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Abstract

What do inferring what a person is thinking or feeling, deciding to report a symptom to your 

doctor, judging a defendant’s guilt, and navigating a dimly lit room have in common? They 

involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, which 

engender different appropriate responses), and behavioral risk (e.g., a cost to making the wrong 

response). Signal detection theory describes these types of decisions. In this tutorial we show how, 

by incorporating the economic concept of utility, signal detection theory serves as a model of 

optimal decision making, beyond its common use as an analytic method. This utility approach to 

signal detection theory highlights potentially enigmatic influences of perceptual uncertainty on 

measures of decision-making performance (accuracy and optimality) and on behavior (a functional 

relationship between bias and sensitivity). A “utilized” signal detection theory offers the 

possibility of expanding the phenomena that can be understood within a decision-making 

framework.
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INTRODUCTION

The goal of this tutorial is to familiarize readers with less well known aspects of signal 

detection theory (SDT; Green & Swets, 1966; Macmillan & Creelman, 1991) that stem from 

using it a model of optimal decision making. SDT characterizes how perceivers separate 

meaningful information from “noise.” SDT is widely used to measure performance on 

perception, memory, and categorization tasks. In the realm of social perception, for example, 

when interacting with someone, it is advantageous to know whether the person is angry (and 

likely means you harm) or not. SDT is particularly useful when the alternative options are 

perceptually similar to one another (e.g., a scowling facial expression sometimes means that 
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the person is angry and sometimes means that the person is merely concentrating), called 

uncertainty, and when misclassification carries some relative cost (e.g., when failing to 

correctly identify someone as angry incurs punishment that would otherwise have been 

avoided), called risk1.

Overview of SDT

SDT’s power as an analytic tool comes from separating a perceiver’s behavior into two 

underlying components, sensitivity and bias (see Précis of Signal Detection Theory in 

Supplemental Material available online). Sensitivity is the perceiver’s ability to discriminate 

alternatives: targets (e.g., a person who is angry) vs. foils (e.g., a person who is not angry). 

Bias is the perceiver’s propensity to categorize stimuli as targets vs. foils and is described as 

liberal, neutral, or conservative. For example, if failing to correctly identify threat is 

relatively costly (resulting in, say, psychological or physical punishment), or if targets are 

common relative to foils, then a perceiver might treat equivocal stimuli as threatening 

targets rather than safe foils (resulting in liberal bias, in which even mildly scowling faces 

are treated as angry). If, instead, incorrectly identifying a stimulus as a threat is relatively 

costly (resulting in, say, embarrassment arising from a misperceived need to apologize), or if 

targets are uncommon relative to foils, then a perceiver might treat equivocal stimuli as safe 

(resulting in conservative bias, in which only strongly scowling faces are treated as angry).

SDT is applicable across a spectrum of perceptual to conceptual domains. In fact, a diverse 

array of non-psychophysical “perceptions” have been treated as issues of signal detection, 

including eyewitness lineups (Clark, 2012), child foster home placement (Ruscio, 1998), 

memory (Wixted & Stretch, 2004), cancer detection (Abbey, Eckstein, & Boone, 2009), 

statistical hypothesis testing (Green & Swets, 1966), and diagnostic decisions more 

generally (Swets, Dawes, & Monahan, 2000). In Supplemental Material, we use examples 

across the perceptual-conceptual spectrum to illustrate the points made in the main text with 

our social threat detection example, including interoception, social perception, jury 

deliberation, and travel speed.

Despite SDT’s breadth of application, it is largely used in a descriptive way to compare 

sensitivity and bias across study conditions or people. For example, current depression has 

been associated with decreased sensitivity for emotion perception and remitted depression 

with increased sensitivity and more neutral response bias for emotion perception, relative to 

control (Anderson et al., 2011). Yet, SDT has much more to offer as a generative model of 

decision making. Combining SDT’s treatment of perceptual uncertainty with the behavioral 

economic concept of utility (the net benefit expected to accrue from a series of decisions) 

highlights important aspects of decision making overlooked both by typical applications of 

SDT and by traditional models of decision making that focus on utility alone.

