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Abstract
RNA-binding proteins (RBPs) are important regulators of eukaryotic gene expression. Genomes typically encode
dozens to hundreds of proteins containing RNA-binding domains, which collectively recognize diverse RNA
sequences and structures. Recent advances in high-throughput methods for assaying the targets of RBPs in vitro
and in vivo allow large-scale derivation of RNA-binding motifs as well as determination of RNA^protein interactions
in living cells. In parallel, many computational methods have been developed to analyze and interpret these data.
The interplay between RNA secondary structure and RBP binding has also been a growing theme. Integrating
RNA^protein interaction data with observations of post-transcriptional regulation will enhance our understanding
of the roles of these important proteins.
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INTRODUCTION: RNA-BINDING
PROTEINS, RNA-BINDING
DOMAINSANDRNA SECONDARY
STRUCTURE
RNA-binding proteins (RBPs) have diverse roles

in post-transcriptional gene expression, including regu-

lation of alternative splicing, RNA export and local-

ization, RNA stability and translation [1]. Many RBPs

regulate multiple cellular processes [2–5], and are

implicated in human diseases including cancer and

neurological disorders [6]. RBP functionality in gene

regulation is naturally dependent on their ability to

selectively recognize and bind target RNAs within

the cell; consequently, elucidation of RBP specificity

is an area of active research. Recent technological

developments have allowed characterization of

RNA–protein interactions at an unprecedented scale.

Here we introduce the major classes of sequence-

and structure-specific RNPs, and discuss aspects of

RNA secondary structure that impact RBP binding;

knowledge of how proteins interact with RNA is

important for the interpretation of high-throughput

data. We then review current methods for high-

throughput experimental determination of the RNA

targets of RBPs invitro and invivo, as well as methods to

determine the proteins bound to an RNA molecule.

Finally, we discuss computational methods for analyz-

ing high-throughput data and predicting RBP binding.

RNA recognition by RNA-binding
domains
Different classes of RNA-binding domains (RBDs)

use different strategies for binding to RNA.

Nonetheless, there are some general features of

RBP–RNA interactions: RNA recognition is com-

monly a combination of recognition of the RNA by

the overall protein fold (involving hydrogen bonds

with backbone atoms) as well as specific amino acid

side chain–nucleotide interactions. Target specificity

is often accomplished by way of hydrogen bonding

and electrostatic interactions; the latter also contrib-

ute to the protein’s affinity for RNA along with
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stacking interactions [7]. Individual RNA-binding

domains typically only contact a few nucleotides,

and combinations of RBDs within the same protein

are frequently observed, presumably to increase af-

finity and specificity. Structures of the most common

RNA-binding domains are shown in Figure 1 and

described below. Not all sequence-specific RBPs

contain canonical RBDs [8, 9]. The full extent of

the RNA-binding proteome is an area of current

research, discussed in a further section.

RNA recognition motif
The RNA recognition motif (RRM) is found in all

domains of life; in metazoans, it is the most common

RNA-binding domain. A single RRM spans �90

amino acids and contains two conserved motifs,

RNP-1 and RNP-2, consisting respectively of 8

and 6 mostly positively charged or aromatic amino

acids [10, 11].

Structurally, the RRM consists of a four-strand

antiparallel b-sheet backed by two a-helices.

RRMs are highly versatile in their mode of RNA

recognition: in canonical RRM–RNA interactions,

the bound RNA lies across the b-sheet and contacts

one or more key residues in the conserved RNP-1

and RNP-2 motifs; however, the amount of the

b-sheet surface directly contacting the RNA varies

considerably [12]. Noncanonical RRM–RNA inter-

actions can involve interactions with loop regions or

amino acids N- or C-terminal to the RRM domain.

In some cases, the b-sheet surface is not involved in

RNA binding at all [13].

The b-sheet surface of a single RRM can contact

up to four nucleotides, while engaging the loop

regions external to the b-sheet can allow binding

of up to six nucleotides [12]. Approximately 40%

of RRM-containing proteins contain multiple

RRM domains [12, 14]. Two RRMs can be sepa-

rated by a flexible linker, can be arranged as a con-

tinuous RNA-binding platform either oriented in

the same direction (Figure 1A, [15]) or forming an

RNA-binding cleft (Figure 1B, [16]) or can interact

back to back, forcing the RNA to loop around the

protein (Figure 1C, [17]). Presumably, other binding

modes are possible; as in Nucleolin, U1A/SNRPA

[18] or other proteins that bind RNA in the context

of secondary structures (Figure 1G–H).

K homology domain
K homology (KH) domains, named after the found-

ing member of the family, hnRNP K [19], are also

widely present in all three domains of life, although

the KH type most commonly found in prokaryotes

adopts a different fold than the majority eukaryotic

type [20]. The typical metazoan genome encodes

several dozen proteins containing KH domains

[14]. KH domains are about 70 amino acids in

size, and bind RNA inside a cleft composed of two

a-helices, a variable loop sequence containing a con-

served GXXG motif, and a b-strand (Figure 1D).

