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Background: It was unknown whether human �-arrestin 2 could be SUMOylated.
Results: Human �-arrestin 2 is SUMOylated on Lys-295. SUMOylation attenuates �-arrestin 2 inhibition of IL-1R/TRAF6
signaling.
Conclusion: SUMOylation attenuates human �-arrestin 2 inhibition of TRAF6 and IL-1R signaling.
Significance: We show SUMOylation as a novel mechanism in regulation of �-arrestin 2-mediated IL-1R-TRAF6 signaling.

�-Arrestin 2 as an adaptor plays a role in the regulation of
receptor desensitization, trafficking, and signaling. Bovine
�-arrestin 2 has been shown to be SUMOylated on the lysine 400
residue, which links it to the endocytosis of the �2-adrenergic
receptor. Here we identify a major SUMOylation site, lysine 295,
on human �-arrestin 2. SUMOylation on this site attenuates
�-arrestin 2 binding to TRAF6, then enhances TRAF6 oligo-
merization and autoubiquitination, and consequently leads to
the increase of TRAF6-mediated NF-�B/AP-1 activation. We
further determine SENP1 as a specific de-SUMOylation prote-
ase that can reverse the SUMOylation of �-arrestin 2-mediated
processes. Our study reveals SUMOylation as a novel mecha-
nism in the regulation of �-arrestin 2-mediated IL-1R/TRAF6
signaling.

IL-1 signaling is a key player in the regulation of inflamma-
tory processes. IL-1 stimulates IL-1R and downstream signaling
molecules and subsequently activates the transcription factors
NF-�B and AP-1, which control the expression of key immu-
noregulatory genes (1–3). TRAF6 is a critical mediator for the
Toll-like/interleukin-1 receptor superfamily (4, 5). As a RING
domain containing E3 ubiquitin ligase, TRAF6 is recruited to
the receptor complexes and forms oligomers upon signaling
activation and then leads to Lys-63-linked polyubiquitination
of itself and downstream signaling molecules (6 – 8). Lys-63
ubiquitin-conjugated TRAF6 recruits TAB2 and activates the
TAB2-associated TAK1 kinase, which subsequently phosphor-
ylates and activates I�B kinases. I�B kinase then phosphorylates

I�B�, leading to degradation of I�B� and, consequently activa-
tion of NF-�B. In addition, TAK1 can also activate the JNK and
p38 MAPK family members, then triggering AP-1 activation
(8 –10). Both of oligomerization and autoubiquitination are
critical for TRAF6 activity toward downstream targets to medi-
ate IL-1�- or LPS-induced NF-�B/AP-1 activation.

�-Arrestin 2 (also known as arrestin 3), along with �-arrestin
1 (arrestin 2) and visual rod (arrestin 1) and cone (arrestin 4)
arrestins, is part of a small family of cytosolic adaptor proteins
functioning as crucial adaptors/mediators in the regulation of a
variety of cell surface receptor desensitization, trafficking, and
signaling activities (11–13). �-Arrestins have been shown to be
modified by phosphorylation, ubiquitination, and nitrosylation
(14 –16). These modifications have linked �-arrestins to G pro-
tein-coupled receptor (GPCR)3 internalization, trafficking and
signal transduction (13). Additionally, �-arrestin 2 directly
interacts with TRAF6 after TLR/IL-1R activation, leading to
prevention of autoubiquitination of TRAF6 and activation of
NF-�B and AP-1 (17).

Recently, bovine �-arrestin 2 has been reported as a
SUMOylated protein. The SUMOylation site Lys-400 locates
within the C tail of bovine �-arrestin 2, which mediates GPCR
endocytosis, and the SUMOylation of bovine �-arrestin 2 has
been shown to promote �-arrestin 2-mediated �2-adrenergic
receptor internalization (18). Here we also show human/mu-
rine �-arrestin 2 as a SUMOylated target. However, lysine 295,
not lysine 400, has been identified as a major SUMO-conju-
gated site on human �-arrestin 2. We further found that
SUMOylation decreases �-arrestin 2 inhibition of TRAF6 olig-
omerization and autoubiquitination and, consequently, pro-
motes TRAF6-mediated NF-�B/AP-1 activation. Our study
reveals SUMOylation as a novel mechanism in the regulation of
�-arrestin 2-mediated IL-1R/TRAF6 signaling.
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EXPERIMENTAL PROCEDURES