1These definitions of uncertainty and risk differ somewhat from those used in strictly economic decision making, where commonly 
risk is defined as knowable variation in the value (payoff) of a decision’s outcome and uncertainty as unknowable variation (reviewed 
by, e.g., Volz & Gigerenzer, 2012).
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THE UTILITY OF PERCEPTION

According to the utility-based approach to SDT, three parameters characterize the 

uncertainty and risk within a specific decision environment.

1. Payoff. Every decision has its consequences. The payoff parameter describes the 

value of each of four possible decision outcomes: correct detections, missed 

detections, false alarms, and correction rejections (see Précis of Signal Detection 

Theory in Supplemental Material). False alarms and missed detections incur 

relative costs, whereas correct rejections and correct detections each impart relative 

benefits to the perceiver. In social threat detection, for example, false alarms might 

lead to unnecessary apologetic disruptions of the social interaction or to 

unnecessary social avoidance, whereas missed detections might lead to punishment 

or other aversive outcomes.

2. Base rate. The base rate parameter describes the perceiver’s probability of 

encountering targets (e.g., a person who is angry) relative to foils (e.g., a person 

who is not angry).

3. Similarity. Target and foil categories can be somewhat similar to one another, the 

source of perceptual uncertainty. The similarity parameter models this uncertainty 

by describing what targets and foils “look like.” For example, the physical 

similarity of facial expressions associated with two emotion categories can be 

modeled as Gaussian distributions over a continuous perceptual domain of facial 

expression intensity. There are two sources of perceptual uncertainty. Intrinsic 

sources are internal to the perceiver. Intrinsic sources may include, for example, 

sensory processing “noise” (e.g., Osborne, Lisberger, & Bialek, 2005), poorly 

learned discrimination (e.g., Lynn, 2005), and at an abstract level, perhaps even 

confusion about the difference between more conceptual categories. Extrinsic 

sources are external to the perceiver, arising from the environment or the signaler. 

Extrinsic sources may include, for example, environmental noise (e.g., Wollerman 

& Wiley, 2002) or signal attenuation (e.g., Naguib, 2003), and variation in signaler 

expressivity (e.g., in emotional expressivity, Zaki, Bolger, & Ochsner, 2009). 

Research in psychophysics often emphasizes intrinsic uncertainty. Research in 

applied decision making (e.g., medical diagnostics) and behavioral ecology often 

emphasizes extrinsic uncertainty.

It is well known that payoffs and base rate influence bias (Green & Swets, 1966; Macmillan 

& Creelman, 1991). Rare targets or costly false alarms each promote a conservative bias 

(i.e., a higher threshold, or criterion, for judging that a target is present) whereas common 

targets or costly misses each promote a liberal bias (i.e., a lower criterion for judging that a 

target is present; e.g., Quigley & Barrett, 1999). The perceptual similarity between targets 

and foils influences sensitivity (i.e., perceivers have greater sensitivity when targets and foils 

are less perceptually similar to one another; Green & Swets, 1966; Macmillan & Creelman, 

1991). However, it is the utility-based approach to SDT (combining uncertainty with 

behavioral economics) that quantifies and predicts these relationships between 

environmental parameters and behavior.
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Establishing the optimal criterion location

When in the presence of perceptual uncertainty, mistakes cannot be avoided. A liberal 

criterion (leftward in Fig. 1a) minimizes missed detections but increases exposure to false 

alarms. A conservative criterion (rightward in Fig. 1a) minimizes false alarms but increases 

exposure to missed detections. Therefore, perceivers should seek to optimize their criterion 

location–to adopt a criterion that maximizes expected utility, producing the optimal blend of 

missed detections and false alarms in light of the environmental parameters.

The SDT utility function uses the three parameters to calculate the expected value (to the 

perceiver) of placing a decision criterion at any location on the perceptual domain (see The 

Signal Utility Estimator and Receiver Operating Characteristics, in Supplemental Material). 