This binding cleft can accommodate four RNA

bases, and KH domains are often combined in

multiples to enhance affinity and specificity of bind-

ing [21].

Double-stranded RNA binding domain
Double-stranded RNA binding domains (dsRBDs)

are involved in diverse aspects of post-transcriptional

regulation, including RNA editing [22], miRNA

biogenesis [23] and RNA localization [24, 25]. The

human genome encodes 18 proteins containing

dsRBDs. The domain is 65–70 amino acids in size

and consists of two a-helices packed against a three-

strand antiparallel b-sheet. Portions of both a-helices

and a loop region between two of the b-strands

are involved in RNA binding, and mutation of the

amino acids in these regions can affect binding

[24, 26]. Structural details of the dsRBD–RNA

interaction were recently and extensively reviewed

in [27].

Because of the nature of the A-form RNA double

helix, in which the major groove is narrow and

deep[28], it is generally assumed that dsRBDs recog-

nize only the double-stranded RNA (dsRNA) shape

and are not sequence specific. Nonetheless, dsRBD

containing proteins do recognize specific target

RNAs, which may be the result of recognizing mis-

matches or bulges in RNA duplexes: a recent

study of Staufen targets observed that dsRNA

stems with specific numbers of base pairs and few

unbalanced unpaired bases were enriched in the

bound transcripts [25]. Intriguingly, a structure

of ADAR2 bound to RNA (Figure 1I) displays

sequence-specific contacts between the protein and

the minor groove [29].

Pumilio homology domain
In contrast to the other major RNA binding do-

mains, for which the elucidation of a recognition

code has proven elusive, RNA recognition by

Pumilio Homology Domains (PUM-HD) is under-

stood to the extent that custom proteins can be

designed to bind new sequences. The PUM-HD

typically consists of 8 PUF (Pumilio and FBF) repeats
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of a 36 amino acid motif, and the entire domain

forms a curved structure that binds RNA in the

concave side of the domain, while the convex

side mediates protein–protein interactions [30].

Each PUF repeat contacts two RNA nucleotides,

and recognizes its target nucleotides using only a

few well-conserved amino acids. Because of its

modular design, a recognition code for the PUF

Figure 1: RNA-binding domains use a variety of strategies for binding RNA. (A^C), Different arrangements of two
RRM domains. (A) RRMs 1^2 of PABP1 are arranged to form a flat RNA-binding surface (PDB ID: ICVJ). (B) RRMs
1^2 of SXL form an RNA-binding cleft (1B7F). (C) RRMs 3^4 of PTB are arranged back to back (2ADC). (D^F)
Examples of other RNA-binding domains. (D) KH domain 1 of PCBP2 forms an RNA-binding cleft (2PY9). (E) The
Puf repeats of the FBF-2 PUM-HD form a concave RNA-binding surface (3K62). (F) The two CCCH zinc fingers of
TIS11D/ZFP36L2 (1RGO). (G^I) RBPs binding to structured RNA. (G) Hairpin loop recognition by RRMs 1^2 of
Nucleolin (1RKJ). (H) Bulge loop recognition by RRM 1 of U1A/SNRPA (1AUD). (I) dsRNA binding by the dsRBD
domain of ADAR2 (2L2K).
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repeat has been developed, and custom PUM-HD

domains have been designed to bind new motifs

[31]. PUM-HD domains have also been engineered

to bind to cytosine (which is not observed in any

of the natural PUF binding specificities) and to bind

targets longer than 8 bases by increasing the number

of repeats [32, 33].

Zinc fingers
Zinc fingers are a large and diverse class of domains

with the common property of coordinating zinc.

The different types of zinc fingers have varying

three-dimensional structure and likely have inde-

pendent evolutionary origins. Nonetheless, several

types act as DNA-, RNA-, and protein-binding do-

mains. The extent to which individual zinc finger

proteins bind and recognize each class of biopoly-

mers is unknown, however there are some trends:

C2H2 zinc fingers are usually DNA binding, while

CCCH zinc fingers are primarily single-stranded

RNA binding. CCHC zinc knuckles in viral and

metazoan proteins also bind RNA; however, RNA

binding by metazoan CCHC zinc knuckles is under-

stood only in the context of proteins that also con-

tain another RBD [14, 34]. In support of these

trends, a recent mass spectrometry-based study (see

below) observed significant enrichment for CCHC,

CCCH and several smaller zinc finger families,

but not C2H2 zinc fingers, in the mRNA-bound

proteome [35].

The human genome encodes �60 proteins with

CCCH zinc fingers (a larger number than contain

KH domains), of which 11 have evidence of single-

stranded RNA (ssRNA) binding [14]. RNA recog-

nition by CCCH proteins is accomplished through

stacking interactions and hydrogen bonds, particu-

larly between the RNA and backbone atoms, so

the overall fold of the protein is likely to be import-

ant for RNA recognition [36].

