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Association of variants in genes encoding for
macrophage-related functions with clinical outcome
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Background: Nuclear factor-kappaB (NF-κB) and CCL2/CCR2 chemokine axis play a central role in tumor progression
such as stimulation of angiogenesis, acceleration of tumor invasion and migration, and suppression of innate immunosur-
veillance in the macrophage-related functions. There have been few reports regarding association of the macrophage
function-related genes with the clinical outcome in gastric cancer. We hypothesized that variants in genes encoding for
NF-κB and CCL2/CCR2 axis may predict prognosis in gastric cancer and tested whether the functional single-nucleotide
polymorphisms (SNPs) will be associated with clinical outcome in patients with gastric cancer across two independent
groups.
Patients and methods: This study enrolled two cohorts which consisted of 160 Japanese patients and 104 US
patients with locoregional gastric cancer. Genomic DNA was analyzed for association of 11 SNPs in NFKB1, RELA,
CCL2, and CCR2 with clinical outcome using PCR-based direct DNA sequencing.
Results: The univariable analysis showed four SNPs had significant association with clinical outcome in the Japanese
cohort, NFKB1 rs230510 remained significant upon multivariable analysis. The patients with the A allele of the NFKB1
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rs230510 had significantly longer overall survival (OS) compared with those with the T/T genotype in both the Japanese
and US cohort in the univariable analysis. In contrast, genotypes with the T allele of CCL2 rs4586 were significantly asso-
ciated with shorter OS compared with the C/C genotype in the US cohort [hazard ratio (HR) 2.43; P = 0.015] but longer
OS in the Japanese cohort (HR 0.58; P = 0.021), resulting in the statistically significant opposite impact on OS
(P = 0.001).
Conclusions: Our study provides the first evidence that the NFKB1 rs230510 and CCL2 rs4586 are significantly asso-
ciated with the clinical outcome in patients with locoregional gastric cancer. These results also suggest that the genetic
predisposition of the host may dictate the immune-related component of the tumor for progression in gastric cancer.
Key words: NF-κB, CCL2, single-nucleotide polymorphism, gastric cancer, ethnic difference

introduction
Macrophages promote cancer initiation by creating an inflamma-
tory environment that is suitable for tumor growth and enhance
tumor progression by supporting tumor-associated angiogenesis,
promoting tumor cell invasion and migration, and suppressing
antitumor immunity. Activated macrophages play a critical role
in the inflammatory process to create a mutagenic and growth-
promoting microenvironment which potentiates the acquisition
of oncogenic mutations in the cancer initiation phase [1].
Depending on the surrounding microenvironment, macrophages
can be divided into mainly two phenotypes, classically activated
phenotype (M1 macrophage) which plays proinflammatory and
tumor suppressive roles, or alternatively activated phenotype
(M2 macrophage) which plays immunosuppressive and tumor-
promoting roles. The majority of tumor-associated macrophages
(TAMs) acquire a phenotype similar to the M2 macrophages
which can be modified by the tumor microenvironmental triggers
such as chemokines and cytokines [2]. Given the critical effects of
the M1 and M2 macrophages for tumor progression, there is a
significant interest in elucidating the genes that regulate the two
macrophage phenotypes in the tumor microenvironment; more-
over, the genes may become a target for drug development in
addition to be a clinically useful biomarker to help select cancer
patients who benefit from the targeted treatment.
Nuclear factor-kappaB (NF-κB) and CCL2/CCR2 chemokine