For example, it is possible to compute the expected utility of placing a decision criterion at 

each facial expression along the continuum in Fig. 1a. The criterion location with the highest 

expected utility will maximize net benefit over a series of decisions. By modeling the 

environmental parameters that underlie bias and sensitivity, we can mathematically predict 

and empirically compare perceivers’ optimality within and between environments or 

experimental conditions of a study.

To implement these ideas in a laboratory setting, it is possible to create different decision 

environments defined within an experiment by assigning values to the three parameters (see 

Lynn, Cnaani, & Papaj, 2005, for an example with non-humans; see Lynn, Zhang, & Barrett, 

2012, for an example with humans). Payoffs can be implemented behaviorally. For example, 

participants earn points or lose points depending on the outcome of each trial. In this way it 

is possible to set unequal payoff outcomes (e.g., a missed detection of anger might have a 

different cost than a false alarm in a particular context). Outside the laboratory, payoffs may 

not be known or easily quantified, of course. In such cases a ratio of payoffs might be used. 

For example, Clark (2012) explored the utility of eye-witness police line-up reforms using a 

10:1 ratio of the cost of missed detections (the perpetrator goes free) to false alarms (the 

wrong person is identified as the perpetrator). Base rate can be implemented as the 

proportion of target vs. foil trials shown. Base rate can model, e.g., that some people with 

whom a perceiver interacts may be angry more often than other people. The similarity 

parameter can be implemented with targets and foils randomly drawn from their respective 

distributions imposed on a continuum of stimuli.

Because criterion location is a function of the three environmental parameters, suboptimal 

bias or sensitivity in a perceiver can be understood as a perceiver “misestimate” of one or 

more parameters (Fig. 1b). Individual differences, alone or in interaction with the decision 

environment, may influence parameter estimates (Fig. S3 in Supplemental Material; Lynn et 

al., 2012).

The application of utility to SDT is not new—it was part of the theory’s initial development 

in psychophysics (Tanner & Swets, 1954; Green & Swets, 1966). Nonetheless, a “utilized” 

SDT–the notion that perceivers attempt to maximize net benefit while operating under 

perceptual uncertainty2–generates a number of unexpected but important theoretical 

observations that have yet to be widely explored in the psychological literature. One 

surprising observation is that there are contexts in which maximizing accuracy conflicts with 
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maximizing utility, so that there are common situations in which accuracy should be 

sacrificed to achieve effective decision making. This conflict has implications for the use of 

accuracy as a measure of performance. A second surprising observation is a functional 

relationship between bias and sensitivity—within a perceiver, optimal criterion location is 

not independent of sensitivity. Probably the most widely appreciated insight of SDT is its 

separation of sensitivity and bias as factors explaining behavior (Swets, Tanner, & Birdsall, 

1961), and many users believe that the two are orthogonal or independent of one another. 

This relationship between sensitivity and bias has implications for interpreting differences in 

sensitivity and bias among perceivers or different contexts.

MEASURING BEHAVIOR: OPTIMAL IS BETTER THAN ACCURATE

One clear tenant of SDT is that estimates of accuracy (i.e., proportion of trials garnering 

correct response) should be abandoned in favor of estimates of bias and sensitivity as 

measures of performance when feasible (Macmillan & Creelman, 1991). There are two 

reasons to avoid accuracy. First, accuracy does not account for two aspects of decision 

making under uncertainty and risk that are important for a full understanding of the 

perceiver’s behavior. Accuracy confounds the effects of sensitivity and bias on performance, 

and this is true whether one applies a utility framework to SDT or not. Second, the 

inadequacy of accuracy is compounded under economic risk, when payoffs should optimally 

bias behavior, because accuracy simply tallies correct and incorrect decisions without regard 

to their actual benefits and costs.

Accuracy confounds sensitivity and bias

Accuracy not a good indicator of what people are doing–it does not describe their behavior. 