The role of RNA secondary structure
in RBP binding
RNA structure is a critical aspect of describing,

measuring and predicting RBP binding: many

RBPs recognize specific structures, while those that

bind single-stranded RNA presumably compete

with RNA structures. In addition, RBP binding

likely has some impact on RNA structure, and

in vivo RNA structure is impacted both by the pres-

ence of ATP-dependent RNA helicases, as well

as a number of proteins that could bind

co-transcriptionally. Despite the development of

high-throughput methods for measurement of

RNA structure, there is ongoing controversy regard-

ing the degree of RNA structure present in cells

and the accuracy of both computational algorithms

and these experimental techniques to predict RNA

folding.

Experimental determination of RNA secondary
structure
The secondary structure of an RNA molecule can be

determined by footprinting techniques: cutting the

RNA using RNases specific to ssRNA or dsRNA, or

small molecule reagents that cleave or modify RNA

at positions in a manner proportional to their acces-

sibility [37]. The cleaved or modified sequences are

traditionally separated on a sequencing gel to deter-

mine the positions of more or less accessible nucleo-

tides. The first genome-wide application of this

strategy was FragSeq, which consists of fragmenting

RNA using nuclease S1 (preferring ss or accessible

RNA), ligating adaptors to the 50 phosphate

produced and high-throughput sequencing to iden-

tify cleavage locations [38]. A similar method, PARS,

uses fragmentation with two complementary en-

zymes: RNase V1, which preferentially cleaves

dsRNA, and nuclease S1. The PARS score is the

log of the ratio of V1/S1 reads at each position,

and reflects the tendency for that base to be

double-stranded [39]. Small molecule reagents have

also been used in a genome-wide fashion. Dimethyl

sulphate (DMS) has been used to profile RNA sec-

ondary structure in vivo in Arabidopsis [40] and yeast

and human cells [41].

The overall trends identified by these studies vary.

RNA accessibility around the start codon was asso-

ciated with translational efficiency (as measured by

ribosome profiling) in yeast using PARS [39] and

in Arabidopsis using DMS [40]; however, overall

mRNA structural accessibility did not correlate

with translation efficiency in yeast using DMS [41].

Using PARS, Kertesz et al. observed a higher level of

base pairing in yeast coding sequences as compared

with untranslated regions [39]. This contrasts with

the results obtained for human PARS data [42] as

well as data from Arabidopsis using DMS [40] all of

which observe coding regions as being more single

stranded. Computational predictions in both yeast

(K.B.C., unpublished observation) and mammals

[43] support a relatively less structured coding se-

quence on average. One possible application of
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these methods is to determine the impact of protein

binding on RNA secondary structure, as binding

by both ssRNA-preferring RBPs and RBPs that rec-

ognize structured RNA is likely to have an impact

on RNA structure in an ‘induced fit’ fashion.

Computational prediction of RNA secondary structure
Computational prediction of mRNA secondary

structure generally conforms to one of the two

approaches. The first relies on the assumption that

thermodynamically stable structures are more likely

to exist than unstable structures, exemplified by the

Zuker MFOLD algorithm [44] and extended using

approaches that consider all possible structures using

partition function approaches [45–47]. Many of these

algorithms have been implemented in various pack-

ages including the Vienna RNA package [48] and

the RNAstructure Web servers [49].

As an alternative to the free-energy based algo-

rithms, covariation-based approaches take advantage

of the fact that functional RNA secondary structures

are more likely to be conserved through evolution.

Covariation algorithms use a number of simplifying

heuristics (reviewed in [50]), as simultaneous folding

and alignment of RNA sequences is computationally

costly [51]. While covariation algorithms have been

successfully applied to define many noncoding RNA

families [52], large numbers of related sequences are

required for input. As well, care must be taken in

interpreting the results, as the results from covari-

ation methods may be affected by the choice of

alignment method if it is not selected to minimize

spurious alignments [53], and covariation methods

may over-predict structure because their statistical

scoring procedure is biased toward predicting base

pairing [54, 55].

Benchmarking the accuracy of mRNA secondary
structure estimates
Given the inconsistencies among the experimental

methods for assessing mRNA secondary structure

and uncertainty about the accuracy of computational

predictions, it is important to evaluate the accuracy

of both these types of estimates. However, doing so

has been troublesome because of the lack of gold

standards for mRNA secondary structures. Classic

RNA secondary structure benchmarks are likely in-

appropriate because they are composed of highly

structured ncRNAs like ribosomal RNAs and ribo-

zymes. In addition, mRNAs are longer than most

well-characterized ncRNAs, such that windowed

approaches (e.g. the RNAplfold algorithm) are

often preferred both for their speed and potentially

increased accuracy [56].

