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Abstract

Efficient and effective HIV prevention measures for generalized epidemics in sub-Saharan Africa 

have not yet been validated at the population-level. Design and impact evaluation of such 

measures requires fine-scale understanding of local HIV transmission dynamics. The novel tools 

of HIV phylogenetics and molecular epidemiology may elucidate these transmission dynamics. 

Such methods have been incorporated into studies of concentrated HIV epidemics to identify 

proximate and determinant traits associated with ongoing transmission. However, applying similar 

phylogenetic analyses to generalized epidemics, including the design and evaluation of prevention 

trials, presents additional challenges. Here we review the scope of these methods and present 

examples of their use in concentrated epidemics in the context of prevention. Next, we describe 

the current uses for phylogenetics in generalized epidemics, and discuss their promise for 

elucidating transmission patterns and informing prevention trials. Finally, we review logistic and 

technical challenges inherent to large-scale molecular epidemiological studies of generalized 

epidemics, and suggest potential solutions.
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INTRODUCTION

Despite advances in HIV prevention over the past 30 years, an estimated 2.5 million persons 

were newly infected in 2011, bringing the number of people living with HIV worldwide to 

34 million.1 The HIV burden continues to be greatest in sub-Saharan Africa; this region 

accounts for 75% of all HIV infections and the highest adult prevalence at nearly 5% 

overall,1 though this average mask extremes reported in subpopulations, some exceeding 

50% infected.2 The use of antiretroviral treatment (ART) to reduce viral loads and 

associated transmission risk among sero-discordant couples (Treatment-as-Prevention, 

TasP) has garnered excitement as a means to curb the spread of the virus.3 A recent 

population-based cohort study conducted in a high prevalence region in KwaZulu-Natal 

found that the risk for HIV acquisition was lowest in areas with the highest ART coverage—

providing ecological evidence for real-world effectiveness of TasP.4 As ART coverage has 

increased in Africa in the last decade, more HIV-infected individuals have been treated, and 

life-expectancy of infected individuals has increased.5 Meanwhile, new transmissions 

continue, and therefore overall prevalence of HIV can be expected to increase.6

To sustain an ongoing ART scale-up, and the potential widespread implementation of TasP 

in the future, expanded financial and public health resources will be required.7,8 However, 

the most biologically effective and financially efficient way to implement and evaluate 

prevention measures at the population level is unclear.9,10 Comprehensive knowledge about 

local epidemics will be required for successful prevention campaigns, including basic data 

about population demographics, transmission risk groups and viral subtypes, and complex 

estimates about transmission dynamics, social and sexual mixing networks, and patterns of 

geographic spread. Importantly, prospective information about success or failure of 

interventions is essential.

The tools of HIV phylogenetics and molecular epidemiology can be used to understand local 

transmission dynamics and assist in the design and evaluation of prevention trials. Since 

early in the epidemic these approaches have been employed to track HIV origin and 

geographic spread11–14 and in forensic studies evaluating small transmission chains.15–19 

New developments, primarily led by the increased availability of viral sequences over the 

past 20 years, have allowed fine-scale transmission dynamics at the community, regional, 

and country level to be uncovered.20 The opportunity for such approaches has been 

facilitated by: 1) the increasing availability of large HIV sequence databases, driven by the 

routine provision of gene sequence based drug resistance testing, with sequences linked to 

epidemiological data (temporal, clinical, demographic, behavioral or geographic); 2) rapid 

advances in high-throughput sequencing technology and decreases in sequencing costs; and 

3) theoretical and methodological advances in studies of viral transmission, using 

phylogenetics or genetic network analysis together with linking epidemiological and 

population genetic models. These advances provide a framework to identify individual traits 

or stages of infection that are associated with high relative infectiousness; the results of such 

studies can answer questions not easily resolved with standard epidemiological approaches. 

In effect, molecular epidemiology tools can help identify traits associated with ongoing HIV 

transmission (“who” is transmitting the virus?), rather than behaviors or demographic 

characteristics associated with high rates of infection (who is currently infected?). These 
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analyses are increasing deployed for concentrated epidemics where HIV sequences are 

routinely available. However, the essential next step is to apply these tools to HIV 

prevention in generalized epidemics and resource-limited settings where the impact would 

be greatest. Further, the development of such approaches for HIV can provide a model for 

new approaches to the transmission dynamics of other pathogens.