Plasmids and Antibodies—The plasmids �-arrestin 2-HA,
FLAG-TRAF6, and His-ubiquitin were provided by Dr. Ping
Wang (Institute of Biomedical and Science, East China Normal
University, China). FLAG-SUMO1, FLAG-SENP1, HA-SUMO1,
RGS-SENP1, and RGS-SENP1-mu, a SENP1 catalytic mutant,
have been described previously (19 –21). �-Arrestin 2 point
mutants (K295R and K400R) were generated using site-di-
rected mutagenesis. SENP1-GFP, SENP1mu-GFP, and GFP-
TRAF6 were generated using standard cloning procedures and
PCR-based mutagenesis (Vazyme Biotech Co., Ltd). Antibodies
against FLAG M2 and HA were from Sigma; GFP from Eptom-
ics; RGS-his from Qiagen; and �-arrestin 2, I�B�, SUMO1,
ERK, and p-ERK from CST.

Immunoprecipitation and Immunoblotting—Transfected cells
were lysed in radioimmune precipitation assay buffer (50 mM

Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Nonidet
P-40, 0.1% SDS, 1% sodium deoxycholate, and a mixture of pro-
tease inhibitors) and cleared by centrifugation. Cleared cell
lysates were incubated with 10 �l of anti-FLAG M2-agarose
affinity gel (Sigma) or 10 �l of anti-HA-agarose affinity gel
(Sigma) for 2 h. To perform an endogenous assay, MEF cells
were lysed in ice-cold radioimmune precipitation assay buffer.
Cleared cell lysates were incubated with anti-SUMO-1 antibody
(1:200) and 15–20 �l of protein A/G beads (Santa Cruz Biotech-
nology) for 4 h at 4 °C. After extensive washing, beads were boiled
at 100 °C for 10 min. Proteins were resolved by SDS-PAGE and
transferred onto PVDF membranes (Millipore), followed by
immunoblotting using corresponding antibodies according to the
instructions of the manufacturer. Immunoblots were analyzed
using the LAS-4000 system (Fujifilm).

Ubiquitination Assay—HEK293T cells were transfected with
His-ubiquitin and FLAG-TRAF6. The transfected cells were
lysed by denatured buffer (6 M guanidine-HCl, 0.1 M Na2HPO4/
NaH2PO4, and 10 mM imidazole), followed by Talon bead puri-
fication. The ubiquitination was detected by Western blot
analysis.

Luciferase Assay—NF-�B- or AP-1-dependent firefly lucifer-
ase plasmids were transiently transfected into HEK293T cells
with Renilla luciferase plasmids and others. The cells were har-
vested 36 h after transfection, and luciferase assays were per-
formed using the Dual-Luciferase reporter assay system (Pro-
mega). The relative luciferase activity was normalized on the
basis of the Renilla luciferase activity. Data represent three
independent experiments performed in duplicate.

Stable Cell Line—�-Arrestin 2 WT or �-arrestin 2 K295R
mutant (K295R) lentiviral plasmids were transfected into
HEK293T cells with lentivirus packaging vectors by calcium
phosphate-DNA coprecipitation method. Viral supernatants
were collected 48 h after transfection. MCF-7 cells were
infected by lentiviral supernatant in the presence of 10 �g/ml
Polybrene for 12 h. 48 –72 h later, the cells were sorted for stable
cell lines by flow cytometry.

RNA Isolation and Real-time RT-PCR—Total RNA was iso-
lated from cells by using Tripure isolation reagent (Roche). For
mRNA analysis, an aliquot containing 2 �g of total RNA was
reverse-transcribed using the cDNA synthesis kit (Takara).

Real-time PCR was performed using SYBR Green PCR master
mix (Applied Biosystems) and detected by the ABI Prism 7500
sequence detection system (Applied Biosystems). The primers
for real-time RT-PCR were as follows: GAPDH, 5�-GAGCTG-
AACGGGAAGCTCACTG-3� (sense) and 5�-TGGTGCTCA-
GTGTAGCCCAGGA-3� (antisense); TNF�, 5�-CCCTCTGG-
CCCAGGCAGTCA-3� (sense) and 5�-ATGGGTGGAGGGG-
CAGCCTT-3� (antisense).