Lange and colleagues performed an analysis to

determine the accuracy of predicted secondary struc-

tures using yeast PARS data [39] and a curated set

of structured cis-regulatory elements, and found that

more accurate secondary structures were predicted

using local (i.e. windowed) folding with window

sizes of 100-150 nt, and that the edges of windows

were predicted with less accuracy [57]. Estimates for

the optimal window size based on siRNA efficacy

(which depends on the accessibility of the target

RNA) range from 80 nt to 800 nt [58, 59]. Li,

Kazan and colleagues applied the observation that

accessible sites are more likely to be bound by

RBPs to compare the ability of PARS and the

RNAplfold algorithm to score accessible sequences

and separate bound and unbound transcripts from

RIP-chip data [60]. RNAplfold performed signifi-

cantly better except in the case when only nucleo-

tides with robust PARS data were considered,

at which point the difference was not statistically

significant. A method that combined PARS data

and computational predictions [61] performed

better than RNAplfold on some RBPs but results

on the entire benchmark were not reported. As

such, because of the shallowness of current high-

throughput experimental techniques for RNA sec-

ondary structure determination and the indirect

nature of the data produced, it is likely that compu-

tational predictions will continue to be important.

However, the optimal parameters (i.e., window

size) for making those predictions remain to be

determined.

EXPERIMENTAL
CHARACTERIZATIONOF
RBP-RNA INTERACTIONS
High-throughput characterization of RBP–RNA

interactions can be broken down into in vitro
approaches (Figure 2), which determine the specifi-

city of RBPs free from interacting proteins and other

cellular factors, and in vivo approaches (Figure 3),

which measure a snapshot of RBP binding to ex-

pressed RNAs. Here we also discuss some aspects

of analysis of in vivo RBP-RNA data, as identifying

bona fide protein binding sites can be challenging.

Proteome-wide methods of identifying RBP–RNA

interactions are described, and computational aspects

of RNA motif finding are discussed.

78 Cook et al.

since
single-stranded RNA
``
''
w
since
 since
s
due to
150nt
-
since
-


Figure 3: In vivomethods for determining RBP targets. (A) RIP-chip and RIP-seq determine bound RNAs by analyz-
ing immunoprecipitated RNPs by microarrays or high-throughput sequencing. (B) UV cross-linking and immunopre-
cipitation allows more stringent washing and RNase treatment of bound RNAs. iCLIP identifies binding sites more
precisely by taking advantage of the fact that the amino acid tag left by proteinase K treatment terminates reverse
transcription. (C) PAR-CLIP is another modification of CLIP-seq that first treats the cell with a modified nucleoside
(4SU or 6SG), which is incorporated into transcribed RNA. The modified nucleotide can be cross-linked using
longer wavelength UVradiation.

Figure 2: In vitro methods for determining RBP targets. (A) SELEX consists of several rounds of binding and amp-
lification of RNA molecules. SEQRS modifies traditional SELEX by sequencing the bound pool of RNA at each
round. (B) RNAcompete queries a designed RNA pool under competitive conditions and assays the bound RNAs
using a microarray. (C) RNA Bind-n-Seq assays RNA binding by incubating RNA and various amounts of protein
and sequencing the bound RNAs.
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In vitro approaches
Systematic evolution of ligands by exponential en-

richment (SELEX), also known as in vitro selection,

is a common method for determining the consensus

binding motif for an RBP [62, 63]. In a SELEX

experiment, a pool of randomized RNA oligos is

incubated with the RBP of interest, bound RNA

is reverse transcribed, amplified by PCR and tran-

scribed in vitro, and the process is repeated three

or more times, with each selection increasing the

proportion of high-affinity binding sites in the

pool. Selected sequences are traditionally cloned

and sequenced by Sanger sequencing. Although

not strictly a high-throughput technique, SELEX

has been used to ascertain high-affinity motifs for

>70 metazoan proteins by various laboratories [14].

In addition, SELEX has been performed in parallel

on a number of yeast RBPs [64]. While SELEX is

a powerful technique for determining the optimal

motif, the highest-affinity motif may not reflect the

entirety of biologically functional binding sites [62,

63], and SELEX does not give quantitative informa-

tion about the protein’s affinity for sub-optimal

motifs.

SEQRS is a method that applies high-throughput

sequencing to SELEX to monitor the enrichment of

optimal and alternate binding motifs by sequencing

after each round of selection [65]. Similar methods

have been applied to measure the DNA-binding

specificities of transcription factors in large numbers

[66]. Using SEQRS, Campbell and colleagues deter-

mined the binding specificity of the Caenorhabditis
elegans PUM domain RBP FBF-2 to a 20 nt

randomized pool alone and in the presence of a

non–RNA-binding peptide fragment of the CPEB

protein CPB-1, and found that FBF-2’s binding spe-

cificity was altered in the presence of the CPB-1

fragment. As well, they reported an alternate binding

mode for FBF-2 with a slightly different motif.

RNAcompete [67] is a method for determining

the binding specificity of RBPs by incubating a

purified GST-tagged RBP of interest with a pool

of �40 nt RNAs designed to compactly and robustly

represent all short sequences up to 9 bases. The bind-

ing reaction is performed with a vast excess of RNA

so that RNA molecules compete for binding to the

protein, and thus relative abundance can be used to

assess relative affinity. After a single-step selection,

the bound RNAs are washed, eluted and hybridized

to a microarray for detection. RNAcompete was

applied to a panel of 200 eukaryotic RBPs to

determine their RNA sequence specificities [68].