SCOPE OF PHYLOGENETIC ANALYSIS TO INFORM MOLECULAR 

EPIDEMIOLOGY

Molecular epidemiology is the use of genetic data to inform disease etiology and 

distribution. In HIV, the term can encompass disparate approaches. For this review, we 

divide the use of genetic analysis to inform HIV epidemiology into three general categories: 

Molecular Epidemiology, Phylodynamics and Phylogeography (Table 1). While there is 

generally overlap across these categories within studies, the main questions associated with 

each category are distinct. Molecular Epidemiology allows understanding of the risk factors 

for HIV transmission and epidemic spread. Phylodynamics reconstructs epidemic history, 

and quantifies epidemic growth or decline, using viral genealogies and explicit population 

genetic models. Phylogeography describes the distribution of subtype diversity, estimates 

the impact of human migration on viral spread, and places historical and risk factor data into 

geographic context, in order to identify hubs of transmission.

As for any approach to elucidate HIV transmission patterns, gene sequences can only be 

generated for those already diagnosed and sampled, and therefore the contribution to 

transmission from those unsampled, undiagnosed individuals must be considered. 

Nevertheless, with a well-designed population sampling and sequencing strategy, with 

linkage to some key demographic, epidemiological and clinical data, questions from all 

three categories can be addressed for any given population (using the same sequence 

dataset).

PHYLOGENETIC STUDIES OF TRANSMISSION IN CONCENTRATED 

EPIDEMICS

Molecular epidemiological tools have been used to address a diverse array of research 

questions over the last two decades, predominantly in settings with concentrated epidemics. 

These approaches have advanced to describe transmission dynamics at the local, regional, 

and national level through the post-hoc utilization of large sequence datasets linked to 

epidemiological data. These sequence datasets are largely a consequence of routine 

antiretroviral drug resistance testing that accompanies initial HIV diagnosis, and contains 

partial HIV pol sequences (typically full protease and partial reverse transcriptase). The pol 

region has been shown to have sufficient variability to allow for phylogenetic reconstruction 

to the same extent as the more variable gag and env regions.21 Studies focused on 

transmission networks in concentrated epidemics have most commonly been conducted in 

Europe or North America, where large pol sequence datasets linked with epidemiological 

data exist (Table 2).
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Basic methodological approach

The basic method to identify HIV transmission dynamics (traits associated with ongoing 

transmission) is straightforward (Figure 1): 1) HIV gene sequences are used to reconstruct 

phylogenetic trees or viral transmission networks; 2) transmission clusters are identified 

from the networks or phylogenies using ad-hoc thresholds for inclusion (e.g. minimum 

pairwise genetic distance between viral gene sequences, or by statistical robustness of the 

node that defines a phylogenetic clade); and 3) individual traits are evaluated for the strength 

of their association with cluster membership and used to infer underlying determinants of 

transmission.22,23 Cluster inclusion thresholds are ad-hoc in the sense that there is no widely 

accepted threshold definition or determining convention. Variation in threshold definitions 

and approaches can strongly impact the size and number of inferred clusters in a sequence 

data set, yet many studies do perform sensitivity analyses to quantitatively assess the impact 

of this variation on cluster identification in their respective data sets. A recent study of 

transmission dynamics in Brighton, UK, took this basic methodological approach one step 

further: clinical data were used to determine the most likely transmitter within transmission 

pairs or clusters, which allowed for likely onward transmission events (and not simply 

cluster membership based on pairwise genetic distance) to be evaluated for association with 

individual traits.24

What is the contribution of acute and early infection to ongoing transmissions?