axis play a central role in the macrophage-related functions, by
regulating the cancer-related inflammation and the possession
of the M1/M2 macrophages, promoting the recruitment of the
TAMs, and providing antiapoptotic or angiogenic signals such
as vascular endothelial growth factor (VEGF) to tumor cells in
the tumor microenvironment [3, 4]. A heterodimer of RelA
(p65) and NF-κB1 (p50) which is the most commonly found
complex causes the activation of NF-κB pathway by binding to
IκBα [5]. There have been some reports investigating associ-
ation of NF-κB signaling and CCL2 in gastric cancer [6, 7].
However, to the best of our knowledge, it has remained unclear
about association of variants in genes encoding for NF-κB and
CCL2/CCR2 axis with the clinical outcome in gastric cancer. It
should be a study of great interest to focus on a host related
factor such as germline variants contributing innate tumor
immunity which plays important roles in the tumor microenvir-
onment. We hypothesized that the NF-κB and CCL2/CCR2
axis-related gene variants may serve as a potential biomarker to
predict prognosis in gastric cancer and tested whether function-
al single-nucleotide polymorphisms (SNPs) in NFKB1, RELA,

CCL2, and CCR2, will be associated with the clinical outcome in
patients with locoregional gastric cancer across two independent
groups with different background.

materials and methods

eligible patients
This study enrolled two independent cohorts of patients with histologically
confirmed locoregional gastric adenocarcinoma (stage I–IV; AJCC 6th), one
from Japan and another from United States. The Japanese and US cohort
consisted of 160 patients treated with surgery alone or surgery followed by
S-1 or fluoropyrimidine-based adjuvant chemotherapy [Fukushima Red Cross
Hospital (Fukushima) and Kitasato University East Hospital (Sagamihara)] and
104 patients treated with surgery alone or surgery followed by fluoropyrimi-
dine-based adjuvant (radio)-chemotherapy [University of Southern California
(USC)/Norris Comprehensive Cancer Center (Los Angeles, CA), Los Angeles
County Hospital (Los Angeles, CA)] between 1991 and 2011. Patients were fol-
lowed as clinically routine every 3 months for the first 2 years and then every
6 months. Patient data were collected retrospectively through chart review.
Pathologic stage was decided according to tumor–node–metastasis classifica-
tion, 6th edition. Histological classification of gastric tumors in the Japanese
and US cohort was carried out according to Japanese classification [8] and
Lauren classification [9], respectively. The tissue analysis presented in this study
was conducted at the USC/Norris Comprehensive Cancer Center following ap-
proval by the USC Institutional Review Board of Medical Sciences. All patients
signed an informed consent for the analysis of molecular correlates.

single-nucleotide polymorphism selection
Common and potential SNPs in the genes encoding for macrophage-related
functions, NFKB1, RELA, CCL2, and CCR2, were selected by using stringent

and predefined selection criteria: (i) SNPs, which shown to be of biological
significance according to literature review [either published data or predicted
function using functional SNP (F-SNP) database [10]] or tagging SNPs
which are chosen using the HapMap genotype data with r2 threshold = 0.8:
http://snpinfo.niehs.nih.gov/snpinfo/snptag.htm; and (ii) 10% or more of a
minor allele frequency in both Asians and Caucasians (in the Ensembl
Genome Browser: http://uswest.ensembl.org/index.html). Among all SNPs
matching these criteria, we focused on 11 promising SNPs (supplementary
Table S1, available at Annals of Oncology online).

DNA extraction and genotyping
Genomic DNAwas extracted from peripheral blood or formalin-fixed paraffin-
embedded tissue derived from tumor samples obtaining germline DNA using
the QIAmp Kit (Qiagen, Valencia, CA) according to the manufacturer’s proto-
col (www.qiagen.com). The candidate SNPs were tested using PCR-based
direct DNA sequence analysis by ABI 3100A Capillary Genetic Analyzer and
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Sequencing Scanner v1.0 (Applied Biosystems). For quality control purposes, a
random selection of 10% of the samples was examined for each SNP.

statistical analysis
The end points of current study were overall survival (OS) and disease-free
survival (DFS) or time-to-tumor recurrence (TTR). The OS, DFS, and TTR
were defined as the period from the date of surgery or diagnosis to death in
the both cohort, to the first observation of relapse or death in the Japanese
cohort, and to the first observation of tumor recurrence in the US cohort, re-
spectively. If events were not observed, the end points were censored at the
last time of contact or follow-up.

