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Abstract

Background: Theory suggests that individual behavioral responses impact the spread of flu-like illnesses, but this
has been difficult to empirically characterize. Social distancing is an important component of behavioral response,
though analyses have been limited by a lack of behavioral data. Our objective is to use media data to characterize
social distancing behavior in order to empirically inform explanatory and predictive epidemiological models.

Methods: We use data on variation in home television viewing as a proxy for variation in time spent in the
home and, by extension, contact. This behavioral proxy is imperfect but appealing since information on a rich
and representative sample is collected using consistent techniques across time and most major cities. We
study the April-May 2009 outbreak of A/H1N1 in Central Mexico and examine the dynamic behavioral response in
aggregate and contrast the observed patterns of various demographic subgroups. We develop and calibrate a dynamic
behavioral model of disease transmission informed by the proxy data on daily variation in contact rates and compare it
to a standard (non-adaptive) model and a fixed effects model that crudely captures behavior.

Results: We find that after a demonstrable initial behavioral response (consistent with social distancing) at the onset of
the outbreak, there was attenuation in the response before the conclusion of the public health intervention. We find
substantial differences in the behavioral response across age subgroups and socioeconomic levels. We also find that
the dynamic behavioral and fixed effects transmission models better account for variation in new confirmed cases,
generate more stable estimates of the baseline rate of transmission over time and predict the number of new cases
over a short horizon with substantially less error.

Conclusions: Results suggest that A/H1N1 had an innate transmission potential greater than previously thought but
this was masked by behavioral responses. Observed differences in behavioral response across demographic groups
indicate a potential benefit from targeting social distancing outreach efforts.
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Background
The series of flu-like outbreaks over the past decade il-
lustrates the ongoing need for refinement of strategies to
control and mitigate the impact of infectious diseases,
including SARS in 2003 [1], the 2009 A/H1N1 (swine)
influenza pandemic [2,3] and the emergence of a novel
A/H7N9 (avian) influenza virus in 2013 [4]. In parallel
to standard vaccination efforts, nonpharmaceutical inter-
ventions (NPIs) are a critical part of the management
toolkit [5-7]. In particular, NPIs become even more rele-
vant in the context of emerging infectious diseases when
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the availability of a vaccine may be substantially delayed.
Chief among NPIs are strategies for enhancing social
distancing, whether privately initiated or policy-directed
(e.g., closing of schools, businesses and public events) [8].
While behavioral NPIs appear promising, it is important to
evaluate empirically their efficacy since they can be costly
[9] and could have unintended consequences, such as lead-
ing to a net increase in the long-run number of cases or in-
creasing the total cost of the epidemic and policy response
[10,11]. The potential for individual response to disease
risk and policy presents a challenge for the measure-
ment of the infectivity of a pathogen and design of policy
directed social distancing [12,13]. Ferguson [14] argues
that despite the need for a holistic approach, current
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models essentially ignore the feedback between epidemics
and behavior.
Empirical analysis of the effect of social distancing be-

havior on epidemiological dynamics is of clear interest,
but it has proven difficult to obtain representative data
on actual behavioral responses to epidemics. Empirical in-
vestigation of the influence of behavior on flu-like transmis-
sion dynamics has been largely limited to binary proxies for
behavior, specifically pre-scheduled [6,15] and epidemiolog-
ically driven [16] school closings and patterns of weekdays
and weekends [17]. Though policy interventions are often
coarse, individuals’ responses to policy and their own pri-
vate decisions about risk are likely more nuanced [8].
Fenichel et al. [18] show that private risk reduction may
have changed in subtle ways during the 2009 A/H1N1 epi-
demic. Caley et al. [19] estimate the change in infectious
contact rates in Sydney, Australia from the 1918 influenza
pandemic but do so indirectly by inferring changes in con-
tacts based on the estimated reproduction number and
proportion susceptible conditional on a given value for
the reproduction number, R0.
We use novel data on variation in home television

viewing behavior as a proxy for changes in the level
of daily social interaction. We find a strong viewing
behavior response in Central Mexico associated with the
A/H1N1 influenza virus in April and May of 2009. The
data reveal that proxy behavioral responses were greatest
among children and wealthier socio-economic groups.
Furthermore, we couple the behavioral response with an
epidemiological model, and show that the A/H1N1 influ-
enza virus was likely more transmissible than previously
believed because the transmission potential was masked
by behavioral responses.
To leverage the television viewing data for exploring

the role of behavior during an epidemic, we extend the
binary proxy for time varying infectivity in [20], where
behavior can change at only one point in time, to allow
for daily variation in behavior. Following [17], we de-
compose a standard model of the transmission rate into
the two components of a contact rate and average trans-
mission rate per contact. To inform changes in the con-
tact rate, we use a daily proxy for changes in time spent
by individuals in the home, namely variation in home
television viewing. While viewing is an imperfect proxy
for social distancing behavior, this data has several ap-
pealing attributes. The data are collected consistently
prior to, during, and after epidemics in all major media
markets worldwide. The sample is representative of
the local population (by design) and can be disaggre-
gated into various demographic subgroups. Typically the
data is collected automatically and electronically (as in
our sample) and do not rely on self-reporting. The
viewing data in our application were obtained from
IBOPE International net-AGB Nielsen Media Research,
the largest private research and audience measurement
firm in Latin America.
We contribute to the literature by examining variation

in the behavioral response across time and demographic
subgroups and by calibrating and analyzing dynamic be-
havioral disease transmission models. First, we quantify
the dynamic nature of the behavioral response to the 2009
A/H1N1 influenza pandemic and public intervention in
Central Mexico. We show that the aggregate response is
not constant and describe how it varies systematically over
time. Next, we unpack the aggregate dynamic into demo-
graphic subgroups and show how certain age groups and/
or socio-economic groups respond more strongly than
others. Turning to the modeling of disease transmission
dynamics, we assess whether accounting for daily changes
in contacts better accounts for the variation in new cases.
We then explore the potential for bias in the standard
model from ignoring underlying changes in behavior. Pre-
vious simulation analysis has shown that intervention fo-
cused on children is particularly effective in reducing the
attack rate of influenza [21]. We examine how accounting
for heterogeneity between adults and children alters con-
clusions. In the next section we first show how the basic
transmission model can be extended to incorporate dy-
namic behavior and then describe the data and model esti-
mation approach in detail.

