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Abstract

Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks. T 

hey are often deployed in complex dynamic systems that provide users with broad access 

privileges, but also leave the system vulnerable to various attacks. Techniques to detect threats 

originating from beyond the system are relatively mature, but methods to detect insider threats are 

still evolving. A promising class of insider threat detection models for CIS focus on the 

communities that manifest between users based on the usage of common subjects in the system. 

However, current methods detect only when a user’s aggregate behavior is intruding, not when 

specific actions have deviated from expectation. In this paper, we introduce a method called 

specialized network anomaly detection (SNAD) to detect such events. SNAD assembles the 

community of users that access a particular subject and assesses if similarities of the community 

with and without a certain user are sufficiently different. We present a theoretical basis and 

perform an extensive empirical evaluation with the access logs of two distinct environments: those 

of a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) 

and the editing logs of Wikipedia (2,388,955 revisors, 55,200 articles and 6,482,780 revisions). 

We compare SNAD with several competing methods and demonstrate it is significantly more 

effective: on average it achieves 20–30% greater area under an ROC curve.

I. Introduction

The popularity of collaborative information systems (CIS) has exploded over the past 

decade, such that they are now critical in a wide-range of domains. For instance, CIS are 

utilized in popular Web 2.0 environments, such as wikis, dynamic bookmarking, social 

networking, and groupware [9]. At the same time, CIS have become central to environments 

that handle personal or strategic knowledge, such as healthcare operations [10] and 

intelligence-related activities [26].
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In essence, CIS provide for several major benefits in comparison to their predecessors. First, 

they can increase the efficiency of completing a task [7]. Second, they can improve the 

quality of the work produced in the system [11]. These benefits are realized because CIS 

facilitate flexible participation and coordination between disparate users over common tasks.

Unfortunately, the flexible nature that provides CIS with enhanced service capabilities 

leaves it vulnerable to various information security threats. This is due, in part, to the fact 

that the environments in which CIS are deployed are inherently dynamic and complex. They 

often consist of a large number of users, permissions or functions, and ad hoc relationships 

between users and data elements, all of which fluctuate over time. The consequence of such 

complexity is that CIS are subject to misuse and abuse, which can ultimately corrupt or 

expose sensitive information [5]. This is particularly a concern in CIS that manage sensitive 

information, such as electronic health records (EHRs), where misuse of the system can lead 

to the exploitation of private medical information [15].

The insider threat has long been recognized as a challenging problem in information systems 

security [19], [4]. With respect to CIS, the past decade has produced various models to 

prevent the threat, such as the application of formal access control frameworks (e.g., [2], 

[23], [27]) and role mining (e.g., [17], [25], [28]) to appropriately tune permission 

assignments. Access control primarily relies on protection by appropriately defining roles 

and permissions of users to prevent illicit accesses from unauthorized users. Notably, certain 

access control frameworks address team [8] and context scenarios [2], [12]. However, in a 

CIS, users’ roles and permissions are dynamic. As a result, it is difficult to differentiate 

between “normal” and “abnormal” accesses based on roles and permissions alone.

Acknowledging that access control is necessary, but insufficient, to guarantee protection, 

various approaches based on anomaly detection methods have been proposed as 

supplements. In the context of collaborative environments, certain data structures and 

theories rooted on behavior modeling, such as graph-based decompositions [6], [16] and 

community detection techniques [3], [22], [20] have shown promise.

However, the existing set of approaches are limited in that they are designed to detect if a 

user is behaving in an anomalous manner in general. They are not oriented to determine if a 

user’s particular action is anomalous and thus are more useful when a user’s account has 

been compromised or the user is performing a significant number of actions beyond their 

normal routine. Yet, such techniques are not adept at determining if an authenticated user is 

committing more subtle illicit actions, such as the access (or amendment) of a single subject 

in the CIS.