χ2 Tests were carried out to examine the differences in baseline patient
characteristics between the two cohorts. Allelic distribution of all SNPs in
each race/ethnic group was examined for deviation from Hardy–Weinberg
equilibrium (HWE) using Fisher’s exact test. Linkage disequilibrium among
selected SNPs was assessed using D0 and r2 values, and the haplotype fre-
quencies were inferred using Haploview version 4.2 (www.broad.mit.edu/
mpg/haploview).

Kaplan–Meier curves and log-rank tests were carried out in univariable
analysis of the association between the candidate SNPs and OS and DFS or
TTR using both dominant and recessive genetic model. Stage, gender, age,
and type of adjuvant chemotherapy were adjusted in the Japanese cohort;
tumor site, tumor stage, and lymph node stage were adjusted, and type of ad-
juvant chemotherapy and race were stratified in the US cohort for multivari-
able Cox regression models to re-evaluate the independent effects of the
polymorphisms (supplementary Tables S2 and S3, available at Annals of
Oncology online). With 160 patients in the Japanese cohort and 104 patients
in the US cohort, we would have 80% power to detect a minimum hazard
ratio (HR) of 1.93–2.21 and 2.27–2.66, respectively, in DFS or TTR across
the variant allele frequencies of 10%–40% in a dominant model using a 0.05-
level two-sided log-rank test. For a recessive model, the minimum HR is
about 2.89 and 3.71 in the Japanese and US cohorts, respectively, when the
variant allele frequency is 30% and approaches 2.07 and 2.45, respectively,
when the allele frequency is 50%.

All tests were carried out using the SAS 9.4 (SAS Institute, Cary, NC). All
tests were two-sided at a significance level of 0.05. P values were not adjusted
for multiple testing.

results
The baseline characteristics of the two cohorts included in this
study were summarized in Table 1. Patients in the US cohort,
median follow-up time of 3.3 years, were significantly younger
and with higher incidence of gastroesophageal junction (GEJ)
cancer and less frequent undifferentiated type adenocarcinoma
compared with the Japanese cohort, median follow-up time of
4.1 years. The genotyping quality control by direct DNA se-
quencing provided a genotype concordance of 99% or more.
Genotyping was successful in at least 90% of cases in each poly-
morphism analyzed. In failed cases, genotyping was not success-
ful because of limited quantity and/or quality of extracted
genomic DNA. The allelic frequencies for all SNPs were within
the probability limits of HWE (P > 0.05) in each race group.
In the Japanese cohort, high linkage disequilibrium was found

between NFKB1 rs230510 and rs3821958 (D0 = 0.98, r2 = 0.66),
RELA rs11820062 and rs7119750 (D0 = 0.92, r2 = 0.52), and
CCL2 rs4586 and rs1024611 (D0 = 0.92, r2 = 0.76). In the US
cohort, NFKB1 rs230510 and rs3821958 also showed linkage dis-
equilibrium (D0 = 0.97, r2 = 0.67). Haplotypes were constructed

from these SNPs separately. However, there were no significant
relations between these variants and clinical outcomes.

univariable and multivariable analyses
in the Japanese cohort
The univariable analysis showed that CCL2 rs4586 and RELA
rs11820062 had a statistical significance in the dominant genetic
model, while NFKB1 rs230510 and NFKB1 rs3821958 had
a statistical significance in the recessive genetic model. The
NFKB1 rs230510 remained significantly associated with both
DFS and OS upon the multivariable analysis (Table 2 and sup-
plementary Table S4, available at Annals of Oncology online).