ELISA Assay—After serum starvation for 12 h, MCF-7 cells
were cultured for 24 h with recombinant human IL-1� (20
ng/ml) (Bioworld Technology). The concentration of TNF� in
culture supernatants was determined with a human-specific
ELISA kit (ExCell Bio), followed by analysis with a SYNERGY
microplate reader (BioTek).

RESULTS

SUMO Conjugates Human �-Arrestin 2 on Lys-295—Wyatt
et al. (18) have reported previously that bovine �-arrestin 2 is
conjugated by SUMO on residue Lys-400. However, when
aligning the bovine, human, and murine �-arrestin 2 sequences,
we noticed that the Lys-400 residue in human/murine �-arres-
tin 2 is not in a conserved SUMO consensus motif, �KXE (Fig.
1A), which raised the question of whether human/murine as
well as bovine �-arrestin 2 could be SUMOylated. To test this,
we performed an in vivo SUMOylation assay in HEK293T cells
by cotransfecting human �-arrestin 2-HA and FLAG-SUMO1.
As shown in Fig. 1, B and C, the SUMOylated �-arrestin 2 band
was readily detected in cells transfected with �-arrestin 2-HA
and FLAG-SUMO1. We also observed that endogenous human/
mouse �-arrestin 2 was modified by endogenous SUMO1 in
HEK293T cells and MEFs (Fig. 1D and Fig. 3C). These results
showed that human/murine �-arrestin 2 could be also conju-
gated by SUMO similarly as bovine �-arrestin 2.

We mutated Lys-400 on human �-arrestin 2 to test whether
this residue was a SUMO conjugation site, as bovine �-arrestin
2. As shown in Fig. 1E, mutating the Lys-400 residue had no
significant effect on human �-arrestin 2 SUMOylation. How-
ever, when mutating Lys-295, a lysine residue located in a con-
served SUMO consensus motif, LKHE (�KXE), human �-ar-
restin 2 SUMOylation was significantly abolished, suggesting
that Lys-295, but not Lys-400, on human �-arrestin 2 is the
major residue to accept SUMO.

SUMOylation Attenuates Human �-Arrestin 2 Inhibition of
TRAF6 Activation—Lys-400 resides within the C tail of bovine
�-arrestin 2, which mediates GPCR endocytosis. SUMOylation
on this site has been shown to promote �-arrestin 2-mediated
�2-adrenergic receptor internalization (18). However, Lys-295
on human �-arrestin 2 locates in the TRAF6-binding domain.
�-Arrestin 2 binding to TRAF6 has been shown to inhibit
autoubiquitination of TRAF6 and activation of NF-�B and
AP-1 responding to TLR-IL-1R signaling (17). We therefore
proposed that SUMOylation on Lys-295 might regulate
�-arrestin 2 interacting with TRAF6 and then modulate IL-1R/
TRAF6 signaling. We first tested whether �-arrestin 2
SUMOylation is related to IL-1� stimulation. We showed that
IL-1� induced human �-arrestin 2 SUMOylation (Fig. 2A). We
then determined whether SUMOylation of human �-arrestin 2
could affect TRAF6 ubiquitination. As shown in Fig. 2B, the
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expression of �-arrestin 2 markedly reduced TRAF6 ubiquiti-
nation (lane 3 versus lane 2). Interestingly, the expression of
SUMO1/Ubc9 could almost restore TRAF6 ubiquitination (Fig.
2B, lane 4 versus lane 3) but had no effect on �-arrestin 2 K295R-
mutant (Fig. 2B, lane 5 versus lane 4). Mutating Lys-400 on human
�-arrestin 2 did not affect TRAF6 ubiquitination (Fig. 2B, lane 6
versus lanes 3 and 4), suggesting that SUMOylation on Lys-295
reduces �-arrestin 2 inhibition of TRAF6 ubiquitination. We
further tested whether SUMOylation of �-arrestin 2 had a sim-
ilar effect on TRAF6-mediated NF-�B and AP-1 activation as
on TRAF6 ubiquitination. HEK293T cells were transfected
with an NF-�B- or AP-1-dependent luciferase reporter plus
TRAF6 and with or without SUMO1/Ubc9. A luciferase assay

from these transfected cells showed that SUMOylation on Lys-
295 also attenuates �-arrestin 2 inhibition of NF-�B and AP-1
activation (Fig. 2C).