This is because accuracy is blind to the separate contributions of sensitivity and bias to 

decision making. While this fact is well-known, it is less appreciated that multiple 

combinations of sensitivity and bias values produce the same accuracy (Fig. 2). The overt 

differences in behaviors that yield a given accuracy level may encompass dramatic extremes 

of liberal and conservative bias. Consequently, the researcher analyzing accuracy rather than 

optimality will pool participants who are potentially behaving quite differently from one 

another (Lynn, Hoge, Fischer, Barrett, & Simon, In press).

Accuracy ignores payoffs but not base rate

When benefits and costs differ, accuracy is not a good indicator of how well people are 

doing – it is an inadequate measure their performance. Accuracy is blind to the influences of 

benefits and costs on decision making (Egan, 1975; Maddox & Bohil, 2005) because it is 

determined without regard to the value accrued to the perceiver for those decisions. This 

means that maximizing accuracy and maximizing utility can be at odds with one another in 

2It is perceptual uncertainty, modeled by the similarity parameter, that distinguishes SDT from other models of decision making. 
Other models of decision making attempt to account for how decisions are influenced by variability in benefits and costs accrued from 
correct or incorrect decisions, variability in the probability of alternative choices or events, and/or variability in factors internal to the 
decision maker that affect risk sensitivity (e.g., reviews in Krebs & Kacelnik, 1991; McNamara, Houston, & Collins, 2001). Game 
theoretic approaches to decision making additionally account for the effect of others’ responses on the decision maker’s own behavior 
(e.g., Grafen, 1991). Yet, ignored by the these models is that a perceiver’s expectation of the payoff to be accrued, the encounter rates, 
the responses of others, and even his or her own body state (e.g., homeostatic and metabolic response), are based on signals emitted by 
the resources, game partners, body, etc. SDT posits that these signals themselves have variation.
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environments in which bias is due to payoffs. However, accuracy is derived from the 

proportions of correct and incorrect responses. It is therefore congruent with utility in 

environments in which bias is due to base rate.

A comparison of simulated environments with different sources of bias exemplifies these 

points. When payoffs alone bias behavior (Table 1, Payoff environment, in which false 

alarms are relatively costly but base rate is balanced at 0.5), accuracy is highest for bias=0 

(neutral bias). Nevertheless, utility is maximized at bias=0.4 (somewhat conservative). 

Utility at the criterion that maximizes accuracy is 7.1 points, less than the maximum utility 

possible, 7.5 points. Accuracy at the criterion that maximizes utility is 0.82, less than the 

maximum accuracy possible, 0.84. Perceivers with bias=0 will achieve lower maximum 

utility over a series of decisions than those with bias=0.4, despite exhibiting higher 

accuracy. When base rate alone biases behavior (Table 1, Base Rate environment, in which 

benefits and costs cancel each other out but base rate=0.3) the amount of bias that 

maximizes accuracy also maximizes utility (again at bias=0.4). When benefits and costs 

differ, then, optimally biased decision making will yield lower accuracy than unbiased 

decision making, in spite of its greater utility. Consequently, accuracy cannot properly 

describe performance in environments in which there is risk due to payoffs.

Accuracy sometimes reflects optimal decision making and sometimes not, depending on the 

environment. For example, participants engaged in an emotion perception experiment, of the 

sort described in Fig. 1a, attempted to maximize points earned over 178 trials (see Lynn et 

al., 2012 for methodological details). Additional analysis of data from Lynn et al. (2012) 

shows that, as illustrated in Table 1, accuracy did not reflect optimal decision making when 

bias was caused by payoffs. For participants in a condition that implemented a liberal bias 

via relatively costly missed detections (all else being equal), more liberal bias (c) was 

associated with lower accuracy (one-tailed partial correlation controlling for sensitivity, d′: 

ρ=0.50, p<0.001, n=67). Additionally, more liberal bias was associated with more points 

earned (ρ=-0.82, p<0.001) while higher accuracy was marginally associated with fewer 

points earned (ρ=-0.17. p>0.086). These results show that when bias is caused by payoffs, 

accuracy is not a useful measure of performance.

Also as illustrated in Table 1, accuracy did reflect optimal decision making when bias was 

caused by the base rate of targets (targets less common than foils). For participants in a 

condition that implemented a conservative bias via relatively low base rate, more 

conservative bias was associated with higher accuracy (ρ=0.91, p<0.001, n=75). 