evaluation of impact of the macrophage
function-related gene SNPs on clinical
outcome between the Japanese and US cohort
We sequentially carried out analyses whether four SNPs which
were significant in the Japanese cohort will be associated with
clinical outcome in the US cohort. The univariable analysis
showed that three SNPs, NFKB1 rs230510, NFKB1 rs3821958,
and CCL2 rs4586 were significantly associated with OS in the
dominant genetic model (Table 2).
In univariable analysis, genotypes with the A allele of the

NFKB1 rs230510 correlated with longer OS in both the Japanese
and US cohorts. Interestingly, genotypes with the T allele of
the CCL2 rs4586 showed association with longer OS in the
Japanese cohort, whereas those showed association with shorter
OS in the US cohort (Figure 1). The impact of the T allele of the
CCL2 rs4586 on OS in the US cohort was opposite to that in the
Japanese cohort and reached statistical significance by the likeli-
hood ratio test of the Cox regression model including the inter-
action term of cohort group and SNP (P = 0.001).
All significant SNPs were included in the multivariable models

in two cohorts separately, and backward elimination method was
used to find the best predictive models. In the Japanese cohort,
the NFKB1 rs230510T/T versus A/A or A/T showed significant
association with DFS (P = 0.042) and marginally significant asso-
ciation with OS (P = 0.060). However, no good predictive model
including SNPs was found in the US cohort.

discussion
Our study provides the first evidence suggesting that variants in
genes encoding for macrophage-related functions may predict
prognosis in patients with locoregional gastric cancer. Our
results also suggest that the immune-related component of the
tumor for progression may be dictated not only by the malig-
nant epithelial component, but also by the genetic predispos-
ition of the host in gastric cancer.
We found that the NFKB1 rs230510 and CCL2 rs4586 were

significantly associated with clinical outcome in patients with
locoregional gastric cancer in both cohorts. In particular, the A
allele of the NFKB1 rs230510 significantly correlated with favor-
able OS in the Japanese cohort in the univariable and multivari-
able analyses as well as in the US cohort in the univariable
analysis. This finding indicates that the NFKB1 rs230510 may be
a promising prognostic marker in gastric cancer. Some investiga-
tions have reported conflicting data about the relationship of
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NF-κB overexpression with the clinical outcome in gastric cancer
[6, 11]. These may have resulted from the evidence that the NF-
κB has a dual role, proinflammatory and anti-inflammatory role,
depending on the stage in cancer development. Therefore, geno-
types of NFKB1 may become more clinically useful as a bio-
marker than immunohistochemistry or overexpression status
of the NF-κB since genetic information is independent of the
tumor microenvironment. Given a role of the NFKB1 rs230510
as tagging SNP located on intron of the gene, it is biologically
plausible that this SNP may affect the transcription of the gene.
Further mechanistic studies confirming the functional role of the
SNP are warranted.

Our study also indicated that the impact of the T allele of the
CCL2 rs4586 on OS was statistically and significantly opposite
between two cohorts. The difference in the impact may result
from histopathological or etiological differences between the
Japanese and US cohort. Gastric cancer has been considered a
heterogeneous disease which may be classified into at least three
distinct subtypes based on pathology and epidemiology, each
with different initiating pathologic processes, and each possibly
having different tumor biology [12, 13]. Proximal gastric cancer
predominates in Europe and United States, whereas distal
gastric cancer is more prevalent in Asia and Eastern Europe
[14]. In our study, there appeared to be more frequent diffuse

Table 1. Baseline clinical characteristics of Japanese and US patient cohort

Japanese (N = 160) US (N = 104) P valuea

n % n %

Gender
Male 102 64 64 62
Female 58 36 40 38 0.79

Age (years)
Median (range) 68 (31–88) 57 (26–85)
<65 60 38 84 81
65–74 56 35 12 12 <0.001
�75 44 27 8 8