Methods
Standard epidemiological model
We model the 2009 A/H1N1 epidemic in Central Mexico
using an SEIR epidemiological model [22-24]. We define
three different model formulations: one that does not ac-
count for any behavioral changes, one that assumes that
behavioral change is constant throughout the government-
imposed health interventions, and one that assumes that
behavioral change can be estimated by daily television
viewing data. For each model, individuals in the popula-
tion, of size N, are classified by health status of individuals
in into four states in each period, t: susceptible (St), ex-
posed (infected but not yet infectious), (Et), infectious
(It), and recovered (Rt). The transition dynamics be-
tween health states are described by a system of difference
equations:

Stþ1−St ¼ −βtStIt=N
Etþ1−Et ¼ βtStIt=N−κEt

Itþ1−It ¼ κEt−γIt
Rtþ1−Rt ¼ γIt ;

ð1Þ

where βt is the transmission rate, κ is the rate at which
incubating individuals progress from the exposed to the
infectious health status (or the inverse of the latent
period) and γ is the recovery rate (or the inverse of the
recovery period).
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In the standard (SD) model βt is becomes a constant
scalar. This confounds the combined effect of contacts
and the probability of transmission from a contact [12].
In the classical transmission model, the behavior govern-
ing contacts is assumed to be fixed. Yet for many human
diseases, including influenza, behavioral shifts and NPI
likely play an important role in the transmission process.

Behavioral epidemiological model
To generalize the classical model we decompose βt into
the likelihood of transmission conditional on a contact
(ρ0) and the average number of contacts experienced by
individuals �Cð Þ:

βSDt ¼ ρ0 �C : ð2Þ
The parameters ρ0 and �C are not uniquely identified

since they enter the model as a product. Nevertheless, ρ0
can be estimated following [17] and using population es-
timates from the literature for �C .a

Despite differentiating between the likelihood of trans-
mission from a contact and the number of contacts, βSDt
is assumed to be constant. We explore two alternatives
that relax the assumption of a constant transmission rate.
The first extension to facilitate a time-varying transmis-
sion rate is to allow for two different, but otherwise con-
stant, levels in βt over time. Following [20], we model
the behavioral response as a fixed effect (FE) (i.e. using
a dummy variable) for the duration of a time period
given by τ, for example during a particular public health
intervention,

βFEt ¼ ρ0 þ 1τ tð Þρ1
� �

�C ; ð3Þ
where ρ0 is a baseline marginal transmission rate (per
contact), ρ1 is a shift in the marginal baseline transmis-
sion rate during the window τ, and 1τ(t) is the indicator
function, equal to one when t ∈ τ, and zero otherwise.
Second, we propose a flexible response model that al-

lows for daily variation in behavior. Given the availability
of an empirical proxy for changes in contact rates, we
relax the assumption of fixed contact rates. Let Δt repre-
sent the percentage deviation from the average �Cð Þ for a
given period t. A dynamic behavioral (DB) transmission
function that is similar in form the Equations (2) and (3)
but accounts for variation in the contact rate is:

βDBt ¼ ρ0 þ ρ1Δt
� �

�C : ð4Þ
Relative to the SD model in Equation (2), the DB trans-

mission rate model includes an additional term ρ1Δt �Cð Þ
capturing an additive effect of any behavioral response.
The SD model (2) is nested within both the FE model (3)
and the DB model (4): βSDt ¼ βFEt ρ1 ¼ 0ð Þ ¼ βDBt ρ1 ¼ 0ð Þ.
Under all three models, the subset of the population N in
each of the health states changes over time. The only
other potentially dynamic component is the transmission
rate βt, which is either fixed (SD model), takes one of two
constant values over time (FE model), or varies daily (DB
model).

Epidemiological data
To examine the implications of social distancing we focus
on the initial outbreak of A/H1N1 in Central Mexico, in
the spring of 2009.b We obtained laboratory confirmed
pandemic A/H1N1 influenza cases from April 1 to May
20 in Central Mexico from a prospective epidemiological
surveillance system that was established in response to
the 2009 influenza pandemic by the Mexican Institute
for Social Security (IMSS) [25]. These data are presented
in Table 3 in Appendix A. IMSS is a tripartite Mexican
health system that relies on a network of over 1,000
primary health-care units and 259 hospitals nation-
wide, and covers ~40% of the Mexican population. Im-
portantly, testing rates for novel A/H1N1 influenza
remained stable at ~33% [20]. Chowell et al. [20] show
that the age distribution of the population affiliated
with IMSS is generally representative of the general
population of Mexico, rejecting the hypothesis that
the distributions are significantly different. Furthermore
they note that the male-to-female ratio among the popula-
tion affiliated with IMSS (47:53) is similar to that of the
general population (49:51).
On April 15th 2009, the Mexico Ministry of Health began