Additionally, more conservative bias and higher accuracy were associated with higher points 

earned (bias: ρ=0.50, p<0.001; accuracy: ρ=0.58, p<0.001). These results show that when 

bias is caused by base rate, accuracy is congruent with utility.

Humans appear to more easily adapt their response bias to base rate than to payoffs (Bohil & 

Maddox, 2001). This discrepancy leads to an observed response bias that maximizes 

accuracy at the expense of optimality (Maddox & Bohil, 2005). When payoffs matter, 

perceivers maximizing accuracy over optimality will accrue less benefit than could 

otherwise be the case.
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By ignoring the differences between benefits and costs, such perceivers will be unable to 

tune their bias to balance those differences. Moreover, when the payoff matrix and base rate 

demand opposing liberal- vs. conservative-going bias, perceivers who neglect payoffs could 

exhibit bias in the wrong direction relative to what is optimal for the environment.

Many studies are blind to the difference between optimality and accuracy as a consequence 

of not assigning separate payoff values to correct detections vs. correct rejections, or false 

alarms vs. missed detections. Emphasizing accuracy instead of optimality corresponds to 

misalignment of behavior with the contingencies of the decision because those contingencies 

are ignored. In social threat perception, for example, emphasizing accuracy over a series of 

judgments could correspond to considering the costs of false alarm and missed detection to 

be of equal value, and the benefits of correct detection and correct rejection to be of equal 

value. While an assumption of balanced payoffs may be true in most laboratory experiments 

of emotion perception, that assumption seems unlikely to be the case outside the laboratory, 

reducing ecological validity. Outside the laboratory, decisions involve benefits and costs, 

and maximizing net benefit, not accuracy, is what matters. Testing perceivers under 

conditions that demand a non-neutral bias and measuring performance as accumulated 

payoff or optimality of bias, rather than accuracy, better reflects decisions made outside the 

laboratory.

INTERACTION OF UNCERTAINTY AND RISK: THE RELATIONSHIP 

BETWEEN BIAS AND SENSITIVITY

Perceivers maximizing utility experience a functional relationship between bias and 

sensitivity predicted by the SDT utility function. This relationship dictates that, given some 

non-neutral response bias required by the environment (determined by base rate and/or 

payoffs), to maximize their utility, perceivers with low sensitivity should be more biased 

than a perceivers with high sensitivity.

To get an intuitive feel for this relationship, consider walking through an obstacle-strewn 

room as a signal detection issue (this example is further developed in Supplemental 

Material). Why do people navigate space more cautiously in conditions of poor visibility 

than good visibility? A missed detection (say, stepping barefoot on an object) is costly (it is 

painful to the perceiver and may break the object). When the room is well lit, a person can 

walk quickly through the room. When the room is dimly lit, the person walks more 

cautiously, reducing the frequency of missed detections that would otherwise occur: a 

change in bias. What about the environment has changed to cause this change in bias? The 

benefits and costs of correct vs. incorrect judgment about the presence or absence of 

obstacles in the person’s path have not changed, nor has the base rate of encountering 

obstacles. Only the perceptual similarity between targets and foils has changed–obstacles 

and clear space look more similar in the dark, reducing the person’s sensitivity to 

discriminate obstacles against the background. Here, a decrease in sensitivity has led to a 

more liberal bias, which produces a change in response (decreased walking speed): fewer 

missed detections and more false alarms than if walking speed had not changed.

Lynn and Barrett Page 7

Psychol Sci. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In short, decreased sensitivity makes errors more likely. Perceivers can mitigate this 

increased risk to some extent by adopting a more extreme bias. For perceivers, the 

consequence of this functional relationship is more extreme behavior associated with greater 

uncertainty (modeled in Fig. 3; see also discussion of the receiver operating characteristic in 

Supplemental Material).