Furthermore, protein sequence homology-based

rules for predicting motifs of closely related RBPs

were developed, allowing motifs for 30% of meta-

zoan multi-RBD proteins to be inferred.

Neither SEQRS nor RNAcompete, in their

current versions, are optimal for determining the

structural specificity of RBPs. SEQRS uses a 20 nt

pool, which is not long enough to encompass all

but the simplest of secondary structures, while

RNAcompete, owing to its microarray-based strat-

egy, is able to robustly represent only primary RNA

sequence in the �244 k RNA sequences in the pool,

and so the current version of the RNAcompete pool

was designed to avoid highly structured sequences.

Nonetheless, motifs determined for proteins known

to prefer hairpin loops, such as yeast Vts1p and

human SNRPA and LIN28A, were determined,

and correspond to the single-stranded portions (e.g.

the loop portion of a hairpin loop) of the structural

motif. Significant preferences of many RBPs for

ssRNA and, in a few cases, hairpin loops were iden-

tified [68]. An alternative approach may be provided

by the RNA Bind-n-Seq, in which a library of 40 nt

RNAs is incubated with varying concentrations

of protein, and bound RNAs are isolated and

sequenced [69]. The greater representation of sec-

ondary structures in this starting pool may support

more sensitive inference of the impact of RNA

secondary structure on binding.

To study the kinetics of RBP binding to RNA

sequences in a high-throughput manner, a recent

study from the Greenleaf laboratory adapted an

Illumina sequencing machine to measure binding af-

finity of the MS2 coat protein to �120 000 RNA

sequences [70] representing a range of mutations to

the consensus hairpin motif. Direct measurements

of off-rates to >3000 sequences were observed,

and the detailed data also enabled decomposition of

the sequence and structural determinants of binding

affinity at each base pair of the hairpin structure.

In vivo approaches
A series of developments over the past decade have

revolutionized determination of the RNAs bound

in vivo by an RBP. The first genome-wide analyses

were microarray based, and involved immunopreci-

pitation of RBP–RNA complexes using an antibody

to the endogenous protein or to an epitope tag

(denoted as RNA immunoprecipitation followed

by microarray analysis, RIP-chip or high-throughput
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sequencing, RIP-seq). Tenenbaum et al were the

first to apply RIP-chip to the determination of the

RNA fraction bound to HuB, HuA/HuR, eIF-4 E

and PABP [71]. Since then, RIP-chip/seq has been

applied to determine the bound RNA complement

of dozens of proteins in several species (collected in

RBPDB [14] and reviewed in [72]), leading to the

observation that RBP-to-mRNA interactions are,

in general, many-to-many: each RBP interacts

with a number of mRNAs, and each mRNA is

regulated by at least several RBPs [73].

Although RIP allows identification of the target

RNA molecules binding to an RBP, the data may

include indirectly bound sequences, and precise lo-

cations of the binding site on the target mRNA may

be difficult to determine. Additionally, RIP condi-

tions must be calibrated to minimize reassociation of

RBPs with mRNA in vitro after cell lysis, which has

been observed under some conditions [74] but not

others [75]. Cross-linking the RBP to the RNA

using UV radiation before immunoprecipitation

(CLIP) provides a way of both ensuring that in vivo
contacts are maintained, as well as narrowing down

the binding site [76]. UV cross-linking creates cova-

lent bonds between proteins and RNA within a

range of a few Ångstroms [77], and so background

can be reduced by stringent purification protocols.

Coupling of CLIP to high-throughput sequencing

(HITS-CLIP or CLIP-seq) discloses RBP binding

sites genome-wide. While resolution of CLIP-seq

is generally limited to �30–60 nt [78] based on the

length of the cross-linked RNA molecules after frag-

mentation, digestion of the cross-linked protein

leaves an amino acid ‘tag’ on the RNA sequence,

which can occasionally cause the reverse transcriptase

to skip or misread the cross-linked base, producing

mutations that can be diagnostic of the binding site

[78]. The behavior of reverse transcriptase at the

cross-linked nucleotide is also exploited by iCLIP,

which takes advantage of the fact that often the

amino acid tag causes termination of reverse tran-

scription at that site to determine the precise location

of the termination (and thus the cross-linking) site

[79]. Precise determinations of binding site locations

are also enabled by PAR-CLIP [31]. In PAR-CLIP,

cells are exposed to a modified nucleoside such as 4-

thiouridine (4SU) or 6-thioguanosine (6SG), which

cross-links more efficiently with proteins at 365 nm

UV light (as compared with the 254 nm UV light

used for basic CLIP). The reverse transcriptase mis-

reads the modified uridine, causing T!C

conversions in the sequenced reads that can be

used to pinpoint binding sites.

CLIP-seq and its variants are not without biases.