Stage
I–II 76 48 38 37
III–IV 84 52 66 63 0.098

Tumor stage
T1 12 8 2 2
T2 61 38 36 34
T3 84 52 56 54 0.003
T4 3 2 10 10

N stage
N0 36 23 24 23
N1 79 49 49 47 0.89
N2 31 19 19 18
N3 14 9 12 12

Tumor site
Stomach 158 99 62 60 <0.001
GEJ 2 1 31 30
Unknown 11 11

Histological classification (Japanese/Lauren)
Differentiated/intestinal 64 40 37 36
Undifferentiated/diffuse 96 60 30 29
Mixed 18 17 <0.001
Unknown 19 18

Adjuvant chemotherapy
Yes 103 64 79 76
No 57 36 25 24 0.057

Ethnicity
Asian 160 100 24 23
Caucasian 0 36 35 N/A
Hispanic 0 43 41
African American 0 1 1

aBased on χ2 test or Fisher’s exact test.
GEJ, gastroesophageal junction.
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Table 2. Association between macrophage-related gene polymorphisms and the clinical outcome in the Japanese and US cohorts

Japanese cohort N Disease-free survival Overall survival

Gene rs number 3-year recurrence rate ± SE HR (95% CI) HR (95% CI)a 5-year survival rate ± SE HR (95% CI) HR (95% CI)a

NFKB1 rs230510
A/A 49 0.45 ± 0.07 1 (Reference) 1 (Reference) 0.55 ± 0.07 1 (Reference) 1 (Reference)
A/T 69 0.34 ± 0.06 0.75 (0.42–1.32) 0.78 (0.43–1.42) 0.64 ± 0.07 0.66 (0.36–1.21) 0.64 (0.34–1.21)
T/T 38 0.68 ± 0.08 1.71 (0.96–3.04) 1.51 (0.82–2.77) 0.28 ± 0.08 1.64 (0.91–2.95) 1.35 (0.72–2.54)

P value 0.010 0.080 0.007 0.055
A/T, T/Tb 107 0.46 ± 0.05 1.04 (0.63–1.72) 1.03 (0.61–1.76) 0.51 ± 0.06 0.97 (0.58–1.62) 0.89 (0.51–1.56)

P valueb 0.88 0.90 0.90 0.70
A/T, A/Ac 118 0.39 ± 0.05 0.50 (0.30–0.81) 0.58 (0.35–0.96) 0.60 ± 0.05 0.48 (0.29–0.80) 0.57 (0.34–0.98)

P valuec 0.004 0.034 0.004 0.040

NFKB1 rs3821958
A/A 62 0.46 ± 0.06 1 (Reference) 1 (Reference) 0.56 ± 0.07 1 (Reference) 1 (Reference)
A/G 72 0.38 ± 0.06 0.81 (0.48–1.37) 0.85 (0.50–1.47) 0.58 ± 0.07 0.75 (0.43–1.29) 0.73 (0.41–1.30)
G/G 22 0.71 ± 0.10 1.76 (0.94–3.30) 1.30 (0.67–2.52) 0.26 ± 0.10 1.75 (0.93–3.31) 1.21 (0.62–2.39)

P value 0.045 0.43 0.028 0.27
A/G, G/Gb 94 0.46 ± 0.05 1.00 (0.62–1.60) 0.96 (0.58–1.59) 0.50 ± 0.06 0.95 (0.58–1.56) 0.85 (0.50–1.44)

P valueb 0.99 0.87 0.84 0.55
A/G, A/Ac 134 0.42 ± 0.04 0.51 (0.29–0.90) 0.70 (0.39–1.26) 0.57 ± 0.05 0.49 (0.27–0.87) 0.68 (0.38–1.24)

P valuec 0.018 0.24 0.013 0.21

RELA rs11820062
C/C 48 0.54 ± 0.07 1 (Reference) 1 (Reference) 0.44 ± 0.09 1 (Reference) 1 (Reference)
C/T 71 0.33 ± 0.06 0.45 (0.26–0.80) 0.65 (0.36–1.19) 0.66 ± 0.06 0.48 (0.27–0.86) 0.60 (0.32–1.11)
T/T 31 0.53 ± 0.09 0.92 (0.50–1.70) 1.38 (0.72–2.61) 0.46 ± 0.10 0.81 (0.43–1.55) 1.09 (0.56–2.12)