In this paper, we focus on the detection of specific anomalous accesses. To address the 

variable nature of users, we leverage dynamic social network analysis. Our approach builds 

a model for each subject that is accessed (e.g., patient’s medical record) in the form of a 

network of users (i.e., the set of authenticated healthcare workers). We hypothesize that if a 

user is a threat, the similarity between this user to the network will be lower than that among 

the remaining users. Under this hypothesis, our model assesses if the similarity of the 
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network with and without the user are sufficiently different. We defer the detailed 

presentation of how similarity is defined until Section II-A3.

Beyond developing the model, we perform an empirical investigation with the access logs of 

two distinct CIS. The first consists of the access logs from a large restricted-access EHR 

system. The second consists of the editing logs from a publicly-accessible online wiki, 

Wikipedia. In the context of these real domains, we simulate intruding behavior in several 

manners that are indicative of various known illicit actions. Our results illustrate that when 

an access network is intruded upon, the similarity of the network is sufficiently lower to 

detect the intrusion. Additionally, and perhaps more importantly, we demonstrate that 

relatively simple data mining techniques are more effective than complex network 

decomposition methods for this specific detection problem.

II. Intruding Access Detection Model

This section introduces the detection model, which we call specialized network anomaly 

detection (SNAD). The approach is dubbed “specialized” because it focuses on a local view 

of the information system, conditioned on specific subjects. We begin with a high-level 

overview of SNAD and then delve into the details of the particular methods it incorporates.

SNAD functions under the premise that normal and abnormal accesses will have sufficiently 

different influence on the similarity of the users in an access network. As depicted in Figure 

1, SNAD can be represented as two general components: 1) Similarity Measurement 

(SNAD-SM), which feeds into 2) Anomaly Evaluation (SNAD-AE).

The SNAD-SM component extracts networks of users from access logs. More specifically, 

this component constructs a local access network for each subject. It then calculates the 

similarity of the users’ access patterns in the network. Rather than focus on the individual 

features of the users or the subjects, SNAD aims for a more general representation to model 

the social behavior in the system by constructing and measuring the similarity of users’ 

access networks.

The SNAD-AE component evaluates each access by comparing the similarity of an access 

network to its subnetwork. More specifically, SNAD-AE measures the similarity of the 

users that access a particular subject. This network is then compared to the similarity of a 

subnetwork that suppresses one of the network’s users. If the similarity between the network 

and subnetwork are sufficiently different, then SNAD claims the suppressed user’s access 

was an anomaly.

A. SNAD Similarity Measurement

1) Access Network Construction—The SNAD-SM component transforms the CIS 

access logs into networks. The transformation begins by constructing a bipartite graph of the 

users and subjects that interact during a particular time period. Figure 2(a) depicts an 

example with six users and seven subjects modeled as vertices. Note, an edge represents a 

user accessed the subject’s record.
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Based on the graph, we define a local access network as follows. Let S = {s1, … , sm} and U 

= {u1, … , un} be the set of subjects and users, respectively. We define USi as the set of 

users that accessed si in a certain time period, such as one day. And, we define N etsi is a 

complete graph of Usi, where the weight between a user pair is their similarity (defined 

below). For simplicity, we use cardinality |·| to represent the number of elements in a set. For 

instance, in Figure 2(a), Us3 = {u1, u2, u4, u5, u6} and N ets3, depicted in Figure 2(e), is a 

complete graph.

2) User Modeling—Initially, we represent the subject-user bipartite graph as a binary 

matrix SU, as depicted in Figure 2(b). SU(i, j) = 1, if user uj accesses subject si, and 0 

otherwise. For reference, we represent ui as the column vector of subject accesses, denoted 

Ui.

Prior research in social network analysis (e.g. [1]) suggests, it is important to represent the 

affinity that a user has toward a particular subject when assessing the similarity of users. 

There are several aspects of user’s relationships to subjects that could be leveraged for 

similarity. First, users may access a subject multiple times during their interaction with a 

CIS. However, users have different system access rates, and considering the frequency of 

their access may skew the similarity analysis. Thus, we focus more on the number of 

subjects a user accessed. Specifically, we utilize the inverse document frequency (IDF) 

model, a statistical measure popularized by information retrieval systems shown to be 

effective for weighting the affinity of individuals to subjects in friendship networks [1]. In 

effect, IDF models the affinity of a user to a subject relative to all subjects in the system. As 

such, the IDF transformation is defined as:

(1)

where S = [1, 1, … , 1] and has the same number of dimensions as Ui. Figure 2(c) provides 

an example of this transformation.