We generated human �-arrestin 2 wild-type, K295R-mutant,
or K400R-mutant stably transfected MCF-7, a relatively low
endogenous �-arrestin 2 cell line (data not shown), to further
determine the role of SUMOylation in �-arrestin 2-mediated
IL-1R signaling. As shown in Fig. 2D, IL-1�-induced TRAF6
ubiquitination was significantly lower in �-arrestin 2 (K295R)-
MCF-7 cells than in �-arrestin 2 (WT)-MCF-7 or �-arrestin 2
(K400R)-MCF-7 cells. Similarly, IL-1�-induced NF-�B or AP-1
activation was also significantly lower in �-arrestin 2 (K295R)-
MCF-7 cells than that in �-arrestin 2 (WT)-MCF-7 or �-arres-
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FIGURE 1. SUMO conjugates human �-arrestin 2 on Lys-295. A, the alignment of bovine/human/murine �-arrestin 2 sequences sowing the SUMO consensus
motif. B and C, human �-arrestin 2 is SUMOylated in vivo. HEK293T cells were transfected with the indicated plasmids, and the transfected cells were harvested
36 h after transfection and immunoprecipitated with anti-FLAG M2-agarose beads or anti-HA beads. The immunoprecipitates (IP) and the original whole-cell
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FIGURE 2. SUMOylation attenuates human �-arrestin 2 inhibition of TRAF6 activation. A, SUMOylation of �-arrestin 2 is induced by IL-1�. HEK293T cells
were transfected with FLAG-SUMO1 and �-arrestin 2-HA. The transfected cells were treated with IL-1� (20 ng/ml) for the indicated time before harvest. The cell
lysates were immunoprecipitated (IP) with anti-FLAG M2-agarose beads and analyzed by immunoblotting (IB) with anti-�-arrestin 2, anti-p-IKK�, anti-IKK�, or
anti-I�B� antibodies. IKK� phosphorylation and I�B� degradation were used as indicators for the validity of IL-1� stimuli. The relative gray scale determination
was analyzed using ImageJ software. WCL, whole-cell lysate. B, SUMOylation reduces �-arrestin 2 inhibition of TRAF6 autoubiquitination. The indicated
plasmids were transfected into HEK293T cells. The Talon bead precipitates and cell lysates were analyzed by immunoblotting with anti-FLAG, anti-HA, anti-His,
or anti-Myc antibodies. Ub, ubiquitin. C, SUMOylation attenuates �-arrestin 2 inhibition of TRAF6-mediated NF-�B and AP-1 activation. An NF-�B- or AP-1-de-
pendent firefly luciferase reporter and a Renilla luciferase reporter plus the indicated plasmids were cotransfected into HEK293T cells. The relative luciferase
activity was measured 36 h after transfection and normalized on the basis of Renilla luciferase activity. *, p � 0.05; **, p � 0.01. D, �-arrestin 2 WT-, �-arrestin 2
K295R-, or �-arrestin 2 K400R-MCF-7 stable cells were transfected with HA-TRAF6 or not as indicated. The cells were treated with IL-1�. The cell lysates were
immunoprecipitated with anti-HA-agarose beads, and the immunoprecipitates and the cell lysates were analyzed by immunoblotting with anti-ubiquitin,
anti-HA, or anti-�-arrestin 2 antibodies. E, �-arrestin 2 WT-, �-arrestin 2 K295R-, or �-arrestin 2 K400R-MCF-7 stable cells were transfected with an NF-�B- or
AP-1-dependent firefly luciferase reporter and a Renilla luciferase reporter. The relative luciferase activity was measured 36 h after transfection and normalized
on the basis of Renilla luciferase activity. *, p � 0.05; **, p � 0.01.
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tin 2 (K400R)-MCF-7 cells (Fig. 2E). These results suggest
that SUMOylation on Lys-295 could attenuate �-arrestin 2
inhibition of TRAF6 activation and TRAF6-mediated IL-1R
signaling.

