold cross-validation (these results are reported in Fig. 1). For each 5-fold 

partitioning, we computed the cross-validation performance metric, yielding a distribution of 

100 values. For the results of Fig. 2 and 4, we computed the mean prediction accuracy as the 

average of these 100 values and the 95% confidence interval was computed by excluding the 

highest and lowest two values.

Mass-univariate Analysis of Thickness Maps

We conducted a mass-univariate analysis to map regions where cortical thickness is 

associated with clinical variables of interest. For this analysis, we used the thickness values 

sampled onto the highest resolution template, fsaverage, which contains over 140k vertices 

on each hemisphere, and smoothed on the cortical surface with a Gaussian-like filter of a 10 

mm FWHM. We then applied a general linear model at each vertex, where the outcome was 

thickness and the independent variables were age, gender and the clinical variable. The p-

value associated with the clinical variables was then saved for each vertex (see Fig. 3). 

When identifying cortical areas of significant associations, we applied the false discovery 

rate (Benjamini and Hochberg, 1995) (FDR, q = 0.05) to correct for multiple comparisons. 
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The total area of significant associations was then computed as the sum of the areas 

corresponding to the significant vertices in fsaverage.

Statistical Analyses of the Influence of Measurement and Algorithm Choice

To gain further insights into the impact of the measurement type and MVPA algorithm on 

prediction accuracy, we used the 5-fold cross-validation performance estimates presented in 

Fig. 1. We employed the non-parametric Friedman’s test (Wolfe and Hollander, 1973) to 

assess the difference across measurement types and algorithm classes, adjusting for variation 

across variables and treating the nuisance factor (e.g., algorithm choice when assessing 

image feature) as a replicated measurement.

To assess whether the algorithm or image feature design decision had a bigger impact on 

prediction accuracy, we computed range data as follows. For each variable, we computed 

the algorithm range as the difference between the best and worst performance metrics across 

the three algorithms (SVM, RVM and NAF), while fixing the feature type. These values 

were then averaged over feature types. Similarly, for each variable, the feature range was 

defined as the difference between the best and worst performance metrics across the four 

feature types, while fixing the algorithm type. These values were then average over the 

algorithms (see Supplementary Fig. S4). We performed the nonparametric Wilcoxon signed 

rank test (Wolfe and Hollander, 1973) on the paired range values to assess the significance 

of the difference between the feature and algorithm effects. For the binary variables, the 

feature range was significantly larger than the algorithm range (P=0.008). For regression, 

however, the two effects were statistically equivalent (P=0.36).

RESULTS

There was significant variation in the sample sizes across datasets and variables (see Table 

2). For example, for the Alzheimer’s disease (AD) variable (clinical dementia rating, CDR, 

greater than or equal to 1), the ADNI sample provided 145 subjects per group, where as the 

OASIS sample offered only 25. Also, certain datasets were collected at multiple sites (e.g., 

20 sites participated in the ABIDE study), whereas others, e.g., COBRE, were acquired at a 

single location.

Estimating prediction accuracy via cross-validation

To estimate the accuracy of all twelve MVPA models, we utilized a single 5-fold cross-

validation on each sample (See Fig. 1. More detailed results are provided in Supplementary 

Fig. S1). These results revealed that all but two (ADHD diagnosis, and age in the ABIDE 

sample) of the examined variables exhibited some degree of predictability from brain MRI 

scans, i.e., there was at least one MVPA model that produced a prediction on test data that 

was statistically significantly associated with the ground truth label (P<1e-3). In practice, 

there were multiple MVPA models that were significantly associated with each predictable 

variable, not just one.

Today, most classical image-derived biomarkers are univariate, e.g., the size of a region of 

interest. To provide a comparison between MVPA models and classical markers, we also 

quantified the prediction performance of univariate models that use a single measurement, 
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e.g., volume of an anatomical structure. We applied the univariate models to the same 

hundred 5-fold cross-validations as the ones used for the MVPA models. Supplementary 

Table S1 lists the ROIs that were most frequently identified as univariate markers for each 

variable. Fig. 2 shows the estimated performance metrics for the MVPA and univariate 

models. For all variables, the performance metrics were significantly better for the MVPA 

model (all P < 1e-4, paired Wilcoxon signed rank test), although the performance boost 

varied across variables. For example, on the OASIS AD sample, the MVPA model yielded 

an improvement of more than 10% in Correct Classification Ratio (CCR), while the 

difference between the prediction accuracies of the MVPA and univariate models was 

modest for the ADNI:CSF-Aβ phenotype.