The Line of Optimal Response

A Line of Optimal Response (LOR, Fig. 4; Lynn et al., 2012) depicts the functional 

relationship between bias and sensitivity. Any unique set of environmental base rate and 

payoff values has a unique LOR. The LOR can be derived from the equation relating the 

likelihood ratio of the signal distributions (a measure of bias called beta, β; see Précis of 

Signal Detection Theory in Supplemental Material) to the “criterion” or “center” bias 

measure, c, and sensitivity, measured as d′ (Macmillan & Creelman, 1991, Equation 2.10):

(1)

Providing the environment’s optimal beta value and solving for c=log(β)/d′ over a range of d

′ values yields the LOR. The environment’s optimal beta value can be calculated from the 

base rate and payoffs (Tanner & Swets, 1954, Equation 2; see also Wiley, 1994):

(2)

where α=base rate; j, a, h, and m=payoffs for correct rejections, false alarms, correct 

detections, and missed detections respectively (see The Signal Utility Estimator in 

Supplemental Material).

βoptimal is constant for all sensitivity values; it is set by the environmental payoffs and base 

rate, and not a function of sensitivity. By Equation 1, defining beta in terms of c and d′, c 

must change with sensitivity if beta is constant. While there is a literature examining beta 

(e.g., Wood, 1976; Snodgrass & Corwin, 1988), we have chosen to focus on how c changes 

with sensitivity (Stretch & Wixted, 1998). Focusing on the lability of c, rather than the 

stability of beta, emphasizes how perceivers’ behavior—which stimuli they categorize as 

“target” and which as “foil”—must differ between environments that differ in target/foil 

similarity or among individuals that differ in sensitivity (e.g., compare beta and c values for 

the high and low similarity environments of Fig. 3, inset table).

We interpret the distance from the point defined by a perceiver’s observed sensitivity and 

bias (d′, c) to the LOR as a measure of how well the perceiver is able to adjust his or her bias 

to optimally accommodate his or her level of sensitivity. We have elected to measure each 

participant’s distance to the LOR (which we call do, distance-sub-optimal), as Euclidian 

distance rather than vertical distance, as a means of accounting for the unknown bivariate 

error distribution in the estimates of sensitivity and bias (Lynn et al., 2012).
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Sensitivity as a source of bias

Surprisingly, this functional relationship means that low sensitivity can prompt extreme bias, 

just like the payoff and base rate parameters. As a consequence, bias can change solely from 

a difference in the perceived similarity of targets and foils, without changes in the 

parameters commonly understood to drive bias, base rate and payoffs3. In studies where 

response bias (c) has been found to be inversely associated with perceptual sensitivity (d′), 

the associations have sometimes been explained as methodological or measurement artifact 

(e.g., Snodgrass & Corwin, 1988; See, Warm, Dember, & Howe, 1997). However, when 

sensitivity and bias (measured as either c or absolute criterion location on the perceptual 

domain) vary inversely between conditions, low sensitivity should be considered as a 

possible explanation for high bias.

Recognizing a functional relationship between sensitivity and bias is critical because it has 

the potential to reverse researchers’ conclusions about differences in bias that are observed 

whenever signal detection issues occur (i.e., decisions involving category uncertainty and 

costly mis-categorization). For example, under the assumption that bias is functionally 

independent of sensitivity, perceivers exhibiting poor sensitivity combined with high bias 

(relative to a control group) would be considered to exhibit two separate impairments in 

decision making: poor sensitivity and high bias. To optimize decision making, however, bias 

should vary inversely with sensitivity, particularly at low sensitivity. On the utility-based 

account, therefore, more extreme bias may not reflect an impairment but a normal adaptive 

mechanism, offsetting the single impairment, poor sensitivity. Conversely, under the 

independence assumption, perceivers exhibiting poor sensitivity with no difference in bias 

(relative to more sensitive individuals) would be considered to exhibit a single impairment, 

in sensitivity. In fact, such individuals may have a dual impairment: failure to calibrate their 

bias to their poor sensitivity.