P value 0.011 0.069 0.037 0.14
C/T, T/Tb 102 0.39 ± 0.05 0.58 (0.36–0.95) 0.85 (0.50–1.44) 0.59 ± 0.05 0.58 (0.34–0.97) 0.74 (0.43–1.29)

P valueb 0.028 0.54 0.034 0.29
C/T, C/Cc 119 0.41 ± 0.05 0.70 (0.40–1.22) 0.58 (0.33–1.01) 0.57 ± 0.05 0.81 (0.45–1.46) 0.69 (0.38–1.25)

P valuec 0.20 0.055 0.49 0.23

CCL2 rs4586
C/C 68 0.54 ± 0.06 1 (Reference) 1 (Reference) 0.44 ± 0.07 1 (Reference) 1 (Reference)
C/T 72 0.36 ± 0.06 0.51 (0.31–0.86) 0.61 (0.35–1.06) 0.64 ± 0.06 0.47 (0.27–0.81) 0.67 (0.37–1.19)
T/T 19 0.60 ± 0.12 0.99 (0.52–1.90) 0.77 (0.38–1.59) 0.38 ± 0.12 0.99 (0.51–1.92) 0.83 (0.40–1.74)

P value 0.022 0.21 0.012 0.39
C/T, T/Tb 91 0.41 ± 0.05 0.61 (0.39–0.96) 0.65 (0.40–1.08) 0.58 ± 0.06 0.58 (0.36–0.93) 0.71 (0.42–1.21)

P valueb 0.031 0.095 0.021 0.21
C/T, C/Cc 140 0.45 ± 0.04 0.73 (0.39–1.36) 1.03 (0.52–2.02) 0.54 ± 0.05 0.70 (0.37–1.31) 0.99 (0.50–1.97)

P valuec 0.32 0.94 0.26 0.98

US cohort
Gene rs number N Time-to-tumor recurrence Overall survival

3-year recurrence rate ± SE HR (95% CI) HR (95% CI)a 5-year survival rate ± SE HR (95% CI) HR (95% CI)a

NFKB1 rs230510
T/T 31 0.72 ± 0.11 1 (Reference) 1 (Reference) 0.21 ± 0.12 1 (Reference) 1 (Reference)
T/A 39 0.57 ± 0.10 0.71 (0.36–1.40) 1.51 (0.67–3.42) 0.81 ± 0.09 0.52 (0.24–1.11) 0.81 (0.31–2.06)
A/A 26 0.38 ± 0.10 0.52 (0.23–1.17) 0.83 (0.31–2.23) 0.78 ± 0.10 0.33 (0.13–0.88) 0.37 (0.12–1.19)

P value 0.23 0.38 0.040 0.24
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T/A, A/Ab 65 0.50 ± 0.08 0.62 (0.33–1.17) 1.04 (0.48–2.28) 0.53 ± 0.09 0.44 (0.22–0.89) 0.58 (0.24–1.38)
P valueb 0.13 0.92 0.016 0.22

T/A, T/Tc 70 0.63 ± 0.07 1.59 (0.77–3.29) 1.32 (0.53–3.25) 0.38 ± 0.09 2.06 (0.85–4.99) 2.40 (0.82–7.06)
P valuec 0.18 0.55 0.10 0.11

NFKB1 rs3821958
A/A 32 0.53 ± 0.11 1 (Reference) 1 (Reference) 0.54 ± 0.12 1 (Reference) 1 (Reference)
A/G 41 0.67 ± 0.09 1.80 (0.92–3.53) 1.33 (0.62–2.85) 0.59 ± 0.10 2.47 (1.13–5.40) 2.09 (0.82–5.34)
G/G 20 0.45 ± 0.13 1.15 (0.48–2.76) 0.79 (0.30–2.12) 0.70 ± 0.13 1.65 (0.61–4.42) 1.68 (0.54–5.21)