SENP1 De-SUMOylates �-Arrestin 2—We observed that
SUMO-specific protease 1 (SENP1) could bind to �-arrestin 2
(Fig. 3A). Therefore, we reasoned that SENP1 could be a decon-
jugation protease for SUMOylated �-arrestin 2. To test this
possibility, we performed a de-SUMOylation assay in the
transfected cells. As shown in Fig. 3B, the expression of SENP1
wild-type but not the SENP1 catalytic mutant made the
SUMOylated �-arrestin 2 band disappear. We further con-
firmed SENP1 as a specific de-SUMOylation protease of �-ar-
restin 2 by observing the accumulation of the SUMOylated
�-arrestin 2 in Senp1�/� MEFs (Fig. 3C).

Because SUMOylation reduces �-arrestin 2 inhibition of
TRAF6 autoubiquitination and TRAF6-mediated NF-�B/AP-1
activation (Fig. 2), we speculated that SENP1 could enhance
human �-arrestin 2 inhibition of TRAF6 ubiquitination and
activation through de-SUMOylation. To test this, we per-
formed an ubiquitination assay in HEK293T cells that were
cotransfected with FLAG-TRAF6 and His-Ubiquitin plus �-ar-
restin 2-HA in the presence of SENP1-GFP wild-type or the
catalytic mutant SENP1mu-GFP. As shown in Fig. 3D, the
coexpression of SENP1 wild-type, not the catalytic mutant, and
�-arrestin 2 decreased TRAF6 ubiquitination more than
expression of �-arrestin 2 alone. Interestingly, SENP1-reduced
TRAF6 ubiquitination depended on �-arrestin 2 because
SENP1 action on TRAF6 ubiquitination could not be detected
without the coexpression of �-arrestin 2. We also assessed the
effect of SENP1 on TRAF6-mediated NF-�B and AP-1 activa-
tion by using an NF-�B- or AP-1-dependent luciferase assay.
Similarly, SENP1 wild-type, not the catalytic mutant, can
enhance �-arrestin 2 inhibition of TRAF6-mediated NF-�B or
AP-1 activation (Fig. 3E).

We further determined the role of SENP1 in IL-1R signaling
by using Senp1�/� MEFs. As shown in Fig. 3F, IL-1� induced
more TRAF6 ubiquitination in Senp1�/� MEFs than that in
wild-type MEFs. We also observed that IL-1�-induced more
TRAF6 ubiquitination in SENP1 knockdown �-arrestin 2 stably
transfected MCF-7 cells (Fig. 3G). More interestingly, there was
no effect on �-arrestin 2 (K295R)-MCF-7 cells (Fig. 3G, lane 2
versus lane 4), indicating that SENP1 negative regulation of
TRAF6 ubiquitination is dependent on de-SUMOylation of
�-arrestin 2. Similarly, IL-1� induced more I�B� phosphory-
lation and ERK phosphorylation in Senp1�/� MEFs than that in
wild-type MEFs (Fig. 3H). These data suggest that SENP1
enhances �-arrestin 2 inhibition of TRAF6-mediated signaling
through de-SUMOylation of �-arrestin 2.

SUMOylation Decreases �-Arrestin 2 Binding to TRAF6 —
�-Arrestin 2 has been reported to directly interact with TRAF6
after TLR-IL-1R activation, leading to prevention of TRAF6 oligo-
merization and autoubiquitination (17). Because SUMOylation
on Lys-295 attenuates �-arrestin 2 inhibition of TRAF6 autou-
biquitination and activation (Fig. 2), we reasoned that
SUMOylation might disrupt �-arrestin 2-TRAF6 interaction,
which reduces �-arrestin 2 inhibition of TRAF6. To test this, we
showed that the coexpression of SUMO1/Ubc9, which pro-

motes �-arrestin 2 SUMOylation, could decrease both �-arres-
tin 2 wild-type and �-arrestin 2 K400R-mutant binding to
TRAF6 (Fig. 4A, lanes 3 and 5 versus lane 2) but has no effect on
�-arrestin 2 K295R-mutant (Fig. 4A, lane 4 versus lane 2). Fur-
thermore, we assessed �-arrestin 2-TRAF6 interaction in wild-
type and Senp1�/� MEFs. As shown in Fig. 4B, TRAF6 was able
to bind to �-arrestin 2 in Senp1�/� MEFs much less than that in
wild-type MEFs. These results suggest that SUMOylation on
Lys-295 could attenuate �-arrestin 2 binding to TRAF6.