Acute HIV infection is generally defined as the time after HIV acquisition but before 

seroconversion.25 Early HIV infection represents the first few months of infection, 

sometimes using a staging system reported by Feibig et al.26 Most recent results suggest 

HIV transmission is increased during acute and early HIV infection, for a period of 

uncertain duration that may range from weeks to months.27 Multiple phylogenetic studies 

have focused on acute and early (primary) HIV infection to assess the contribution of acute 

infection transmissions to overall HIV incidence in a population.24,28–34 The majority of 

these studies analyzed only sequences from patients diagnosed during acute or early HIV 

infection, and found variable rates of cluster formation, ranging from 13%33 to greater than 

50%29,30 of the study population. These results suggest that acute and early infections are 

responsible for a disproportionate number of onward transmissions, relative to chronic 

infections. This might be expected, as: 1) individuals with newly acquired infections remain 

sexually active;35,36 2) such individuals are unlikely to know their HIV status;37 3) HIV 

viral load is exceptionally high for weeks to months after infection;38 and 4) the transmitted/

founder viruses that establish successful infections may have transmission advantages.39–41 

However, the proportion of transmission events attributed to acute or primary infection is 

dependent on definitions used for these stages of infection; more rigorous definitions of 

early-stage infection, and focusing on individuals with estimated infection dates31 or known 

dates of seroconversion,32 can help to resolve this issue. It is essential to understand the 

contribution of early-stage infection to onward transmission, as a high frequency may 

compromise TasP strategies.42
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Other factors linked to transmissions

Trends or patterns associated with onward transmission have been described in greater detail 

by incorporating sequences from chronically infected patients thereby increasing the study 

population sampling density. Using molecular epidemiology tools, transmission network 

characteristics have been described by various factors such as race/ancestry and 

ethnicity,43–46 transmission risk group,44,45 HIV subtype,47–49 transmitted drug resistance 

mutations,50–52 and transmission cluster growth.53–55 A detailed longitudinal study of MSM 

sought to find the most likely transmitter for new infections and assess risk factors at the 

time of transmission.24 Even with 75% of all diagnosed HIV-infected individuals from the 

local clinic providing pol sequences, the most likely transmitter could be identified in only 

25% of those recently infected. This implies that even high sampling fractions of local 

epidemics may not completely reveal underlying transmission linkage due to, for instance, 

extra-community or undiagnosed infections as major sources of new transmissions.

Large scale analyses can delineate sub-epidemics

Large scale analyses of pol sequences have been used to assess the potential influence of 

viral subtype and regional scale on HIV transmission dynamics. The United Kingdom HIV 

Drug Resistance Database (UKRDB) (containing >85,000 pol sequences, http://

www.hivrdb.org.uk/) has provided data for several transmission studies. Using 

phylodynamics and a relaxed molecular clock approach, transmission dynamics were 

reconstructed among MSM56,57 and heterosexuals.58 Among MSM, six large transmission 

clusters were identified, representing separate introductions of subtype B into the U.K. in the 

1980s.57 Additional analysis within the large MSM clusters (reconstructed with ~2,000 

individual sequences) indicated that 25% of transmissions likely occurred within six months 

of infection, with most clusters arising over periods of 3–4 years—an episodic epidemic 

with multiple clusters of transmission.56 However, in heterosexuals, where the epidemic is 

dominated by non-B subtypes, much slower transmission dynamics were found.58 This 

demonstrates that phylogenetic approaches actually reveal the differing dynamics between 

different risk groups.

The Swiss HIV Cohort includes large repositories of pol sequences that have been used to 

assess changes in subtype B and non-B transmission clusters over time. Largely independent 

epidemics of MSM and heterosexuals/injection drug users were noted in the subtype B 

clusters, but heterosexuals alone did not dominate any of the clusters.54 Over time, the 

contribution of injection drug use to the heterosexual epidemic notably decreased. The effect 

of migration was investigated by analyzing non-B subtypes sampled both in and outside 

Switzerland. Less than 25% of the non-B subtypes sampled in Switzerland were found in 

clusters with other Swiss sequences, suggesting that most non-B infections in the country 

could not be prevented through national prevention measures targeting individuals of only 

Swiss origin.49

Transmission network analysis

The framework of social network analysis provides an alternative method to understand HIV 

transmission dynamics, which can be supplemental to the explicitly evolutionary approach 

of phylogenetic analysis. Transmission clusters are reconstructed similar to contact tracing, 
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but based on genetic distance metrics. Transmission network parameters among MSM were 

estimated using phylodynamics of over 14,000 UKRDB sequences (representing ~60% of 