P value 0.17 0.53 0.060 0.31
A/G, G/Gb 61 0.60 ± 0.08 1.57 (0.83–2.99) 1.01 (0.49–2.12) 0.36 ± 0.08 2.20 (1.03–4.66) 1.85 (0.75–4.55)

P valueb 0.15 0.97 0.034 0.18
A/G, A/Ac 73 0.60 ± 0.07 1.21 (0.56–2.61) 1.18 (0.47–2.92) 0.43 ± 0.08 1.04 (0.46–2.37) 0.85 (0.34–2.17)

P valuec 0.62 0.73 0.92 0.74

RELA rs11820062
C/C 28 0.59 ± 0.15 1 (Reference) 1 (Reference) 0.50 ± 0.18 1 (Reference) 1 (Reference)
C/T 45 0.54 ± 0.09 1.68 (0.75–3.76) 1.15 (0.43–3.11) 0.71 ± 0.08 1.16 (0.43–3.17) 0.76 (0.22–2.58)
T/T 25 0.64 ± 0.12 1.67 (0.70–4.00) 0.64 (0.19–2.18) 0.67 ± 0.11 1.17 (0.40–3.41) 0.42 (0.10–1.72)

P value 0.40 0.42 0.95 0.41
C/T, T/Tb 70 0.57 ± 0.07 1.67 (0.78–3.61) 0.73 (0.25–2.18) 0.45 ± 0.08 1.17 (0.44–3.05) 0.52 (0.14–1.91)

P valueb 0.17 0.58 0.75 0.32
C/T, C/Cc 73 0.53 ± 0.07 0.86 (0.45–1.62) 2.26 (0.87–5.87) 0.41 ± 0.09 0.96 (0.47–1.96) 1.95 (0.71–5.37)

P valuec 0.63 0.095 0.91 0.19

CCL2 rs4586
C/C 33 0.45 ± 0.11 1 (Reference) 1 (Reference) 0.62 ± 0.12 1 (Reference) 1 (Reference)
C/T 50 0.69 ± 0.08 2.07 (1.06–4.04) 1.76 (0.78–4.01) 0.37 ± 0.10 2.53 (1.15–5.58) 1.67 (0.59–4.76)
T/T 21 0.32 ± 0.12 0.88 (0.32–2.45) 1.00 (0.31–3.18) 0.36 ± 0.18 2.18 (0.81–5.87) 1.89 (0.57–6.27)

P value 0.024 0.27 0.046 0.54
C/T, T/Tb 71 0.61 ± 0.07 1.73 (0.90–3.29) 1.63 (0.68–3.89) 0.36 ± 0.09 2.43 (1.14–5.18) 1.52 (0.54–4.26)

P valueb 0.071 0.27 0.015 0.42
C/T, C/Cc 83 0.59 ± 0.07 1.75 (0.69–4.41) 1.29 (0.47–3.53) 0.47 ± 0.08 0.80 (0.35–1.83) 0.70 (0.28–1.79)