Relationships, or similarity, between pairs of users can be mined from their access vectors. 

Cosine similarity [18] is a particular measure that has successfully been applied in various 

domains to measure the similarity of vectors. We compute the similarity of users ui, uj via 

the cosine of their IDF-transformed vectors:

(2)

Figure 2(d) is an example of user pair similarities.

3) Access Network Measurement—We hypothesize that if an insider wanders into a 

network, its similarity will decrease. However, to investigate this hypothesis we need to 

develop an appropriate similarity measure for an access network.
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Different subjects have distinct local access networks. In order to compare similarities of 

these networks from a global perspective, we define the similarity of an access network as 

the average similarity of all user pairs:

(3)

where |Usk| is the number of users in N etsk. When this value is high, the users are close to 

each other, such that have a strong collaborative relationship with respect to subject sk.

SNAD-SM provides a measure of similarity for an access network. However, to leverage 

such measures for anomaly detection, we need a formal approach to determine when a 

particular access is anomalous in the access network.

4) Access Measurement—SNAD-AE evaluates each user’s access in a network by 

calculating how the similarity of the network changes after the suppression of the user. 

SNAD-AE assumes that intruding accesses will lower the similarity of a network at a greater 

rate than a typical access.

To evaluate the access uj → si, we compare the similarity of the network with and without 

the user:

(4)

where N etsij is the network with user uj suppressed. As an example, N ets3 in Figure 2(e) 

consists of five users who accessed s3. In N ets3, the expectation is that if uj → s3 is an 

intrusion, Score(uj → s3) will be larger than the subnetwork sans a typical user. Similarities 

of access network and its subnetworks are depicted in Figure 2(f).

5) Anomaly Detection—In Figure 2(g), SNAD-AE calculated the scores of all accesses 

involved with subject s3. These scores were calculated based on access network N ets3 which 

consists of five users u1, u2, u4, u5 and u6. SNAD-AE computes a score for each access 

using Equation 4.

The larger the score, the greater the probability the access is an intrusion. For the five 

accesses associated with network N ets3, u1 and u6 have scores larger than u2, u4 and u5; 

0.05 and 0.16, respectively. If we rank the scores and claim the highest as an anomaly, u6 → 

s3 will be implicated by SNAD. Turning outåttention back to the SU matrix, it can be seen 

that u2, u4, and u5 access common subjects, whereas u6 only has s3 in common. Except for 

s2, s3 and s6, u1 has no common subjects with u2, u4 and u5.

B. Spectral Anomaly Detection Model

Though SNAD may appear to be a simplistic model, we find it is more appropriate for 

access-level insider threat detection in CIS than more sophisticated competitors. As 

evidence, we compare SNAD to a well-regarded competitor, spectral anomaly detection 
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[21]. This model calculates the distance of each user to the principal components of the SU 

matrix:

(5)

where  and PCki is the distance of ui to kth principal component. Next, the 

average distance of an access network is defined as:

(6)

where sizesi is the size of access network N etsi.

Then, similar to SNAD, the spectral model computes an access score for each user by 

measuring the change of distance in the access network after suppressing the user. As an 

example, access u6 → u3 is scored by the spectral model as: Score(u6 → s3) = DIS(N ets3,6) 

− DIS(N ets3).

We apply the spectral anomaly detection model on both the pre- and post-IDF transformed 

SU matrix and refer to these models as Spectral-Binary and Spectral-IDF, respectively.

III. EXPERIMENTS AND RESULTS

A. Datasets

For evaluation, we utilize datasets from CIS in two distinct domains: healthcare and online 

wiki’s. The first dataset corresponds to the real access logs of the Vanderbilt University 

Medical Center (VUMC) EHR system. This system has been in application for over a 

decade and is well-ingrained in healthcare operations [14]. The logs document when an 

authenticated VUMC employee accessed a patient’s record. The second dataset corresponds 

corresponds to the publicly available revision logs of Wikipedia [13].1 We analyze the 

accesses collected over 30 weeks during the year 2006 in the EHR dataset and the revisions 

documented over 50 weeks during the year 2007 in the Wiki dataset.