receiving informal indications of a severe pneumonia
in metropolitan Mexico City [3,26]. The novel influenza
A/H1N1 virus was confirmed by U.S. and Canadian labs
for multiple Mexican patients from April 22–24. On
Friday, April 24th, the federal government announced
the closure of public schools for metropolitan Mexico
City, and a public awareness campaign was initiated
by the Ministry of Health. Further “social distancing
measures” involved closing restaurants and entertainment
venues and cancelling large public events [26]. After May
9, the infection rate declined dramatically and large public
health interventions were lifted [20]. Students resumed
school on Monday, May 11. The window τ = {April 24,…,
May 10} is used in the FE model for the sub-period
over which we might expect to observe an effect due to
social distancing. We also considered alternative dates
for the start of this window, from April 10th through
April 23rd, but none were statistically preferred as ex-
plained further in the results. A graphical timeline of
events related to the outbreak is provided by Chowell
et al. [20] (Table 1).
Ethics Committee approval was not necessary accord-

ing to local regulations. All the data were de-identified.
Data employed in this study are routinely collected for
epidemiological surveillance purposes.



Table 1 Summary statistics for daily percentage deviation from the long-run mean ATV (Δt) for various demographic
groups

Statistics for Δt within the intervention period (τ)

Group Range Mean Mean = 0 (p-value) Equal means within class (p - value)

Aggregate [−1.4%, 22.6%] 13.6% <0.001 .

Age class Children [−4.7%, 46.2%] 23.7% <0.001 0.001

Adults [−6.5%, 21.8%] 8.9% <0.001

SEL class Low [−0.2%, 32.0%] 17.8% <0.001 Low-med: 0.23

Medium [0.4%, 32.1%] 15.3% <0.001 Med-high: 0.51

High [−3.0%, 21.6%] 11.8% <0.001 Low-high: 0.04

Time of day Daytime [−3.7%, 30.7%] 18.4% <0.001 0.005

Nighttime [−4.1%, 17.0%] 9.6% <0.001
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Behavioral data
We use data on home television viewing in metropolitan
Mexico City as a proxy measure for dynamic behavioral
response in Central Mexico during the influenza outbreak.
The logic of this approach relies on two key assumptions.
First, we assume that time spent watching television in-
creases in time spent in the home, and that a linear ap-
proximation is sufficient to capture this behavior.c With
respect to an individual’s daily time allocation, since we
are mainly concerned with time spent at home or not at
home, an increase in the former subtracts from the latter.
Second, we assume that the number of contacts an indi-
vidual makes is proportional to the time spent outside
the home.
Viewership data for Mexico City were obtained from

IBOPE International net-AGB Nielsen Media Research,
the largest private research and audience measurement
firm in Latin America.d The specific measure used was
individual daily average time viewed (ATV), which is given
by the aggregate number of hours viewed by everyone in
the sample divided by the number of individuals in
the sample (including those with no viewing in a given
period). The data reflect aggregate observations for in-
dividuals (not households) in a given demographic group.
IBOPE’s sample is composed of an ongoing panel of indi-
viduals, balanced across demographic characteristics to
be representative of the population of Mexico City. Daily
data were obtained for the months of April and May
in 2009. With respect to data on daily confirmed cases
of influenza and average TV viewership, ethics commit-
tee review was not relevant since all data were de-
identified, aggregated before acquisition and collected
under existing conditions (i.e. there were no experimen-
tal treatments). Similarly, since the data were gathered
through existing mechanisms and not for our study,
obtaining written informed consent from participants was
not relevant.
We used the percentage deviation in average television
viewership (relative to the non-intervention period) as a
proxy for the percentage deviation in contacts. We choose
this simple form for the proxy since a parameterized
model of raw contacts as a function of television viewing
is not available. Let �ATV represent the baseline (non-
intervention period) mean of ATVt over an extended
time horizon from both before and after the public
response to the outbreak, but not during. The base-
line period used to determine �ATV is April 1-April 23
and May 10-May 31, which includes April and May of
2009, excluding the period τ. �ATV for our sample is
1.7 hours per day (with a minimum and maximum
ATVt over the baseline period of (1.5, 1.9)). The time-
varying deviation from the baseline mean ATVt is given
by Δt ¼ ATVt− �ATVð Þ= �ATV .
We considered both a single homogenous population

and a heterogeneous population divided into two groups:
adults (age 18 and above, denoted A) and children (indi-
viduals below the age of 18, denoted K). For the hetero-
geneous population model, the disaggregated viewership
data allowed for inference on how the behavior of adults
and children varied over time. The extension of the
homogenous population transmission model in (1) to the
heterogeneous subgroup setting is presented in Appendix B.
Information is not available to characterize how changes
in contacts made by one group (e.g. adults) might differ
between contacts they make within the same group
(e.g. adult-adult contact) versus another group (e.g. adult-
child contact). Therefore, we make the simplifying as-
sumption that deviation in the contact rate for a member
of group i is uniform across the different groups they
may come in contact with; we used a single time series
to inform deviations in children’s contacts with either
adults or children (Δt, K→A = Δt, K→K = Δt,K) and another
single time series similarly for adults (Δt,A→K =Δt, A→A =
Δt,A).
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We modeled the age-specific contact rates for school-
age children and adults for central Mexico based on
survey contact data collected from several European
countries [27]:

C ¼ �CK→K �CK→A
�CA→K �CA→A

� �
¼ 8:9 5:5

1:9 9:3

� �
: ð5Þ

The average contact rate for the homogenously mixing
population, �C ¼ 6:1, is given by the population-weighted
average of C.