Because oligomerization is necessary for TRAF6 autoubiq-
uitination (8), we reasoned that SUMOylation of �-arrestin 2
would enhance TRAF6 oligomerization by attenuating �-arres-
tin 2 interaction with TRAF6. To test this, we cotransfected
differently tagged TRAF6 into HEK293T cells. The coexpres-
sion of �-arrestin 2 reduced the association of GFP-TRAF6
with FLAG-TRAF6 (Fig. 4C, lane 3 versus lane 2). Interestingly,
the �-arrestin 2 K295R-mutant blocked TRAF6 oligomeriza-
tion more efficiently than �-arrestin 2 wild-type did (Fig. 4C,
lane 4 versus lane 3), suggesting that SUMOylation of �-arres-
tin 2 could enhance TRAF6 oligomerization through disrupting
the interaction between �-arrestin 2 and TRAF6.

Deficiency in SUMOylation Enhances �-Arrestin 2 Inhibition
of IL-1�-induced TNF� Expression—To determine the signifi-
cance of �-arrestin 2 SUMOylation in vivo, we compared TNF�
expression in �-arrestin 2 (WT)-MCF7 and �-arrestin 2
(K295R)-MCF7 cells. As shown in Fig. 5A, the expression of
�-arrestin 2 wild-type reduced IL-1�-induced TNF� mRNA
expression. However, the expression of �-arrestin 2 K295R-
mutant showed more of a reduction of the TNF� mRNA level
than �-arrestin 2 wild-type. Furthermore, the ELISA assay con-
firmed that IL-1�-treated �-arrestin 2 (K295R)-MCF7 cells
produced much less TNF� in culture medium than �-arrestin 2
(WT)-MCF7 cells (Fig. 5B). Taken together, these results indi-
cate that SUMOylation attenuates �-arrestin 2 inhibition of
IL-1�-induced TNF� expression.

DISCUSSION

In this study, we identify Lys-295 as a major SUMOylation
site on human �-arrestin 2. Because this site locates in the
TRAF6-binding domain, SUMOylation can attenuate �-arres-
tin 2 binding to TRAF6. Therefore, SUMOylation of �-arrestin
2 can enhance TRAF6 oligomerization and autoubiquitination
and, consequently, activate TRAF6-mediated IL-1R signaling.
We also found SENP1 as a specific de-SUMOylation protease of
�-arrestin 2 in these processes to enhance �-arrestin 2 inhibi-
tion of TRAF6 activation. These data reveal SUMOylation as a
novel mechanism to attenuate �-arrestin 2 inhibition of TRAF6
and IL-1R signaling.

As an important adaptor, �-arrestins are widely involved in
receptors, especially GPCR family, desensitization, trafficking,
signaling, and regulating a growing list of cellular processes
such as chemotaxis, apoptosis, inflammatory processes, and
metastasis (13, 22). More recently, studies have shown that
�-arrestins function as scaffold proteins for many signaling
molecules in the cytoplasm and nucleus, thereby regulating
gene expression and cellular responses (23). Besides traditional
GPCR signaling, �-arrestins participate in the regulation of
other signaling pathways, including TLR/IL-1R signaling and
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Wnt/�-catenin signaling (17, 24 –26). In TLR/IL-1R signaling,
�-arrestin 2 has been reported to directly bind to TRAF6 and
then reduce TRAF6 autoubiquitination and activation, leading
to a negative regulation of TLR/IL-1R signaling. Here we fur-
ther find �-arrestin 2 SUMOylation, as a negative mechanism,

to attenuate �-arrestin 2 inhibition of TRAF6 activation and
then promote TRAF6 oligomerization and autoubiquitination.