UK MSM).59 Using an inferred network distribution and associated parameter values, the 

HIV epidemic was characterized by preferential association, which predicted that the 

epidemic would persist even under conditions of poor overall transmission following a 

randomly distributed intervention. Cluster growth also differed across the MSM and 

heterosexual transmission risk groups. However, the relationship between phylogenetic 

clusters and sexual networks is not direct (they are not one and the same), and the use of 

phylogenies to understand the underlying transmission network is complex and requires 

further elucidation.60

PHYLOGENETICS AND TRANSMISSION DYNAMICS IN GENERALIZED 

EPIDEMICS OF SUB-SAHARAN AFRICA: WHAT QUESTIONS CAN BE 

ADDRESSED?

HIV transmission dynamic studies in concentrated epidemics largely involve the post-hoc 

use of HIV drug resistance screening datasets whose coverage can reach a substantial 

proportion of the HIV-infected population. Large datasets of this type are rarely found in 

Africa—despite sub-Saharan Africa accounting for two-thirds of the global HIV infections, 

only 24% of sequences deposited in the LANL HIV Sequence Database (http://

www.hiv.lanl.gov, which receives all HIV sequences deposited in GenBank) are derived 

from the region (Figure 2). Notably, the Southern African Treatment and Resistance 

Network (SATuRN) has a growing database currently with >7,000 HIV sequences, albeit 

sampled from a very large HIV-infected population.61 Nonetheless, informative 

phylogenetic analyses of generalized epidemics will still require significant de novo 

sequencing effort. To enable detailed molecular epidemiological studies to inform 

prevention, clinical, demographic and behavioral data must be linked to each sequence. This 

represents a major logistical challenge, given that current sequence databases are generally 

based on opportunistic approaches to sequence acquisition. Several important questions 

surrounding HIV epidemiology and prevention can be addressed in the region with available 

molecular epidemiology tools, particularly when linked to traditional epidemiologic data.

Historical pattern of growth or decline for a given HIV epidemic

Molecular epidemiology and phylogeography can be used to understand historical patterns 

in epidemic origin, spread, and growth over time and space. The high genetic diversity of 

HIV-1 Group M has given rise to 9 genetically divergent subtypes (A–D, F–H and J–K), 

intersubtype recombinants and circulating recombinant forms (CRFs).62 Sub-Saharan Africa 

has the highest HIV genetic diversity, and is also characterized by distinct geographical 

subtype distributions that have remained relatively stable over the past decade.63 

Surveillance of genetic diversity has historically supported tracking global epidemiology64 

and public health strategies to slow further viral spread.65

The integration of time-stamped sequence (those with known dates of sampling) data with 

phylogenetics, coalescent models and molecular clock models allows inferences to be made 

on the timing of epidemic origin and spread in Africa.13,66–74 These analyses can contribute 
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to the design of intervention strategies through better understanding of epidemic growth 

potential, or factors contributing to historical geographic spread of subtypes or 

recombinants. Phylogeographic approaches showed that HIV-1C in Zimbabwe expanded 

through multiple introductions originating in southern Africa and localized exponential 

growth in the 1980s corresponding to demographic and political change.66 Travel 

accessibility and infrastructure is felt to be critical in epidemic spread, particularly the rapid 

growth of HIV-A and D into east Africa,67 and the expansion of HIV-1C into east Africa68 

and Angola.69

Geographic source of local epidemics or outbreaks

HIV prevalence in Africa is heterogeneously distributed within countries and often 

communities; epidemics can be overlapping sub-epidemics defined by geography, time, and 

a complex interplay of local epidemic drivers. This variation in HIV spread through 

populations requires that prevention efforts be tailored to characteristics of local 

epidemics.1,75 For example, the geographic clustering of HIV along roadways in KwaZulu-

Natal indicated the need for more intensified interventions within these communities; this 

study also indicated that many infections were imported from outside local communities.76 

High transport connectivity and mobile populations may explain the hyper-endemic 

outbreaks experienced in eastern and southern Africa.77 Understanding the degree of 

transmission that occurs from outside communities may have a substantial impact on the 

design and success of targeted prevention efforts such as TasP.