Model estimation
We set the population of Central Mexico to N = 5.3*107

individuals [28] and follow [17] in setting the mean
probability of an infection being laboratory-confirmed
A/H1N1 influenza at �φ ¼ 0:0015 . This estimate of is
constructed as the product of the symptomatic rate (65%
[29,30]), the hospitalization rate (0.45% [31]), and the
probability of an infected, hospitalized individual being
identified as having A/H1N1 (50%). We control for ob-
served variation in the rate that hospitalized cases were
tested by scaling the mean probability of confirmation by
the observed deviation from the mean testing rate:
ϕt ¼ �φ TRt= �TRð Þ. Testing rate data were obtained from
IMSS (the same source as described above for the case
data). We set the fraction initially infected on day 1 of the
time period (April 1) at π = 1.9 × 10− 5, such that given the
population and the probability of confirmation, one case
is confirmed on the first day. Consistent with [5,32,33],
the daily rate of progression from latent to infected health
status and the recovery rate are set to κ = 0.67 and γ = 0.5,
respectively.
The main coefficients of interest for estimation are the

parameters of the transmission rate functions for each of
the three models. Let ρ represent the vector of marginal
transmission rate parameters, given by the scalar [ρ0] for
the SD model and the vector [ρ0, ρ1] for the FE and DB
models. Model parameters were estimated by maximum
likelihood. We assumed that the observed number of
confirmed new infections each day, Ict , follows a Poisson
process with a mean arrival rate λt(ρ) given by the num-
ber of new observed infections predicted by the disease
model, ϕtκEt. The log-likelihood function is:

L ¼
XT
t¼1

Ict ln λt ρð Þ½ �−λt ρð Þ−ln Ict !
� �� �

: ð6Þ

Development of the log-likelihood function is ex-
plained in further detail in Appendix C.
Because maximum likelihood estimates can be sensitive

to the choice of initial values provided to the numerical
optimization algorithm, we used a multiple starting point
solver in Matlab (version R2013a) designed to identify the
global optimum. For each model, the solver was run for
each of M different randomly drawn starting vectors for
the unknown parameters in ρ. We set M equal to 50 for
the standard model (one parameter) and 100 for the alter-
native models (two parameters). From this set of local
maxima, the solution with the greatest likelihood was
selected as the estimate for the global maximum. We
estimated 95% confidence intervals for the parameters
using the likelihood ratio method [34]. To test for statis-
tically significant differences in performance, when com-
paring the SD model against the FE and DB models we
used a likelihood ratio test, since the SD model is nested
within both of the alternatives (FE and DB). Since the FE
and DB models are not nested, the standard likelihood ra-
tio test is not feasible. Following [35], we used a Cox non-
nested test with a parametric bootstrap (see Appendix D
for details).

Results and discussion
Dynamic behavioral response
In Figure 1 we present the dynamic behavioral response
time series for Δt (percentage deviation from mean ATV)
in Mexico City during April and May 2009 in aggregate
(Figure 1A) and for various demographic and time sub-
groups (Figure 1B-D). The range and mean for this vari-
able over the limited intervention period (τ) is presented
in Table 1. A positive deviation (Δt > 0) indicates that an
above average amount of time was spent in home TV
viewing and, by inference, in the home. The mean level of
Δt over the period τ is positive and, as shown by a one-
sample t-test, significantly different from zero at the 1%
level for the aggregate population and each subgroup con-
sidered here (see Table 1).
The dynamic path of Δt for the aggregate population is

presented in Figure 1A. Outside of the shaded interven-
tion window (τ), this measure has a mean of zero (by
construction) and typically falls within a range of +/−
5%. During the period τ, Δt shifts demonstrably upwards.
This behavioral response is strongest in the first week
(approximately 20%) before gradually tapering off to
near zero by the end of the intervention period. This
pattern suggests that the population’s capacity for social
distancing might be limited in duration; before the pub-
lic health intervention concluded, there was a substantial
decline in the behavioral response relative to the peak in
the first week. (Alternatively, it may be that the level of
viewing per unit of time spent in the home fell as indi-
viduals switched to other in-home activities.) After the
NPI concluded there was a period of reduced viewing
activity in the home (Δt < 0). Specifically, Δt reached its
most negative point on May 10th at −10.5%. Outside of
the post-intervention dip, Δt dropped below −10% on
only one other day. As further evidence that the dip was
likely not a coincident random event, we find that this
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intervention period τ.
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dip persisted at 5% below the non-NPI period mean for
four consecutive days—there are no other instances in
the data when Δt falls below 95% of the mean for more
than a single day. While the causal mechanism behind
these dynamics is not known with certainty, one possibility
is that this multi-day period of suppressed in-home activity
compensated for forgone social and commercial activities
from earlier in the intervention period. The observation of
reallocation of risky activities in time is common in the
public health literature. Following the introduction of anti-
retroviral treatment for HIV/AIDS [28,36] find empirical
evidence of increased sexual risk taking. Boyes and Faith
[2] show that when alcohol consumption is banned at col-
lege football games that total alcohol consumption may
rise through substitution effects in periods sandwiching
the game. Finally, Graff Zivin and Neidell [37] find that
while Southern California residents curtail outdoor activ-
ity on days with poor air quality, if the episode is pro-
longed the behavioral response dissipates rapidly.
The age class breakdown for Δt presented in Figure 1B

shows a substantial difference in response between chil-
dren and adult subgroups during the intervention period.
The mean (23.7%) and the maximum (46.2%) behavioral
response of children is more than twice as large as the re-
sponse observed for adults (see Table 1). The difference in
responses is statistically significant at the 1% level as indi-
cated by a two sample t-test.
The data from IBOPE are disaggregated into three socio-

economic levels (SELs) based on a set of household char-
acteristics, including the size and amenities of the home,
appliance ownership, automobile ownership, and level of
education (Figure 1C). During the intervention period, on
average the high SEL group shows a response that is over
50% greater than that of the low SEL group. This differ-
ence is significant at the 5% level. The medium SEL class
displays an intermediate response (Table 1).
Finally, we consider variation in the response by time

of day, specifically daytime (6 am-6 pm) versus nighttime
(6 pm-6 am) (Figure 1D). The mean daytime response is
approximately twice as strong as the nighttime response
(Table 1). This is not surprising given that time spent in
the home is lower during the daytime to begin with and
thus presents a larger opportunity for adjustment.
The time path for each of the subgroups discussed

above follows a path that is qualitatively similar to that of
the aggregate population, showing a strong initial positive
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response that largely or entirely decays before the end of
the intervention. For each subgroup comparison consid-
ered here, there was a significant difference in the average
level of the behavioral response.