UV cross-linking preferentially bonds certain nu-

cleotides and certain amino acids [80], and not all

proteins will cross-link effectively, possibly because

of the absence of aromatic amino acids close to the

RNA binding site [35, 81]. A recent study quantified

UV cross-linking sensitivity by calculating the ratio

of RNase-sensitive radioactive signal to protein

abundance for a number of yeast RBPs, and

observed a wide range of cross-linking efficiencies,

even for RRM domains [82]. The 365 nm UV light

used in PAR-CLIP only creates bonds at the mod-

ified base, so PAR-CLIP tags will tend to be en-

riched at locations with several of that base. This

can bias motif finding toward U-rich motifs (in the

context of 4SU PAR-CLIP) [83], as opposed to

motifs derived from in vitro affinity measurements

[84]. UV cross-linking has been applied to a

number of systems including suspensions of mouse

brain cells [2], and whole C. elegans [85] animals,

whereas PAR-CLIP is usually applied to cells in

culture that can efficiently take up the modified

nucleosides, although it has also been performed in

the C. elegans germ line [86].

Recently, Friedersdorf and Keene demonstrated

that a large fraction (up to 45%) of reads (including

high-abundance sites) from published PAR-CLIP

data sets overlap with binding regions observed in

background data from FLAG-GFP immunoprecipi-

tations [87]. Background sites included T!C con-

versions, albeit at a lower rate, and similar

background profiles were observed in several pub-

lished data sets, suggesting that the background is a

result of cross-linking proteins other than the target

RBP. PAR-CLIP data from novel RBPs or small

data sets had a higher fraction of background overlap.

Although motifs determined in vitro are enriched in

CLIP-seq reads [68], often motifs are not extractable

from the CLIP-seq data de novo [88]. Background

subtraction as described by Friedersdorf and Keene

could enrich for the presence of known motifs and

improve motif finding [87].

CLIP/PAR-CLIP data analysis
Identification of protein-bound sites from CLIP-seq

(and variants) data is nontrivial. Because transcript

abundance varies, ascertainment of the protein’s

preference for a target RNA through quantitation

of the number of CLIP-seq reads mapping to a
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transcript sequence requires normalization to tran-

script abundance. Additionally, the choice of

RNase and conditions chosen to fragment the

cross-linked protein–RNA complex has significant

impact on the base composition of the observed

CLIP tags [83]. To overcome these challenges, sev-

eral strategies have been used. CIMS [78] uses the

diagnostic deletions present in CLIP-seq tags to help

pinpoint the location of RBP binding site by clus-

tering reads and identifying reproducibly occurring

deletions. PARalyzer [89] uses the number of T!C

conversions that are diagnostic of PAR-CLIP bind-

ing sites to define the limits of the binding site using

a kernel density-based classifier, but does not use

transcript abundance data and so generates a set of

RBP-bound sites rather than RBP target prefer-

ences. Uren and colleagues [90] directly modeled

the background distribution of read counts and ac-

count for mappability and transcript abundance (and,

optionally, data from a contrasting experiment for

comparison of differential binding). These methods,

the production of additional data sets for comparison,

and the incorporation of control background data

[87] may allow for more precise quantitation of

binding activity from CLIP data, which could reflect

the stability or half-life of RBP-RNA interactions,

and provide quantitative data to aid motif finding.

Proteome-wide approaches
While the majority of recent efforts have focused on

identification of the RNAs bound to a given RBP,

mass spectrometry has allowed complementary

approaches to discover new RBPs and determine

all the RBPs binding an RNA. In addition, modifi-

cation of the in vivo methods discussed above to be

protein-agnostic allows the identification of all the

protein-bound sites in expressed transcripts.

Identification of RBPs proteome wide
Proteomics approaches have been applied to identify

a more complete complement of RBPs in eukaryotic

genomes, which is important because there are a

number of RBPs without canonical RNA-binding

domains [91, 92]. In yeast, probing protein micro-

arrays with labeled RNA revealed a number of pu-

tative novel RBPs, many which already bear

annotations as enzymes [93, 94]. More recently,

two studies cross-linked proteins to RNA and

applied an oligo (dT) pulldown and mass spectrom-

etry to identify proteins contained in ribonucleopro-

tein complexes in human cells [35, 95]. Both studies

identified �800 RNA-associated proteins, several of

which they validated by PAR-CLIP [95] and a fluor-

escence-based in vivo binding assay [35]. Surprisingly

�250–300 of these 800 do not contain classical

RBDs or bear previous functional annotation as

RBPs. A wide variety of proteins were identified

in these studies, including several enzymes involved

in intermediary metabolism. However, in contrast to

the previous studies in yeast, metabolic enzymes

were overall depleted in the set of RNA-associated

proteins identified in both studies. Despite this, fur-

ther invitro or invivo analyses are required to establish

whether or not these novel RBPs simply bind RNA

non-specifically as the PAR-CLIP data from many of

the RBPs resembles background data derived from

FLAG-GFP immunoprecipitations [87].