From Figures 1 and 2, we observe that there is a dramatic variation in prediction accuracies 

across datasets, target variables, image features, and algorithms. These results underscore 

the factors that influence image-based prediction, which include:

1. Biological footprint of the variable, or effect size,

2. Data quality, e.g., the amount of image noise,

3. Sample size,

4. The accuracy and relevance of image-derived measurements,

5. And the prediction algorithm.

In the following, we provide some analyses to gain insights into how these individual factors 

influence prediction performance.

Dissecting the influence of various factors on prediction performance

Arguably, the most significant determinant of how accurately one can predict a particular 

variable from a brain MRI scan is the biological footprint. This is observable from Fig. 1, 

where most of the variation in performance metrics is vertical, i.e., across variables. Fig. 3 

illustrates this point further, where MVPA prediction accuracies are shown alongside results 

from a mass-univariate analysis that reveals the cortical thinning patterns of each disease. In 

each panel of Fig. 3, we present three variables, where the MVPA and mass-univariate 

analyses were conducted on samples of roughly the same size (Panel a: ADNI:AD, N=145; 

ADNI:MCI, N = 135; and ADHD, N = 150. Panel b: ADNI-75:AD, MCIC:SCZ, and 

ABIDE-75:ASD, each with 75 subjects per group) and commensurate MRI data quality 

(estimated white matter signal to noise ratio, WM-SNR, mean ± standard deviation. First 

panel: 16.8±4.2, 17.0±4.1, 16.8±2.3. Second panel: 18.9±3.0, 20.2±3.7, 19.7±3.4.). All 

MVPA results reported in Fig. 3 were computed with the RVM algorithm, using the cortical 

thickness maps (i.e., feature type 4). Hence, factors 2–5 have minimal influence on the 

variation in prediction performance within each panel. This leaves the biological footprint as 

the only factor that one would expect to largely determine prediction accuracy. The results 

of Fig. 3 provide compelling support for this hypothesis, since there is a strong agreement 

between prediction accuracy and the size of the cortical area significantly associated with 

the disease. AD clearly has the most prominent biological footprint on cortical thickness, 

which is followed by MCI and schizophrenia. Autism and ADHD seem to have very modest 
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footprints, which were not detectable using a mass-univariate method in these samples. 

Intriguingly, the MVPA analysis of the ABIDE:ASD sample demonstrated a significant 

global association between brain morphology and autism diagnosis (CCR:0.59, with 95% 

confidence interval [0.57–0.61]), which was not revealed by the mass-univariate analysis.

The influence of sample size on multivariate pattern analysis is twofold. Firstly, increasing 

training size should in general yield better models and thus improve prediction accuracy. 

Secondly, increasing test size will typically improve our confidence in the estimates of 

prediction accuracy, i.e., reduce uncertainty, which will in turn translate into improved 

statistical power, allowing us to detect more subtle associations. We observed both of these 

phenomena in our experiments, particularly for predicting age. There was a statistically 

significant association between sample size and prediction accuracy of age across samples 

(P=0.0011, Pearson correlation). Furthermore, the statistical significance associated with 

each sample was correlated with its size (Pearson r=0.88, P=0.02), exposing the strong link 

between the number of subjects and statistical power.

Finally, we examined the influence of the choice of image-derived measurements and 

machine learning algorithms. Our primary observation is that among the types of features 

and algorithms we considered (see Fig. 1 and Supplementary Fig. S1–S3), there was no 

globally optimal choice that produced the best results overall. However, for the binary 

phenotypes, feature type 2 (aparc) produced significantly worse results than the remaining 

three types of features (P=0.04), and the performances of the three MVPA algorithms were 

statistically indistinguishable (P=0.73). For regression, RVM produced inferior results than 

NAF and SVM (P= 7.4e-6), which were statistically equivalent. Feature types 3 and 4 

offered statistically significantly better accuracy than the other two features (P=3.5e-4).

The next question we tackled was whether the algorithm or image feature design decision 

had a bigger impact on prediction accuracy. The results presented in Supplementary Fig. S3 

revealed that for the binary classification cases we analyzed, although the algorithm decision 

was an important determinant, the choice of image feature had a significantly larger effect 

on prediction accuracy (P=0.008). For regression, however, both decisions had a statistically 

indistinguishable (P=0.36), yet large effect. Overall, these results suggest that among the 

ones we tested, there was no universally optimal choice of imaging measurements or 

machine learning tool that would produce the best prediction performance, although, these 

design choices had a substantial impact on accuracy.