Transmission model estimation
The maximum likelihood parameter estimates for each
model are based on T = 41 days of observations, stretching
from April 1 through the end of the intervention period
on May 11 (Table 2). Figures illustrating the log-likelihood
profile for each model are presented in Appendix E. The
time frame used corresponds to the period of time consid-
ered in [20]. After this period, additional cases attenuate
substantially as shown in the time series of Ict (Figure 2).
We focus on this initial 41 day period since the perform-
ance of each model (in terms of log-likelihood values and
residuals) becomes increasingly poor as more of the post-
intervention period is included.
The degree to which accounting for changes in contacts

better accounts for the variation in new cases is one of
our core research questions. Results show that the stand-
ard model is indeed incomplete—we reject the SD model
in favor of both the DB model (p < 0.01) and FE model
(p < 0.01). However, we do not find that the DB model out-
performs the FE model. In fact we reject the DB model in
favor of the FE model (p < 0.01). To see why it might be
the case that a simple fixed effect is preferred in this case
to the dynamic, data-driven behavioral model, consider
the time series for Ict and Δt presented in Figure 2. Con-
sistent with expectations under the DB model, when the
social distancing proxy Δt begins to surge on April 24th

(day 24) the number of new confirmed cases plateaus.
However, when Δt declines in early May while infections
are still common, the number of new confirmed cases
Ict
� �

does not grow in a sustained fashion but rather, after
a slight delay, begins to fall. Thus the dynamics of initial
and early intervention period of the outbreak are consist-
ent with the DB model but the late intervention period
is not.
Given that both the FE and DB models outperform the

SD model, we explored the potential for biased estimates
of the transmission parameter in the SD model as a
Table 2 Maximum likelihood parameter estimates

Standard (SD) Fixed effect
(FE)

Dyn. behav.
(DB)

Transmission
parameters

ρ0 0.0565 0.0642 0.0647

(0.0561, 0.0568) (0.0640, 0.0644) (0.0644, 0.648)

ρ1 −0.0233 −0.1516

(−0.0257,-0.0208) (−0.1519, −0.1513)

Observations 41 41 41

95% confidence intervals are in parentheses.
potential shortcoming of ignoring behavioral change. Es-
timates of the baseline transmission rate (ρ0) in Table 2
show that while the DB and FE models are in essential
agreement, the SD estimate is 12% lower. To explore
whether this difference is idiosyncratic or systematic we
re-estimate each of the three models starting with only
the first M days of data for M ∈ [15, 41]. We exclude the
FE model for M ∈ [15, 24] since this model is not differ-
entiated from the SD model until the intervention begins
on April 24th. In Figure 3 we present the resulting esti-
mates of ρ0. We find that estimates are variable but
roughly consistent across models through April 24th.
This is not surprising given that before the public health
intervention began on April 24th our proxy suggests that
behavior had yet to shift discernibly. After this point, es-
timates of ρ0 for the DB and FE models remain roughly
stable near 0.064 while the baseline transmission coeffi-
cient for the SD model declines monotonically. Thus
over the intervention period when behavioral response is
strong, the SD estimate of ρ0 falls each day to account
for the new factor. In contrast, models that allow for a
behavioral shift result in estimates for baseline transmis-
sion that are essentially level over time.
As a practical matter, this bias in the SD model has

important implications for public health and forecast
error. First, the SD model provides an estimate of ρ0
substantially lower than models with behavior. This
suggests that A/H1N1 virus is more infectious, but
this infectiousness is masked by behavioral shifts. Second,
the SD model results in substantial forecast error, a
result shown using simulation in [13] to emerge when
human adaptive behavior is important in epidemiological
systems.

Forecasting error comparison
In Figure 4 we present forecast error over a four-day
horizon for time series of increasing length from M ∈
[15, 41]. The exercise is meant to capture the public
health official’s problem of estimating the current state
of an outbreak based on observed cases to date. We as-
sume that there is a four-day lag between the date of
testing and reporting of all confirmed cases, a typical lag
for reporting infectious disease outbreaks. Thus forecast
error appearing in the figure for day M = 15 represents
error made on day 19 conditional on case data that is
complete through day 15. We assume that behavioral
data (Δt) is available across this four day lag. From the
raw forecast error in Figure 4A, it is clear that prediction
performance for the SD model becomes poor relative to
the alternatives shortly after the intervention on day 24.
From this point on, the SD model leads to systematic
over-prediction of the number of new cases. DB model
performance deteriorates next towards the end of the
intervention period. Finally, by the time the intervention
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concludes, all three models systematically over-predict new
cases. This suggests that factors absent from the models
considered here are important for capturing post interven-
tion dynamics (e.g. personal protective measures to reduce
risks per contact).
We estimated the transmission model results above as-