Communities with high transport connectivity may have local HIV epidemics supported by 

a significant proportion of transmissions from outside communities. Among 153 HIV pol 

sequences from patients in one community in rural coastal Kenya, multiple subtypes and 

significant recombination were documented.78 In a phylogeographic analysis, many of these 

sequences were related to different regions in Africa, suggesting multiple introductions into 

this community, likely reflecting its extensive transport links. In the Rakai district in 

Uganda, 14,595 individuals in 46 communities underwent extensive HIV surveillance 

including spatial and phylogenetic transmission linkage analysis.79 Of 189 HIV-incident 

cases, an estimated 39% of new cases were infected by household partners, and many new 

cases that were infected by an extra-household partner were from outside the community. 

The high degree of external HIV introductions into these communities suggests that the 

ability of test-and-treat strategies to reduce HIV transmissions may be difficult to measure in 

small populations unless external introductions are reduced, or unless geographic TasP 

coverage is sufficiently widespread that migration no longer becomes a relevant problem.

Results from phylogeographic studies must be interpreted in the context of the viral 

sequences analyzed. Studies based on convenience samples with limited temporal or spatial 

scales could lead to erroneous inferences about transmission rates between populations (e.g. 

between the studied community and the extra-community). While this potential limitation 

can be addressed to some extent with extensive sampling of the community of interest, the 

use of simulation to validate inferences can be useful.80

Dennis et al. Page 7

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Tracking the transmission and evolution of drug resistance mutations

The decreases in morbidity and mortality following ART provision81,82 have led to 

widespread ART rollout over the past decade.83 With increased ART access in Africa, the 

prevalence of transmitted drug resistance (TDR) has duly increased.84,85 High levels of 

acquired drug resistance, often unrecognized when laboratory monitoring for virologic 

failure is unavailable, and the failure of ART to prevent secondary transmission, contribute 

to increasing TDR in the population.86 Simulations suggest that TDR could have a 

significant impact on mortality,87 thus highlighting the need for ongoing attention for 

tracking and preventing TDR. Further, with TasP programmes expanding, and WHO 

guidelines88 recommending treatment initiation at CD4 lymphocyte counts<500 cells/mL, 

then it is likely that an increasing proportion of new infections will be with resistant viruses, 

despite an overall drop in incidence.89

Although TDR prevalence in sub-Saharan Africa is moderate at an estimated 5.7%,86 it is 

projected to have increased by 14–29% per year in southern and east Africa following ART 

rollout.84 Phylogenetic analyses have been employed in TDR prevalence studies primarily to 

characterize the extensive genetic diversity in specific regions90–94 and the dominance of 

HIV-1C in southern Africa.95–99 Few studies have evaluated transmission lineages of drug 

resistant strains through transmission cluster analysis to support or refute epidemiological 

linkages.90,96,100 Transmission clusters combined with participant life histories revealed a 

high degree of sexual partner mixing in Ugandan fishing communities and uncovered 

clusters sharing similar TDR mutations.94 Only one study incorporated antiretroviral history 

in the probable transmitting partners to further characterize linkages among individuals with 

TDR.100

In contrast to resource-rich settings, drug resistance testing is rarely performed at entry to 

clinical care, thereby limiting the number of sequences available for phylogenetics. 

However, sequences will become increasingly available as drug resistance monitoring 

strategies continue to expand and through ongoing or pending TasP protocols. Phylogenetics 

could be used to evaluate trends in genetic diversity, further the understanding of sexual 

networks or transmission clusters harboring resistant strains, track the evolution of drug 

resistance on a population-level, and to help assess the effect of TDR on transmissibility by 

subtype.

Understanding transmission patterns to help design targeted prevention measures

Targeting epidemic drivers, or core groups, for enhanced prevention may increase the 

effectiveness of an intervention, but requires detailed epidemiological understanding of viral 

transmission in the community. This is challenging because HIV transmission dynamics of 

generalized African epidemics are largely unknown.101–103 Molecular epidemiological 

approaches can help uncover local HIV epidemic drivers by contributing the links between 

overlapping sub-epidemics that are characterized by geography, time and social/sexual 

interaction.