Validation on independent datasets

Although, in theory, cross-validation provides an unbiased estimate of performance, 

validation on independent datasets remains to be the more realistic approach to quantifying 

generalization accuracy. Here we applied this strategy to four variables, for which we had 

multiple independent datasets: Alzheimer’s disease diagnosis, schizophrenia diagnosis, age 

and MMSE score. For age, we chose to employ the OASIS and COBRE datasets, which 

offered a similar range in values.

The results presented in Fig. 4 revealed that all of the eight MVPA models that produced 

statistically significant predictions on cross-validation, further yielded statistically 
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significant predictions on independent validation datasets. However, for most models (all 

but the models of OASIS:AD and COBRE:SCZ), the prediction accuracies on the validation 

datasets were outside the 95% confidence intervals estimated via cross-validation. On the 

other hand, there was a strong agreement between the cross-validation and independent 

validation performances: the rankings of models based on the performance on the 

independent samples and those based on the estimated cross-validation accuracies were 

identical within regression and classification. These results suggest that cross-validation can 

be optimistic in estimating prediction performance, yet provides an informative upper 

bound.

DISCUSSION

The dramatic variability in the brain’s structural anatomy is influenced by genetics, 

environmental factors, age, disease, and interactions between all these factors. The 

complexity of these mechanisms makes the problem of predicting diagnosis and clinically 

relevant variables from structural neuroimaging data very difficult. The problem is further 

complicated because of our limited understanding of clinical conditions, which introduces 

heterogeneity and noise into the definitions of the target variables. This phenotype 

contamination is particularly evident in neurology, where there is an abundance of 

heterogeneity within and overlap across clinical conditions. Yet, image-based prediction 

methods can be useful for demonstrating complex and subtle associations, while enabling 

more accurate individual-level clinical assessments, which in turn can help us refine our 

clinical definitions.

Multivariate models outperform univariate markers in prediction

Structural brain MRI-derived biomarkers are classically univariate, measuring the volume, 

size, or thickness of an anatomical ROI, including the whole brain. However, recent studies 

have demonstrated that many neurological conditions are associated with large-scale 

networks of distributed regions (Seeley et al., 2009). This suggests that aggregating 

information across multiple regions within the associated network should improve the 

sensitivity and specificity of brain biomarkers. Our results generalize prior studies that make 

similar observations, e.g., (Westman et al., 2011), to a range of target variables. In all our 

analyses, MVPA models offered a statistically significant boost in prediction performance as 

assessed via cross-validation. This improvement was reflected as a 5–10% increase in 

correct classification ratio for binary variables.

An array of variables can be predicted from structural neuroimaging data

Our results demonstrated that MVPA models produce predictions that are statistically 

significantly associated with the ground truth for a range of variables. However, there is a 

dramatic variation in the accuracies of these predictions, which determines the utility of 

these models. On one end of the spectrum, we have autism, which our cross-validation 

suggests can correctly be discriminated from a healthy state about 59% of the time (95% 

confidence interval [0.57–0.61]). This, by itself, is unlikely to be useful for making 

individual-level predictions, especially in the clinical setting, where the problem is 

particularly more challenging due to sample heterogeneity and lower data quality. However, 
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it can be used as one line of evidence among an array of other observations. Furthermore, 

this MVPA result reveals a statistically significant association between brain anatomy and 

autism, which is so subtle that it cannot be detected via a more traditional mass-univariate 

analysis. On the other hand of the spectrum, we have Alzheimer’s diagnosis and age, which 

can be predicted very accurately (86% accuracy in discriminating from healthy controls, and 

root mean squared error less than 9 years, respectively). Thus, these models by themselves 

might be useful for individualized prognosis in the clinical setting. Age is a particularly 

interesting variable, which might be informative for detecting deviations from normal aging 

or healthy development (e.g. when the subject’s predicted brain age is substantially different 

from his/her chronological age).