suming a single homogenous population. However, differ-
ences in the behavioral response (Δt) for children versus
adults presented above motivate exploration of age-class
heterogeneity. When we modeled children and adults as
separate populations (with separate time series for Δt in
the behavioral model), but constrained transmission pa-
rameters to be the same for both populations, estimates
were not significantly changed. We further tested an ex-
tended model in which transmission parameters (ρ0, ρ1)
were free to vary between the two groups. This model was
not statistically significantly different for either the SD
(p = 0.31), DB model (p = 0.41), or FE model (p = 0.12) at
the 10% level. For this FE model, relative to the homo-
geneous (baseline) case, the coefficients ρ0 and ρ1 were
roughly 50% larger in magnitude for children and 90%
Figure 3 Estimates for the baseline rate of transmission for the
three models: standard (SD), fixed effect (FE) and dynamic
behavioral (DB).
smaller in magnitude for adults. This evidence is not con-
clusive, but hints that infections between children and
from children to adults might have been a leading driver
of disease dynamics—and also most sensitive to interven-
tion. However, this effect is too small and imprecisely esti-
mated to assert with statistical significance.
While we failed to find a significant difference in the

transmission coefficients between children and adults,
this does not mean that there were not significant differ-
ences in these populations. Recall that we controlled for
differences between children and adults in the baseline
contact rate as specified in the matrix C. When this
matrix was replaced with the average �Cð Þ a significant
difference emerged between the homogeneous and
heterogeneous coefficient specification for both the SD
(p < 0.01) and DB models (p = 0.08) but not for the FE
model.
Figure 4 Error from forecasting new confirmed cases over a
four-day horizon conditional on the number of days observed
under the standard (SD), fixed effect (FE) and dynamic behavioral
(DB) models. Panel A shows daily forecast error and Panel B shows
cumulative absolute error starting from day 25.
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Sensitivity analysis
We examined the sensitivity of transmission model results
to several alternative assumptions. First, given the tem-
poral mismatch between the case and behavioral time
series in Figure 2, we explored whether the relative prefer-
ence for the FE model continued to hold under extensions
in the latent period, i.e. the number of days individuals
were infected but not infectious. In the baseline model the
latent period was set to 1/κ = 1.5. The performance of the
DB model relative to the FE model was robust to alterna-
tive assumptions on the latent period, including 2, 3 or
4 days. We also considered whether idiosyncratic variation
or “noise” in the ATV variable might hinder the DB
model. As a simple test we set a +/−5% threshold for the
Δt measure—any variation that did not exceed this band
was set to zero. This did not qualitatively change results.
Qualitative results were also not sensitive to a nonlinear
quadratic form for the DB model.
Convergence in the performance of the DB and FE models

was found when the number of days included in the esti-
mation was limited. For all time series that included
38 days or less, we failed to reject one model in favor of
the other. However, after this time frame the FE model
emerges as the preferred model (e.g. p < 0.01 at 39 days).
For the FE model, we also considered alternative dates

for the start of the intervention window, from April 10th

through our baseline window start date of April 24th.
For each of these alternative specifications we found that
the associated parameter ρ1 was statistically significantly
Figure 5 Fitted daily cases (A) and cumulative cases (B) for the unalte
and two alternatives where the behavioral response is either eliminat
also provided for comparison.
different from zero. However, we also found that the
log-likelihood was greatest for the FE window beginning
on April 24th (our baseline specification) illustrating that
none of the alternative start dates was statistically preferred.
The final parameter examined in our sensitivity analysis

was the mean probability of confirmation. Our baseline
level for �φ implies that 1.2% of the population was in-
fected by the end of the spring wave (conditional on the
observed number of cases and total population). We ex-
amined sensitivity to an alternative scenario in which 10%
of the population contracts the disease, which implied a
mean probability of confirmation of �φ ¼ 8:1� 10−5 . Re-
sults from this alternative low probability of confirmation
scenario were not qualitatively different.

Counterfactual behavioral response
We explore two alternative scenarios in which the behav-
ioral response to the epidemic is either non-existent or en-
hanced. We present the path of new confirmed cases
under these alternatives, along with fitted curves from the
baseline models in Figure 5A. Under the first alternative,
to eliminate the behavioral response, we multiply the ρ0
term by zero (0ρ0, thin lines). Under the second alterna-
tive, to enhance the behavioral response, we multiply the
ρ0 term by two (2ρ0, thick lines). Fitted curves from the
unaltered baseline models (1ρ0, medium lines) and Ict are
provided for comparison. For the baseline models, the fit
of the DB and FE models is similar until the final few pe-
riods in which the DB fit diverges from the observed path
red fixed effect (FE) and dynamic behavioral (DB) models (1ρ0)
ed (0ρ0) or doubled (2ρ0). Observed newly confirmed cases Ict

� �
are



Springborn et al. BMC Infectious Diseases  (2015) 15:21 Page 10 of 14
Ict
� �

. The importance of the behavioral response is evident.
With no behavioral response, the projected path of new
cases increased sharply, more than quadrupling (Figure 5B)
for both models by day 41. Alternatively, with a doubling
of response, attenuation of new cases occurs approxi-
mately two weeks earlier and cumulative cases by day 41
are cut in half.
Conclusion
We used novel data on variation in home television view-
ing behavior as a proxy for changes in the level of daily so-
cial interaction in Central Mexico during the 2009 A/
H1N1 influenza pandemic. Results from both behavioral
models (FE and DB) suggested that social distancing was a
key factor in constraining the initial wave of A/H1N1 in
Central Mexico. In the absence of a behavioral response,
the estimated counterfactual path of new cases escalated
rapidly in initial weeks rather than stabilizing and eventu-
ally falling as was observed. The assumption of fixed be-
havior in the standard (SD) model led to shortcomings in
estimation and prediction. Estimates of the baseline rate
of transmission systematically shifted over time. If the
baseline rate of transmission is interpreted as a measure
of biological infectivity in the standard model, this is likely
to lead to an underestimate of this parameter, as in our
setting, given confounding effects of behavioral responses.
This suggests that A/H1N1 had an innate transmission
potential much greater than previously thought but this
was masked by behavioral responses. This has implica-
tions for management advice including the allocation of
resources between pharmaceutical and nonpharmaceutical
interventions. Furthermore, the error in near term predic-
tions of new cases through time was also substantially
greater under the standard model compared to the behav-
ioral models. This error was also systematic—the standard
model consistently led to over-prediction in the number
of new cases.
Comparing the behavioral models, we found that that