P valuec 0.23 0.62 0.58 0.45

Based on the log-rank test in the univariable analysis and Wald test in the multivariable analysis within Cox regression model.
aStage (I, II, III, and IV), gender, age (<65, 65–74, �75 years as continuous), and type of adjuvant therapy (no versus yes) were adjusted in Japanese cohort; tumor site, tumor stage, and lymph node stage
were adjusted; type of adjuvant chemotherapy and race were stratified in US cohort.
bCombined in the analysis in the dominant genetic model.
cRecessive genetic model when considering a genotype with two minor alleles as a reference.
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adenocarcinoma and a significantly lower incidence of GEJ
cancer in the Japanese than the US cohort, in which the GEJ
cancer had significantly shorter prognosis than stomach cancer
at the baseline (supplementary Table S3, available at Annals of
Oncology online). Each histological type holds different prog-
nostic values [15], and one subtype of gastric cancer enriched by
TP53 mutations and receptor tyrosine kinases-RAS activation
with intestinal histology are more frequent in the GEJ [16], im-
plying we may have observed the difference caused by one of
possible limitations of our study design. On the other hand, in
epidemiologic aspect, proximal nondiffuse gastric cancer strong-
ly correlates with obesity and gastroesophageal reflux disease,
while the development of distal nondiffuse gastric cancer requires
chronic inflammation mainly caused by Helicobacter pylori infec-
tion or correlates with dietary factors [14]. There has been shown
to be a difference in the prevalence of H. pylori infection between
Japan and United States [17, 18], suggesting etiological differences
related to inflammation in gastric cancer between Japan and
United States may affect the outcome of patients from those
regions. Additionally, there have been several reports regarding
ethnic differences in CCL2 serum level, suggesting that there may
be significantly different profiles of circulating inflammatory

mediators among different ethnic groups [19, 20]. The differences
that we observed in current study between the two cohorts may
contribute that gastric cancer is a complex and enigmatic disease
with different etiologies. The histopathologic or epidemiologic
distinctions to subdivide gastric cancer should be taken into
account in not only future prospective clinical trials but also bio-
marker studies.
Some macrophage function-related pathways including VEGF

and phosphatidylinositol 3-kinase pathway also may cause the
differences in the outcome between patients from different
regions [3, 21]. Polymorphisms in angiogenic pathway gene had
different association with increased cancer risk and different allele
frequency between ethnicity in gastric cancer patients [22, 23].
In addition, East Asian and Caucasian gastric cancer patients dif-
fered significantly in frequencies of PIK3CA exon 9 and 20 muta-
tions [24]. In our study, the impact of the genetic variant of the
RELA rs11820062 on TTR in the US cohort had a strong trend
toward opposite to that on DFS in the Japanese cohort (P = 0.07),
indicating a result consistent with the difference found in the
CCL2 rs4586 (supplementary Figure S1, available at Annals of
Oncology online). Additionally, we tested the association of the
CCL2 rs4586 and NFKB1 rs230510 with clinical outcome in the
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Figure 1. Comparison of clinical outcome by macrophage function-related gene variants in two cohorts. Overall survival probability by (A) NFKB1 rs230510,
left; Japanese cohort, right; US cohort and (B) CCL2 rs4586, left; Japanese cohort, right; US cohort.
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US cohort according to ethnicity. The Hispanic patients, but
not Caucasian, with the T allele of the CCL2 rs4586 had signifi-
cantly worse OS (P = 0.04), it was opposite to the result in
the Japanese cohort, though small sample size. In contrast, the
Hispanic patients had no significant difference in OS by the
NFKB1 rs230510 genotype (P = 0.62) (supplementary Figure S2,
available at Annals of Oncology online). Taken together, these
findings may suggest that some of macrophage-related functions
have intrinsic ethnic differences and also have a different impact
on the outcome in patients with different background. Our results
are hypothesis generating but warrant validation in larger patient
cohorts.
Our study demonstrated significant results across the two in-

dependent cohorts despite the small sample size. However, there
may be some possibility that the patient number of our study
has no adequate ability to assess the association between the
macrophage function-related gene SNPs and clinical outcome.
A selection bias cannot be excluded because of the retrospective
study design. Therefore, these results should be confirmed in
larger prospective studies. A better understanding of the func-
tional SNPs will be critical for potential new biomarkers.
In conclusion, our data provide the first evidence that the

NFKB1 rs230510 and CCL2 rs4586 are associated with clinical
outcome in patients with locoregional gastric cancer. These data
also suggest that the genetic predisposition of the host may
dictate the immune-related component of the tumor for pro-
gression in gastric cancer. Biomarker-embedded translational
trials are warranted to validate our findings.
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