The results we present in this study, in general, are consistent with prior studies that report 

structural MRI (sMRI) based clinical predictions. Our AD, MCI, age, and MMSE prediction 

results are in strong agreement with state-of-the-art structural MRI-based predictions 

computed on the ADNI data, e.g., as reported in (Cuingnet et al., 2011; Sabuncu and Van 

Leemput, 2012; Stonnington et al., 2010). For schizophrenia, the classification accuracy we 

present, which is roughly around 70%, is in line with a previously reported large-scale 

multi-site MRI-based prediction study (Nieuwenhuis et al., 2012). Finally, the autism 

prediction accuracy we obtain, which is about 60%, is congruent with the results obtained 

with resting state functional MRI (rs-fMRI) data on the same ABIDE dataset (Nielsen et al., 

2013). This last result suggests that both rs-fMRI and sMRI offer similar prediction 

accuracy for autism.

Factors that influence prediction accuracy

There are at least five factors that determine prediction accuracy: 1) biological footprint, 2) 

sample size, 3) data quality, 4) image measurements, and 5) prediction algorithm. We 

believe that the footprint of the underlying biological process, as captured by the imaging 

data, is the most important determinant of prediction performance. One way of measuring 

this footprint is via normalizing the remaining factors, i.e., to compare the footprint of 

different variables, one could conduct a MVPA prediction analysis, where the last four 

factors are roughly standardized (same sample size, data quality, imaging measurements and 

prediction algorithm). We applied this strategy to our data, which provided a clear 

demonstration of the variable footprint sizes of the different clinical conditions we 

considered.

Image measurements and prediction algorithms, on the other hand, also have a significant 

impact on prediction accuracy. Our results further suggest that the former factor has an 

impact that is at least as important as the latter. Varying these design decisions can lead to 

radically different conclusions, as our results revealed. However, our analyses also suggest 

that there is no universally optimal choice for structural neuroimaging. This makes 

benchmark studies, such as the present, particularly important, since they provide an 

objective framework for comparing and assessing image processing and analysis methods 

for different clinical conditions of interest. In this study, we analyzed a small set of possible 

machine learning algorithms and image measurement types. Future studies will explore 
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alternative algorithms and image-derived features to identify the optimal design choices for 

each individual problem.

One particular issue that one needs to pay special attention to is the uncertainty in the 

performance assessments (Japkowicz and Shah, 2011). We observed a considerable 

variation between the prediction accuracies estimated using different 5-fold partitions of the 

data. To quantify this, we employed 100 different partitions of the data, over which 

performance metric statistics (e.g., average, confidence interval, etc.) were computed. All 

these lists (i.e., the subject ID’s for each fold of each partition) are made publicly available, 

so that alternative methods can use these data to estimate the prediction accuracy and 

corresponding uncertainty. We will further distribute the individual predictions computed 

for each list using each MVPA model. These data will enable a fair and objective 

comparison across methods.

Validation on independent datasets

Although cross-validation offers a useful strategy for quantifying prediction accuracy, we 

found that its estimates are often optimistic. We believe this arises due to the variation in (i) 

the data acquisition protocol, (ii) composition of the populations, and (iii) the application of 

the diagnostic criteria and/or clinical tests. For example, scan parameters, such as field 

strength, usually vary and this alters the distributions of the imaging measurements. 

Furthermore, the precise definitions of the clinical conditions can also change, especially 

across different clinical centers. These issues can be minimized by standardizing the 

imaging and clinical protocols. However, in most practical scenarios, inter-site variability 

will remain a major challenge and impact the clinical application of image-based prediction 

models. Therefore, we believe using different datasets independently collected at different 

centers is critical for obtaining a realistic estimate of the generalization accuracy of a 

prediction model.

Considering and Probing the Underlying Biology

Our experiments suggest that the type of measurements derived from the imaging data have 

a substantial influence on prediction accuracy. This observation highlights the significance 

of the utilized image processing tools. Furthermore, it indicates that intelligent feature 

selection methods might yield improved prediction performance. Feature (variable) selection 

is an active area of research in machine learning (Guyon and Elisseeff, 2003; Jain and 

Zongker, 1997; Saeys et al., 2007) and is also being investigated in the context of 

neuroimaging, e.g. (Nie et al., 2008; Pereira and Botvinick, 2011; Plant et al., 2010; Rondina 

et al., 2013; Wang et al., 2011; Wang et al., 2006).

While obtaining improved and more efficient prediction is the main motivation of feature 

selection methods (Chu et al., 2012), by identifying a small, interpretable subset of relevant 

features, they might also lead to biological insights. From this perspective, feature learning 

is intimately related to the recent line of research that aims to measure the statistical 

significance of each variable in a discriminative (predictive) model, e.g., (Gaonkar and 

Davatzikos, 2013; Lockhart et al., 2012; Meinshausen and Buhlmann, 2010; Rondina et al., 

2013). Rather than focusing on statistical significance, which assumes a null hypothesis, an 
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alternative approach is to quantify the importance of each variable for prediction, e.g., 

(Sonnenburg et al., 2008; Strobl et al., 2008; Zien et al., 2009). Such methods promise to 

allow us to probe the prediction models we build and make inferences about the underlying 

biology.