In the EHR dataset, we refer to patient records as subjects, and user views of the records as 

accesses. Similarly, in the Wiki dataset, we refer to articles as subjects and user revisions as 

accesses. Certain summary information regarding the two datasets can be found in Table I.

B. Experimental Design

The datasets do not document which (if any) accesses were intrusions. As such, to conduct a 

controlled evaluation, we injected simulated actions into the logs (i.e., changed 0’s to 1’s in 

the SU access matrix).

1This dataset can be downloaded from the Stanford SNAP network repository. http://snap.stanford.edu/
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For this study, we use three scenarios to assess the intrusion detection rate under various 

settings:

Accesses Per User—We select a user at random, inject between 1 to 100 new subject 

accesses, and execute the detection model. This process is repeated 15 times per week.

User Per Access Load—We investigate how the number of intruding users influences 

the detection rate. We select a set of users to inject three intruding accesses into. We 

perform this analysis over the range of 2 to 20 intruding users.

Diverse Setting—We emulate a more realistic environment by allowing for a variety of 

simultaneous intruding users and actions. Specifically, we inject a set of random subject 

accesses, between 1 and 100, into a random set of users, between 1 and 20.

Each of these scenarios is simulated on a per week basis.

Detection Performance—We measure the performance of models using the receiver 

operating characteristic (ROC) curve. This is a characterization of the true positive rate 

versus the false positive rate for a binary classifier as its discrimination threshold is varied. 

The area under the ROC curve (AUC) reflects the relationship between sensitivity and 

specificity for a given test. A higher AUC indicates better performance. In the first two 

simulation settings, we report on the average AUC per simulation configuration.

C. Results and analysis

1) SNAD Scores Before Simulation—Figure 3 depicts the distributions of access 

network similarity in the EHR and Wiki datasets for an arbitrary week. Notably, these 

environments capture different social phenomena. For instance, in the EHR dataset, the 

majority of access networks are small in size. And, as shown in the upper plot of Figure 3 

the similarity approaches zero as the network size grows. This demonstrates that when a user 

is suppressed from a network, the average similarity has little change. The main driving 

factor of this phenomenon is that large access networks in the EHR system tend to be varied 

in the user composition.

In contrast, the lower plot of Figure 3 indicates that Wiki users in large access networks are 

relatively similar. This implies that when an intruder joins a network in Wikipedia, the 

average similarity will greatly decrease.

2) Accesses Per User—In the first experiment, we investigate how the number of 

intrusions committed by a single user influences detection. Figure 4 depicts the AUC of the 

detection models as a function of the number of simulated intrusions. It can be seen that 

SNAD has equal or larger AUC than both spectral models. We note there are only two 

points at which the spectral models and SNAD were equivalent (3 intruding accesses in the 

EHR dataset and 5 intruding accesses in the Wiki dataset). Additionally, unlike the spectral 

models, SNAD’s AUC tends to increase with the number of accesses. When the insider has 

only one simulated access, SNAD’s average AUC is nearly 0.65 compared to 0.59 of its 
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nearest competitor, Spectral-Binary. When the number of simulated accesses is 30, SNAD’s 

AUC reaches 0.9, compared to

3) Users Per Access Load—In this experiment, we investigate how the number of 

intruding insiders influences detection. We fix the number of simulated accesses to 3. The 

results are depicted in Figure 5, which demonstrates the AUC for all models increase with 

the number of accesses for the EHR dataset, but only SNAD’s AVC increases in the Wiki 

dataset. Nonetheless, SNAD greatly outperforms the spectral models at all evaluation points. 

This is because the insiders with simulated accesses greatly amend the local access network, 

but have little influence on the global network, which the spectral approach depends upon. 