Additional analysis of data from Lynn et al. (2012) shows that perceivers exhibited wide 

variation in their ability to optimally adjust their bias to their sensitivity, but that an inverse 

relationship between bias and sensitivity did function to maximize utility (Fig. 5). As 

predicted by the utility approach to SDT, perceivers with poor sensitivity (d′) exhibited a 

more extreme bias (c) than did perceivers with better sensitivity (in an environment using 

payoffs to induce a liberal bias: r=0.26, p<0.023, n=67; in an environment using base rate to 

induce a conservative bias: r=-0.48, p<0.001, n=75). Furthermore, as predicted, perceivers 

with more optimal bias (shorter distance from LOR, do) earned more points over the series 

of trials (liberal payoff environment, one-tailed partial regression controlling for sensitivity, 

ρ=-0.81, p<0.001; conservative base rate environment, ρ=-0.50, p<0.001) indicating that 

perceivers who adopted a more extreme bias that reflected their reduced sensitivity—

following the LOR—made more optimal perceptual decisions.

3Bias and sensitivity independently characterize decision making: a perceiver’s ability to distinguish targets from foils is a separate 
consideration from his or her estimate of payoffs and base rate. Additionally, the measures d′ and c are estimated with statistical 
independence from one another (Dusoir, 1975; Snodgrass & Corwin, 1988; Macmillan & Creelman, 1990; See et al., 1997). 
Nonetheless, these notions of conceptual and statistical independence have inadvertently influenced assumptions about functional 
independence, such that there exists a misconception that a perceiver’s observed bias should be independent of his or her observed 
sensitivity. The utility approach to SDT shows instead that a perceiver’s observed bias and sensitivity are functionally related by the 
maximization of utility.
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CONCLUSIONS

SDT is a well-established analytic tool for describing decision-making performance in a 

wide variety of perceptual to conceptual phenomena. A “utilized” SDT goes farther – it 

provides a theoretical framework to predict or explain behavior. The SDT utility function 

(Swets et al., 1961) makes SDT a predictive tool by modeling the perceptual uncertainty and 

behavioral risk that are inherent to many decisions both inside and outside the laboratory. 

The model can be used to pose novel experimental questions about computational processes 

underlying bias and sensitivity and functional decision making (e.g., see Affective 

Calibration in Mental Illness, in Supplemental Material).

Understanding decision making and criterion placement as dependent on perceivers’ 

subjective estimates of parameters that characterize the environment has exciting 

ramifications. First, designing experiments to manipulate the payoff, base rate, and 

similarity parameters, and measuring optimality of decision making, will provide a more 

mechanistic approach to understanding the factors that underlie perceiver bias and 

sensitivity. Examining how perceivers make decisions in biased conditions will better reflect 

decision making in more realistic environments than is typically the case in cognitive and 

perceptual experiments, where payoffs are unspecified and base rate is balanced across 

alternatives.

Second, adopting SDT as a theoretical model of decision making offers a path by which 

behavioral economic and neuroeconomic studies of judgment and decision making can 

investigate the influence of uncertainty. Examining perceivers operating under uncertainty 

would reflect decision making in more realistic environments than typically employed in 

judgment and decision-making tasks that manipulate economic risk—the variation in 

payoffs—but ignore “signal-borne” risk—the variation in what options look like.

Sensitivity to the three signal parameters is taxonomically wide-spread, exhibited by 

vertebrates and arthropods (e.g., Lynn, 2010). Model-driven approaches to the study of 

choice making (Glimcher & Rustichini, 2004; Redish, 2004; Gold & Shadlen, 2007; Redish, 

Jensen, & Johnson, 2008) that systematically manipulate SDT’s three parameters may thus 

permit a broadly comparative investigation of how decision making is accomplished across 

levels of biological organization and complexity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
In a social threat detection scenario, facial expressions are evaluated by one person (the 

perceiver or decision maker) to gauge another person’s (the sender or signaler) threat to the 

perceiver. (a) The payoff, base rate, and similarity parameters can be combined to derive a 

utility function for the decision environment that they characterize. The location on the 

stimulus domain (x-axis) with the highest utility is the decision criterion location (solid 

drop-line) that will maximize benefit over a series of decisions. A simulated perceiver who 

underestimates the base rate (dotted utility function), adopts a suboptimally neutral criterion 