the dynamic behavioral model was not preferred to the
simpler fixed effect model. One explanation may be the
imperfect nature of variation in viewership as a proxy
for changes in public contact rate. For example, it is pos-
sible that during the public health intervention the ob-
served increase in ATVt was due to a greater share of
home time allocated to TV viewing, rather than an in-
crease in time spent at home. Or it could be the case that
viewing per unit of time spent at home may be declining
in time spent at home. Another explanation might be the
inability at this time to empirically capture changes in be-
havior outside the home to reduce contacts or transmis-
sion (e.g. washing hands, wearing facemasks, and
avoidance of coughing into open air). Bell [5] notes that
while policies promoting social distancing may be effective
against pandemic influenza, other individual behavioral
measures should be either routine (e.g. hand and respira-
tory hygiene and disinfection of contaminated household
surfaces) or considered for certain settings and risk levels
(e.g. mask use).
We found that the home viewership response was stron-

ger in the high (versus low) socioeconomic level (SEL)
subgroup. This finding is suggestive but should be inter-
preted with care. On the one hand, individuals in the high
SEL subgroup are arguably less constrained in adjusting
contacts than those in the low SEL subgroup. For ex-
ample, Kumar et al. [38] suggested that workplace policies
can impinge on distancing measures and such workplace
policies may be more binding on lower SELs. If this hy-
pothesis were tested and verified, it would suggest the po-
tential for targeting of social distancing polices to facilitate
self-protective measures for low SEL individuals. On the
other hand, it may be that the difference in response is an
artifact of the behavioral proxy which might emerge, for
example, if the relationship between home viewership
and time spent at home differed systematically between
SEL subgroups (e.g., if high SEL individuals respond more
strongly because ownership of more televisions provides
more opportunities to view).
In addition to varied responses across groups, we also

found differences over time, namely attenuation in the
behavioral response before the conclusion of the public
health intervention. Furthermore, we found evidence of
a rebound effect in which, after a prolonged period of el-
evated in-home activity there appeared to be period of
suppressed activity. This is consistent with the historical
analysis of Caley et al. [19] who found that as the per-
ceived risk of the 1918 swine flu decreased in Australia,
the public appeared to revert to normal behavior. Simi-
larly, Fenichel et al. [18] found that air travelers’ adaptive
to A/H1N1 dissipated after an initially strong response.
Further studies of the 2009 A/H1N1 influenza pan-
demic in other regions with similar intervention measures
(e.g. Hong Kong, [39]) could help to confirm and generalize
the insights gleaned here.
While the dynamic behavioral model based on the

home viewership proxy did not out-perform the simple
fixed effect model, the results represent progress in iden-
tifying and unpacking the drivers behind this fixed effect.
Going forward, further detailed data on private and pub-
lic behavior during outbreaks would serve to identify be-
havioral effects on transmission with greater precision.
For example, we did not model the effect of antiviral
treatment. Capturing additional behavioral adjustments
made outside of the home to reduce effective contacts is
likely be important for explicit modeling of the behavior
underlying disease transmission. To this end, there is
value in allocating resources during an outbreak to con-
sistently gather data on public and private protective
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actions, such as antiviral use or the use of face masks.
Although transitioning from empirical analysis based on
fixed effect measures of behavior to fully dynamic re-
sponses at finer time scales will require additional invest-
ment in data collection, potential benefits include the
promise of informing more finely tuned and less costly
public health interventions.
Appendix

A. Epidemiological data
B. Multiple age class transmission model

In Table 3 we present the number of laboratory con-
firmed pandemic A/H1N1 influenza cases for each day
in the period of study in Central Mexico from a sur-
veillance system established in response to the 2009
Table 3 Laboratory confirmed pandemic A/H1N1 influenza
cases from April 1 to May 20, 2009, in Central Mexico for
children (under 18) and adults (18 and over)

Age

Date Under 18 18 and over

1-Apr-09 0 1 26-Apr-09 3 11

2-Apr-09 0 1 27-Apr-09 9 7

3-Apr-09 0 0 28-Apr-09 12 9

4-Apr-09 0 0 29-Apr-09 7 9

5-Apr-09 0 0 30-Apr-09 8 13

6-Apr-09 0 0 1-May-09 7 9

7-Apr-09 0 0 2-May-09 6 11

8-Apr-09 0 1 3-May-09 8 7

9-Apr-09 0 0 4-May-09 8 8

10-Apr-09 1 0 5-May-09 10 4

11-Apr-09 1 1 6-May-09 7 9

12-Apr-09 0 0 7-May-09 19 12

13-Apr-09 0 1 8-May-09 8 10

14-Apr-09 1 2 9-May-09 11 7

15-Apr-09 1 2 10-May-09 10 12

16-Apr-09 0 1 11-May-09 7 5

17-Apr-09 0 2 12-May-09 1 4

18-Apr-09 1 2 13-May-09 9 5

19-Apr-09 1 1 14-May-09 3 1

20-Apr-09 2 9 15-May-09 2 3

21-Apr-09 1 5 16-May-09 0 3

22-Apr-09 4 11 17-May-09 1 2

23-Apr-09 4 13 18-May-09 2 1

24-Apr-09 6 14 19-May-09 2 1

25-Apr-09 7 12 20-May-09 0 1
influenza pandemic by the Mexican Institute for Social
Security (IMSS) [25].
All three base models (SD, FE and DB) can be general-