The implication is that indirect relations, which are critical to discovery of intruding user 

behavior in general [3], [21], may be less important than the direct relations in the detection 

of specific intruding accesses. However, we recognize that a more a more detailed 

investigation, perhaps with more datasets, is necessary before such a conjecture can be 

confirmed.

Figure 5 demonstrates AVC increases with the number of intruding insiders. Here we see 

that SNAD exhibits an AVC that is 20–30% higher, on average, than the spectral models.

4) Diverse Insider Setting—In the third experiment, we injected a random number of 

accesses into a random set of user vectors. Figure 6 provides a comparison of the ROC 

curves of the detection models for both datasets. It can be observed that SNAD has greater 

performance than the spectral models at every operating point.

Table II summarizes the average AVC scores of the detection models in this setting. The 

table indicates that SNAD achieves the highest AVC, 0.83 and 0.91 in the EHR and Wiki 

datasets, respectively. This translates into AVC scores that are 10–20% higher, on average, 

than the spectral models.

IV. Discussion and Conclusion

In this paper we proposed a “specialized” network anomaly detection model (SNAD) to 

discover anomalous actions in collaborative information systems (CIS). SNAD differs from 

existing insider threat detection techniques in that it is engineered to assess specific event-

related actions as opposed to global patterns. The foundation of SNAD is an efficient 

unsupervised learning method, such that it can be deployed in real systems. We evaluated 

our technique against several competitors, based on spectral decomposition, with real EHR 

access and Wiki revision logs. The empirical results demonstrate that SNAD exhibits better 

performance than its competitors in almost every assessed scenario.

In addition, we believe SNAD is capable of detecting probabilistic mimicry attacks [24]. 

Imagine an adversary who games the system by imitating group behavior or the behavior of 

another user. Even though the imitating user exhibits normal behavior, if the user executes a 

single event-related action, it may be quickly identified by SNAD.

There are several limitations of the study that we wish to point out to serve as a guidebook 

for future research on this topic. First, our experiments suggest SNAD is appropriate in 
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settings when access networks exhibit high similarity or there are a non-trivial number of 

illicit insiders. Large access networks with low network similarity tend to be varied in the 

user base and thus present low average similarity. In this case, the suppression of a user has 

little influence on the similarity of the access network. As a result, it appears that SNAD will 

not be appropriate for such larger networks.

Second, SNAD accounts for the relationship between users and subjects, but neglects the 

semantics of the relation. SNAD does not model the intention of a user while executing an 

action. Yet, in a CIS, the system is often mission-oriented, such that the semantics of the 

users and subjects are informative. For instance, in an EHR system, patients are assigned 

diagnoses and procedures, while users are affiliated with various departments and assigned 

certain roles within a healthcare organization. Rather than treat each user and patient 

equally, we believe that detection sensitivity could be improved by integrating such 

information into the network modeling process.

Finally, SNAD was evaluated on only one type of attack; i.e., when a user issues an 

intruding access randomly. Yet, in real systems, there may be many types of attacks, some 

which are more complex and require different simulation methods.
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Fig. 1. 
The specialized network anomaly detection (SNAD) framework.
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Fig. 2. 
An illustrative example for the SNAD model.
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Fig. 3. 
The distribution of similarity as a function of access network size.
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Fig. 4. 
Average AUC of the detection models on varying quantities of simulated intrusions (one 

user intruding per simulation).
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Fig. 5. 
Average AUC of the models when a different number of insiders are intruding. In this 

experiment, each insider issues threes intruding accesses.
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Fig. 6. 
ROC curves for detection models in a diverse setting, where the number of intruders and the 

quantity of intruding accesses are randomly generated.
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TABLE I

Statistics of EHR and Wiki datasets.

Dataset Weeks Users/week Subjects/week Accesses/week

EHR 30 2,281 13,148 44,250

Wiki 50 3,952 240 28,186
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TABLE II

AUC scores (+/− one standard deviation) of the detection models on the datasets.

Dataset SNAD Spectral IDF Spectral Binary

EHR 0.83±0.03 0.74±0.06 0.69±0.05

Wiki 0.91±0.02 0.76±0.04 0.64±0.04
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