(dotted drop-line). The perceiver’s expected utility is dictated by where the criterion meets 

the utility function derived from correctly estimated parameters, denoted by an asterisk. (b) 

That the misestimate is suboptimal is shown by a shallower rate of utility gain
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Fig. 2. 
Iso-accuracy gradients (regions of the same color) show that multiple combinations of 

sensitivity and bias produce the same accuracy. For example, at moderate sensitivity (d′=2), 

both liberal bias (c=-0.5) and conservative bias (c=0.5) can produce accuracy near 0.8 in this 

simulated neutral-bias environment (parameter values provided in Supplemental Material).
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Fig. 3. 
To optimize their performance in a biased environment, perceivers with low sensitivity must 

adopt a more extreme bias than those with high sensitivity. Comparison of two optimal 

models that differ in similarity of targets vs. foils illustrates that, to offset the decrement in 

performance caused by low sensitivity, perceivers with low sensitivity should adopt a more 

extreme bias (depicted by the rightward shift of the criterion for the “high similarity” utility 

function; see inset table). Note that bias as measured by beta does not explicitly reflect the 

difference in behavior. Parameter values provided in Supplemental Material.
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Fig. 4. 
The utility approach to signal detection theory indicates a relationship between bias and 

sensitivity that functions to maximize the utility of perceptual decisions. Mathematical 

modeling shows that a perceiver’s sensitivity and bias should be inversely related. A “line of 

optimal response” (LOR; dashed line) is defined by the bias that yields maximum utility for 

any given level of sensitivity, for constant base rate and payoff values. Curvature of the 

LOR indicates that the decrease in utility that results from reduced sensitivity can be 

mitigated by increased magnitude of bias (here, more conservative-going). Parameter values 

provided in Supplemental Material.
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Fig. 5. 
An inverse relationship between bias and sensitivity functions to optimize decision making. 

Participants in a liberally or conservatively biased decision environment showed inverse 

relationships between bias and sensitivity as predicted by the Line of Optimal Response 

(LOR, dashed lines) for the environment’s parameter value set. Perceivers closer to their 

environment’s LOR earned significantly more points than those farther away, indicating that 

the inverse relationship is driven by utility maximization. Data from Lynn et al. (2012).
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Table 1

Comparison of four simulated decision environments shows that the criterion location and amount of bias that 

maximize accuracy do not maximize utility when payoffs cause bias, but do maximize utility when base rate 

causes bias.

Expected value Type of Decision Environmenta

Neutral Base Rate Base rate & Payoff Payoff

Maximum accuracy for environment 0.84 0.86 0.86 0.84

Criterion location (% of range) that maximizes accuracy 50.0 50.4 50.4 50.0

Bias (c) that maximizes accuracy 0.0 0.4 0.4 0.0

Utility (points) at criterion location that maximizes accuracy 6.8 7.2 7.7 7.1

Maximum utility for environment 6.8 7.2 8.0 7.5

Criterion location (% of range) that maximizes utility 50.0 50.4 50.8 50.4

Bias (c) that maximizes utility 0.0 0.4 0.8 0.4

Accuracy at criterion location that maximizes utility 0.84 0.86 0.85 0.82

a
Expected accuracy, criterion location, bias, and utility values for each environment were derived by applying each environment’s parameters to 

the SDT utility function. Neutral environment parameter values: correct detections and correct rejections=10 points, missed detections and false 
alarms=-10 points; base rate=0.5; and similarity mean target and foil at 60% and 40%, respectively, with standard deviation=10% for both 
distributions. The Base Rate environment is identical to the Neutral environment except that base rate is reduced to 0.3. The Payoff environment is 
identical to the Neutral environment except that false alarms are more costly (-15 points) and missed detections less costly (-1 point). The Base 
Rate & Payoff environment combines the base rate and payoffs from the Base Rate and Payoff environments, respectively, with similarity 
parameter values as in the Neutral environment.
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