SUMOylation is an essential posttranslational modification
with critical roles in regulating protein functions such as local-
ization, activity, and protein-protein interaction (27–29). Typ-

FIGURE 3. SENP1 de-SUMOylates �-arrestin 2. A, SENP1 binds to �-arrestin 2. HEK293T cells were transfected with the indicated plasmids, and the transfected
cell lysates were immunoprecipitated (IP) with anti-FLAG M2-agarose beads, followed by WB analysis with anti-�� or anti-FLAG antibodies. IB, immunoblot;
WCL, whole-cell lysate. B, SENP1 deconjugates SUMOylated �-arrestin 2 in vivo. HEK293T cells were transfected with the indicated plasmids, and the transfected
cell lysates were immunoprecipitated with anti-FLAG M2-agarose beads. The immunoprecipitates and the whole-cell lysates were analyzed by immunoblot-
ting with anti-�-arrestin 2, anti-FLAG, or anti-RGS-his antibodies. MU, mutant. C, SUMOylated �-arrestin 2 is accumulated in Senp1�/� MEFs. MEF cell lysates
were immunoprecipitated with anti-SUMO1 antibody or control IgG. The immunoprecipitates and cell lysates were analyzed by immunoblotting with anti-�-
arrestin 2 or anti-SUMO1 antibodies. D, SENP1 enhances �-arrestin 2 inhibition of TRAF6 autoubiquitination. The indicated plasmids were transfected into
HEK293T cells. The cell lysates were purified by Talon beads. The precipitates and cell lysates were immunoblotted using anti-FLAG, anti-HA, or anti-GFP
antibodies. E, SENP1 enhances �-arrestin 2 inhibition of TRAF6-mediated NF-�B and AP-1 activation. The indicated plasmids were cotransfected into HEK293T
cells with an NF-�B- or AP-1-dependent firefly luciferase reporter and a Renilla luciferase reporter. The relative luciferase activity was measured 36 h after
transfection and normalized on the basis of Renilla luciferase activity. *, p � 0.05; **, p � 0.01. F, FLAG-TRAF6-transfected wild-type and Senp1�/� MEFs were
treated with IL-1� or left untreated before harvest. The cell lysates were immunoprecipitated with anti-FLAG M2-agarose beads, followed by WB analysis with
anti-ubiquitin or anti-TRAF6 antibodies. G, �-arrestin 2 WT- or �-arrestin 2 K295R-MCF-7 stable cells were transfected with HA-TRAF6 and si-SENP1 or si-NS
oligonucleotides. The cells were treated with IL-1� before harvest, the cell lysates were immunoprecipitated with anti-HA-agarose beads, and the immuno-
precipitates and the cell lysates were analyzed by immunoblotting with anti-ubiquitin, anti-HA, or anti-FLAG antibodies. H, wild-type and Senp1�/� MEFs were
treated with IL-1� for the indicated time before harvest, followed by WB analysis with the indicated antibodies.
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ically, SUMO-modified proteins contain a SUMO consensus
motif defined as �KXE, where � is a large hydrophobic residue
and X represents any amino acid (30). Bovine �-arrestin 2 has
been shown to be SUMOylated. SUMOylation of bovine �-ar-
restin 2 does not influence the affinity of receptor interaction
but is important for AP-2 interaction and AP-2-mediated
receptor internalization (18). However, the Lys-400 residue in
the carboxyl-terminal region of human �-arrestin 2 is not a
major SUMOylation site because mutation of this site did not
significantly affect its SUMOylation status. We identified Lys-
295 as a major SUMOylation site on human �-arrestin 2,
although there might be other potential SUMOylation sites.
This site locates in the TRAF6-binding domain of human �-ar-
restin 2. Therefore, we observed that SUMOylation of human
�-arrestin 2 plays a role in the regulation of TRAF6 activation
and TRAF6-mediated signaling. It would be interesting to study
whether it is evolution-related that the different SUMOylation
sites exist on bovine and human/murine �-arrestin 2. In sum-
mary, our study reveals that SUMOylation modulates human
�-arrestin 2-mediated inhibition of TRAF6 and TRAF6-medi-
ated IL-1R signaling (Fig. 6).
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