Application of mass spectrometry to determine
proteins targeting a specific RNA
Complementary to the RBP-centric approaches

described above, development of mass spectrometric

methods for determining the protein complement of

diverse mixtures has allowed the direct ascertainment

of proteins bound to an RNA sequence. Most

approaches have been performed invitro, and involve

tethering the target RNA molecule to a solid support

by chemical modification of the RNA [96] or using

an RNA aptamer to a protein that can then be either

immunoprecipitated or attached to a solid support

such as streptavidin [97] and incubating it with cel-

lular lysate. Purification of in vivo assembled RNPs

has been accomplished using oligonucleotides com-

plementary to the RNA sequence [98], coexpression

of MS2 coat protein and the RNA sequence har-

bouring an MS2 aptamer [99], and delivery of a pep-

tide nucleic acid (PNA) complementary to the target

RNA sequence and bonded to a photoactivatable

reagent that will form cross-links between the

PNA and nearby proteins [100]. Although quantita-

tive mass spectrometry-based methods are less

well developed than high-throughput sequencing

approaches, these techniques have been used to

identify RBP regulators of a telomere-associated

noncoding RNA [101] and to classify a conserved

RNA secondary structure predicted using a covari-

ation approach as a putative internal ribosome entry

site [97], demonstrating their value as assays to probe

the functional significance of predicted RNA motifs.

Interestingly, a SILAC-based mass spectrometry

approach has been used to investigate binding sites

determined using PAR-CLIP and confirmed many
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of the binding sites, a direct demonstration of the

complementarity of the approaches [102].

Protein occupancy profiling
Several methods have been developed for discover-

ing protein-bound sites on RNAs agnostic of the

RBP, denoted protein occupancy (or interaction)

profiling. These methods function similarly to

PAR-CLIP, except that instead of immunoprecipi-

tation of a target RBP, RNPs are purified using

oligo (dT) beads [95] or chemical biotinylation

of proteins [103]. High-throughput sequencing

identifies bound sites. Silverman and colleagues

applied a slightly different approach: cross-linking

with formaldehyde, digesting RNA using RNases,

reversing the cross-links and sequencing the

resulting RNA [104]. This method uncovered

fewer binding sites overall but was not limited to

processed mRNAs and so observed sites on introns

and non-polyadenylated RNAs. The method of

Baltz and colleagues has also been applied to

MCF7 cells [105], allowing observation of overall

differences in binding site occupancy by RBPs be-

tween cell types. Interestingly, binding sites with

increased occupancy in MCF7 cells contained pre-

dicted binding sites for the ELAV family of ARE-

binding proteins, regulators of mRNA stability that

have been previously implicated with carcinogenesis

and poor prognosis [106, 107], and mRNAs with

differentially occupied sites had longer half-lives in

MCF7 cells, suggesting a widespread role for this

protein family in post-transcriptional regulation in

cancer cells [105].

Computational methods for examining
protein-RNA interactions
The goal of complete understanding of the functions

of RBPs in post-transcriptional regulation requires

computational analysis of RBP-RNA interactions

to interpret experimental data and model how

RBPs find and bind to their targets. A general strat-

egy for predicting RBP binding involves (1) motif

finding and (2) prediction of binding sites using

the discovered motifs. Online databases collecting

RBP motifs and in vivo data will also be described.

Motif finding
Learning RBP binding motifs can be accomplished

by applying DNA motif finders, which only consider

the RNA sequence, or by considering RNA second-

ary structure either explicitly or as a layer on top

of sequence preference. The basic approaches are

summarized in Table 1. The DNA-based methods

MEME, PhyloGibbs and cERMIT have been used

to identify motifs from RIP-chip (both raw, and

filtered to include only sequences with enriched

hexamers), CLIP-seq and PAR-CLIP data [64, 84,

108–110]. Despite ignoring secondary structure,

these methods are often successful, presumably be-

cause many RBPs fundamentally bind short ssRNA

sequences (5–10 nt), often without variable gaps be-

tween bound segments that can confound standard

position weight matrix (PWM) based methods.

Specialized methods that incorporate RNA sec-

ondary structure generally break down into two

camps: the first is based on determining the lin-

ear structural context around a sequence motif.

MEMERIS is an extension of the popular MEME

algorithm that uses RNA accessibility as a prior

probability to guide motif finding to single-stranded

regions [122]. Similarly, Li and colleagues applied ac-

cessibility to select motifs that best distinguish bound

and unbound transcripts [121]. MatrixREDUCE

input is filtered to include only possible hairpin

loop structures as part of StructRED [115]. Finally,

RNAcontext models the probability that each

base in a motif is in a particular secondary structure

context (e.g. a hairpin loop) and learns the weights

for each position from a set of input sequences

annotated with relative binding affinity [117].

RNAcontext is also available on the RBPmotif

Web server [123].

The second approach considers RNA secondary

structure explicitly and includes stochastic context-

free grammar (SCFG) and graphical approaches.