CONCLUSION

We presented the largest empirical benchmark MVPA study in structural neuroimaging. Our 

results demonstrate that one can predict a range of clinically relevant variables from 

structural brain MRI scans with varying degrees of accuracy. MVPA models offer more 

accurate predictions than univariate markers, such as the volume of a ROI, though the 

choice of the feature set and machine-learning algorithm has a significant impact on 

prediction performance. We found no universally optimal MVPA method that would yield 

the best prediction. Furthermore the biological footprint of the phenotype seems to be the 

most important determinant of prediction accuracy. Future MVPA studies can compare 

alternative methods against the published results using the public datasets and distributed 

cross-validation lists, while properly accounting for the uncertainty in performance 

estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A large-scale empirical study (total N>2800) of clinical structural MRI data

• We evaluated the performance of image-based prediction methods

• We considered an array of clinically relevant variables, both binary and 

continuous

• All tools and data are publicly available to replicate and benchmark results

• We provide a discussion of prediction performance and suggest future research
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Figure 1. 
Correct classification ratio (CCR) (Panel a) and normalized root mean square (NRMSE) 

(Panel b) for each variable and MVPA algorithm, estimated via 5-fold cross-validation. The 

MVPA algorithms are abbreviated as follows: N for neighborhood approximation forest, S 

for SVMs, and R for RVMs. The number after each letter denotes the feature type (1:aseg, 

2:aparc, 3:aseg+aparc, 4:thick). The shaded gray color indicates statistical significance 

(−log10 p-value), where the p-value is computed via DeLong’s method(DeLong et al., 1988) 

for classification (Panel a), and Pearson’s linear correlation coefficient for regression 

(Panel b). Statistically significant associations with a p-value greater less than 0.01 are 

shown in red. The RMSE is normalized by dividing by the range of the variable, enabling a 

comparison between variables with different units.
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Figure 2. 
Average prediction accuracy estimated via repeated 5-fold cross-validation for MVPA and 

univariate models. The MVPA models were chosen as the ones that yielded the predictions 

that were most significantly associated with the ground truth variables on the first 5-fold 

cross-validation (see Fig. 1). Panel a: Binary Classification, Panel b: Regression. Error bars 

show the 95% confidence intervals. MVPA models yield better prediction accuracy than 

univariate models in all variables.
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Figure 3. 
MVPA prediction accuracy versus biological footprint. There is a strong agreement between 

the correct classification rate (CCR) and size of cortical area where thickness measurements 

are statistically significantly associated with the target variable (at False Discovery 

Rate(Benjamini and Hochberg, 1995), FDR, q=0.05). The errorbars show the full range of 

CCR values in each fold of cross-validation. Within each panel, the samples contained 

comparable number of subjects and the scans were of commensurate quality. The Relevance 

Voxel Machine, a variant of RVM, was applied to cortical thickness maps for the 

multivariate analysis. The mass-univariate analysis was conducted on the thickness maps 
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normalized and re-sampled to the standard fsaverage template, the left hemisphere of which 

is visualized with the statistical significance (−log10 p value) of the associations overlaid in 

color (uncorrected p-value < 0.01). We underscore that these maps are different from the 

features the MVPA models rely on for making the corresponding predictions.
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Figure 4. 
Eight MVPA models (in blue font) were applied to independent validation datasets (in black 

font) to assess prediction accuracy. Panel a: Correct classification ratio, CCR, is shown for 

each variable (in white). Blue bars show the 95% confidence interval of CCR estimated via 

cross-validation on original dataset of model. Area under the receiver-operatic charactertic 

curve (AUC, shown in black) was used to assess statistical significance via DeLong’s 

method (DeLong et al., 1988). ** p-value < 0.001, *** p-value < 0.0001. Panel b: 
Normalized root mean squared error (NRMSE) is shown for each variable (in white). Blue 

bars show the 95% confidence interval of NRMSE, estimated via cross-validation on 
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original dataset of model. Pearson’s correlation (CORR, shown in black) was used to assess 

statistical significance. *** p-value < 0.0001
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