ized to allow for age structure within the population. So-
cial interactions may vary across demographic groups,
for example children attending school versus working
adults. We follow [17] in generalizing the system of dif-
ferential equations for a homogenously mixing popula-
tion in (1) to allow for variation in the transmission rate
between demographic groups in the set G. Dynamics for
each subgroup i ∈G are given by:

Si;tþ1−Si;t ¼ −Si;t
XG
g

βt;i→g Ig;t=N

Ei;tþ1−Ei;t ¼ Si;t
XG
g

βt;i→gIg;t=N−κEi;t

I i;tþ1−Ii;t ¼ κEi;t−γIi;t
Ri;tþ1−Ri;t ¼ γIi;t :

ð7Þ

The model in (5) captures heterogeneous mixing within
the population model. The group-specific transmission
function (βt,i→ g) is the same as in the homogenous case,
except �C and Δt are replaced by �Ci→g and Δt,i→ g, respect-
ively. The parameter �Ci→g reflects the average number of
contacts that members of group i experience with mem-
bers of group g, and Δt,i→ g is the percent deviation from
that average at time t.

C. Derivation of the log-likelihood function

We assumed that the observed number of confirmed
new infections on any given day, Ict , follows a Poisson
process with a mean arrival rate λt(ρ):

PrðIct jλt ρð ÞÞ ¼ λt ρð Þ
exp λt ρð Þð ÞItt !

: ð8Þ

The likelihood function for all observations from t = 1,…,
T is given by the product:

L ¼
YT
t¼1

λt ρð Þ
exp λt ρð Þð ÞItt!

� �
: ð9Þ

Taking the log of this expression provides the log-
likelihood function:

L ¼
XT
t¼1

Ict ln λt ρð Þ½ �−λt ρð Þ−ln Ict !
� �� � ð10Þ

Finally, to connect the likelihood model with the SEIR
transmission model, we assume that the mean Poisson
arrival rate of newly confirmed cases is given by the num-
ber of new observed infections predicted by the disease
model, λt(ρ) = ϕtκEt.
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D. Cox non-nested test with a parametric bootstrap

Under a given null model (e.g. either FE or DB), each
bootstrapped sample of the data (new infections) was
generated by simulating draws from the Poisson process
governing arrivals of new infections based on the fitted
estimates of the mean arrival rate for new infections,
λt ∀ t = 1,…, 50. This process was repeated to create M =
500 bootstrapped samples. The likelihood estimates from
each of the bootstrapped samples were used to construct
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Figure 7 Log-likelihood profile for the fixed effect (FE) model
as a function of the marginal transmission rate (per contact) ρ0,
and the shift in the marginal baseline transmission rate during
the intervention window, ρ1. The triangle represents the maximum
likelihood estimates from Table 2. The star on log-likelihood
indicates that the constant term from the log-likelihood has
been excluded.
the following p-value [40] for the test of a given alternative
model (a) against the null (0):

p‐value ¼
numb L0 θ̂0m; Iobsm

� 	
−La θ̂am; Iobsm

� 	
≤L0a; ∀ m ¼ 1;…;M

h i
þ 1

M þ 1
;

ð11Þ

where Iobsm is the bootstrapped data sample for each iter-
ation m = 1,…,M; θ̂ jm represents the ML estimates for
model j ∈ {FE,DB} given sample m; Lj is the maximum
log-likelihood for the model j; L0a ¼ L0 θ̂0

� 	
−La θ̂a

� 	
is

the difference between the maximum log-likelihood esti-
mates under H0 and Ha given the original data; and
numb counts the number of times the condition is true
for each of M iterations. A small sample correction is
implemented by adding a 1 to the numerator and de-
nominator. Because the FE and DB models are non-
nested, selection of a unique null model is not feasible.
Instead, the Cox test is conducted twice, with each of
the models serving as the null in turn.

E. Likelihood profiles

In Figures 6, 7, 8 we present log-likelihood profiles
underlying the maximum likelihood estimates in Table 2.
In each case the log-likelihood value excludes the additive
constant term which is not a function of the parameters
to be estimated (i.e. the final term in Equation (10)). For
each profile the maximum likelihood estimates from
Table 2 are indicated with a triangle.

Endnotes
aTowers and Chowell [17] allow the number of contacts

experienced on weekends and weekdays to differ but these
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levels are taken from the literature and are otherwise con-
stant. They also allow the transmission rate to vary over
time according to a first order harmonic process to cap-
ture seasonality over a large portion of the year. We do
not explore this structure since our period of interest is
two months long.

bCentral Mexico includes the Federal District (Mexico
City) and states of Guerrero, Hidalgo, Jalisco, Mexico (in-
cludes greater Mexico City), Puebla, San Luis Potosi,
and Tlaxcala.

cThis assumption is difficult to test for Mexico. How-
ever, data from the American Time Use Survey (http://
www.bls.gov/tus/) suggest that Americans do watch more
television as they spend more time in the house, though
the relationship may be nonlinear [37].

dThe data are collected and stored by the regional
division IBOPE AGP Mexico (http://www.agbnielsen.net/
whereweare/whereweare.asp).
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