CMfinder [119] and RNApromo [120] both start

with a set of structures predicted using thermo-

dynamic methods. RNApromo was used to predict

motifs in sets of RNAs bound by RBPs in yeast

[120]. Maticzka and colleagues developed the

graph kernel-based GraphProt, and applied it to

learn motifs from CLIP-seq data [118], producing

motifs that were highly predictive of binding: the

certainty of predicted motifs for PTB correlated

with measured RBP affinity.

The fact that many RBPs have multiple RNA

binding domains raises the interesting possibility of

RBPs binding to bipartite or complex motifs.

Gapped motifs have been described for PTB

(4 RRM domains, [124]) and the STAR family of

RBPs (1 KH domain, but the proteins bind as

a dimer, [125]). Motif finding algorithms that
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incorporate gapped positions have been developed

[126] but have not been extensively applied to

RNA–protein interaction data. Exceptions include

Leibovich and Yakhini, who applied the

DRIMUST algorithm to a RIP-chip data set of

yeast PUM-HD proteins, several of which displayed

gapped motifs [114], and hidden Markov model-

based approaches for detecting clustered binding

sites in PTB [127] and Nova/Mbnl [128] data.

Databases
Online databases that collect RNA–protein inter-

actions are summarized in Table 2. The RBP

DataBase (RBPDB) stores low- and high-through-

put experimental evidence of RNA-binding for

metazoan RBPs [14]. The Catalogue of Inferred

Sequence Binding Preference of RNA binding pro-

teins (CISBP-RNA) focuses on sequence motifs, and

includes inference of motifs for RBPs homologous

to a studied protein [68]. In vivo RBP binding sites

are catalogued in three databases, starBase [129],

doRiNA [130], and CLIPz [131]. These databases

integrate high-throughput CLIP, PAR-CLIP, and

iCLIP data with other data such as miRNA binding

sites, and offer tools for online analysis.

OUTLOOK
High-throughput identification of protein–RNA

interactions has improved understanding of the tar-

gets of RBPs in diverse cellular contexts, and focus is

Table 1: Motif-finding algorithms used for analyzing RBP-RNA interaction data

Algorithm Input Type of motif generated Considers secondary
structure?

Reference

MEME Positive (and optionally, negative)
sequences

PWM No [111]

PhyloGibbs Positive (and optionally, negative)
sequences

PWM No [112]

REFINE Positive sequences N/A, Filtering procedure to only
consider sequences containing
three enriched hexamers; fil-
tered sequences are then sub-
mitted to another motif
finding algorithm

No [64]

cERMIT Rank ordered sequences PWM No [113]
DRIMUST Rank ordered sequences IUPAC motif, possibly gapped No [114]
StructuRED Positive and negative sequences PWM in a hairpin loop Yes, considers possible hairpin

loops up to 7 bases with at
least 3 paired bases

[115]

TEISER Sequences and scores (e.g., sta-
bility scores)

PWM in a hairpin loop Yes, considers possible hairpin
loops with stems 4-7 bases
long and loop sizes of 4-9
bases

[116]

RNAcontext Sequences and affinity scores PWM with structural context
scores

Yes, learns the preferred struc-
tural context of each base in a
motif

[117]

GraphProt Positive and negative sequences graph-based sequence and struc-
ture motifs, can be visualized
with logos

Yes, models RNA structure
using a graph-based encoding

[118]

CMfinder Positive sequences structured sequence Yes, SCFG-based, examines the
most stable structures in the
input

[119]

RNApromo Positive sequences structured sequence Yes, SCFG-based, optimizes a
motif from an initial set of
substructures generated from
the input

[120]

#ATS Positive and negative sequences IUPAC Yes, scores candidate binding
sites by accessibility

[121]

MEMERIS Positive and negative sequences PWM Yes, uses accessibility as prior
knowledge to guide motif
finding toward single-stranded
regions

[122]
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shifting from cataloging RNA–protein interactions

to understanding the individual and combined effects

of RBPs on global RNA metabolism and gene ex-

pression. Methods to produce extensive functional

data sets of RNA splicing [132], stability [133] and

translation [134] have been developed, and more

data are likely on the way. High-throughput meth-

ods to assay the effect of sequence features in 30 and

50 UTRs on RNA expression levels will help

generate training datasets to learn subtle features of

complex or combinatorial regulation [135–137].

Computational analysis and modeling will undoubt-

edly play a primary role in understanding RNA

biology in the near future.

Key points

� RBPs apply different strategies for binding RNA.
� For certain RBPs, RNA secondary structure is a key component

of RNA binding, but widespread prediction and measurement
of RNA secondary structure remains difficult especially due to
the potential impact of other RBPs onmRNA structure.

� Invitro binding specificityofRBPs canbe determinedusingmicro-
array-based methods (such as RNAcompete) or high-through-
put sequencing-basedmethods (such as RNABind-n-Seq).

� In vivo targets of RBPs are determined using CLIP-seq/HITS-clip,
and precise binding sites are more easily defined using the PAR-
CLIP and iCLIP variants.

� A general strategy for predicting RBP binding involves (1) motif
finding and (2) prediction of binding sites using the discovered
motifs.
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