Skip to main content
. 2014 Dec 9;290(4):2175–2188. doi: 10.1074/jbc.M114.620849

TABLE 2.

Summary of Kd values used in kinetic modeling with trimeric αSNAP3

Reaction Name Kd Source
αSNAP3 + SC ⇌ αSNAP3·SC K20 100 nm Direct measurement (Fig. 3C)
αSNAP3 + αSNAP3·SC ⇌ (αSNAP3)2·SC K21 100 nm Direct measurement (Fig. 3C)
αSNAP3 + (αSNAP3)2·SC ⇌ (αSNAP3)3·SC K22 100 nm Direct measurement (Fig. 3C)
αSNAP3 + (αSNAP3)3·SC ⇌ (αSNAP3)4·SC K23 100 nm Direct measurement (Fig. 3C)
αSNAP3·SC + NSF ⇌ αSNAP3·SC·NSF K24 84 nm Km of αSNAP3 for SC disassembly by NSF (Fig. 3D)
(αSNAP3)2·SC + NSF ⇌ (αSNAP3)2·SC·NSF K25 84 nm Km of αSNAP3 for SC disassembly by NSF (Fig. 3D)
(αSNAP3)3·SC + NSF ⇌ (αSNAP3)3·SC·NSF K26 84 nm Km of αSNAP3 for SC disassembly by NSF (Fig. 3D)
(αSNAP3)4·SC + NSF ⇌ (αSNAP3)4·SC·NSF K27 84 nm Km of αSNAP3 for SC disassembly by NSF (Fig. 3D)
αSNAP3 + NSF ⇌ αSNAP3·NSF K28 390 nm Km of αSNAP3 for the ATPase activity of NSF (Fig. 3E)
αSNAP3 + αSNAP3·NSF ⇌ (αSNAP3)2·NSF K29 390 nm Km of αSNAP3 for the ATPase activity of NSF (Fig. 3E)
αSNAP3 + (αSNAP3)2·NSF ⇌ (αSNAP3)3·NSF K30 390 nm Km of αSNAP3 for the ATPase activity of NSF (Fig. 3E)
αSNAP3 + (αSNAP3)3·NSF ⇌ (αSNAP3)4·NSF K31 390 nm Km of αSNAP3 for the ATPase activity of NSF (Fig. 3E)
αSNAP3·NSF + SC ⇌ αSNAP3·SC·NSF K32 22 nm Thermodynamic cycle ((K20 × K24)/K28)
(αSNAP3)2·NSF + SC ⇌ (αSNAP3)2·SC·NSF K33 5.6 nm Thermodynamic cycle ((K32 × K36)/K29)
(αSNAP3)3·NSF + SC ⇌ (αSNAP3)3·SC·NSF K34 1.4 nm Thermodynamic cycle ((K33 × K37)/K30)
(αSNAP3)4·NSF + SC ⇌ (αSNAP3)4·SC·NSF K35 0.36 nm Thermodynamic cycle ((K34 × K38)/K31)
αSNAP3·SC·NSF + αSNAP3 ⇌ (αSNAP3)2·SC·NSF K36 100 nm Thermodynamic cycle ((K21 × K24)/K25)
(αSNAP3)2·SC·NSF + αSNAP3 ⇌ (αSNAP3)3·SC·NSF K37 100 nm Thermodynamic cycle ((K22 × K25)/K26)
(αSNAP33·SC·NSF + αSNAP3 ⇌ (αSNAP3)4·SC·NSF K38 100 nm Thermodynamic cycle ((K23 × K26)/K27)