Characterizing HIV subtypes and including linkage analysis within epidemiological studies 

can shed light on transmission patterns between high risk groups and the general 
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population.104–107 Among MSM in Senegal, HIV phylogenetics revealed different subtype 

distributions compared to the general population.104 Most of these men reported sex with 

women, thus likely contributing to bridging between these groups that may modify the 

subtype distribution. In coastal Kenya, local subtypes among MSM predominated, including 

those frequent among female sex workers, indicating an epidemic of local origin and 

confirmation of observed behavioral links between MSM and the general population.105 By 

combining partnership histories and phylogenetic analysis among Ugandan female sex 

workers, partial sexual networks and multiple infections were observed, confirming high-

risk networks.106 Among HIV concordant heterosexual couples in Senegal, most couples 

had phylogenetically linked sequences. When combined with interview data, the male 

partner was often the most likely index, implying concurrency associated transmission 

among stable partners.107

In the design of prevention measures, these phylogenetic tools could be expanded to other 

questions; currently unknown is whether epidemic growth in local epidemics of sub-Saharan 

Africa is driven primarily by those with high viremia or consistent low-level transmission 

from chronically infected individuals in concurrent partnerships. Determining epidemic 

drivers allows for targeted prevention in a more cost effective manner. For example, 

Avahan, the India AIDS Initiative, focused prevention on groups at high risk for 

transmission and acquisition in India (sex workers, their clients, and injection drug users; 

identified without phylogenetic analyses) leading to over 100,000 estimated HIV infections 

prevented in the general population between 2003 to 2008.108,109 The success of these types 

of approaches, however, depends on having an in-depth understanding of local epidemic 

drivers in the HIV epidemics of sub-Saharan Africa.

Assessing the impact of an intervention

Molecular epidemiology approaches also hold promise in evaluating HIV prevention 

interventions. At the individual level phylogenetics has been used to confirm or refute 

transmission linkages among seroconverters and their partners in heterosexual 

serodiscordant partnership trials.110,111 By determining genetic linkages between enrolled 

partners, the primary efficacy of the intervention can be better assessed (if transmission 

occurred between partners despite the intervention, or did the transmission arise from an 

outside partnership). The Partners in Prevention HSV/HIV Transmission study (PiP) 

assessed the efficacy of genital herpes suppression in reducing HIV transmission among 

serodiscordant couples in east and southern Africa.110 Nearly 27% of couples were found to 

be unlinked through phylogenetic analyses, showing that a substantial number of 

transmissions occurred through outside partnerships. In HPTN 052, pol and env sequences 

among index-partner pairs and controls were also evaluated with phylogenetic methods.111 

Similar to PiP, 24% of the index cases were not linked to their partner. There was a strong 

association between linked transmission and the delayed ART initiation study arm: 28 of 29 

linked transmission events were in the delayed arm. The association between early ART 

initiation and transmission reduction became stronger when only the linked events are 

included in the analysis; this emphasizes the importance of genetic linkage analysis to assess 

seroconversion events in prevention studies.
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Several combination prevention trials that will assess the impact of TasP on a population 

level are either planned or are currently in progress in sub-Saharan Africa. Most of these 

trials have planned or are considering integration of molecular epidemiology analyses (Table 

3).

At the population level, analysis of genetic data can potentially supplement standard 

approaches to evaluate the impact of an intervention. Comparative phylogenetic analyses of 

a baseline trial population and the population over the course of a trial can reveal the 

emergence or disappearance of clusters associated with particular traits. This approach was 

used to assess the impact of targeted hepatitis B vaccination in The Netherlands, and showed 

that resulting decreases in HBV incidence were due largely to declines in intravenous drug 

or heterosexual (but not MSM) risk groups.112 However, a follow-up study with increased 

sample size (n=894, versus n=85) suggested that reduced HBV transmission was in fact due 

to reduced incidence in MSM, highlighting the importance of sample size and extended 

sampling periods for studies of this type.113 Alternatively, gene sequence data can be used to 

reconstruct HIV transmission networks rather than phylogenies, and cluster size 

distributions (CSD) can be compared over the course of a prevention trial or 

intervention.59,114,115 In theory, CSDs will be dominated by larger clusters in populations 

where epidemic drivers (individuals with relatively high infectiousness) persist. Changes in 

CSD can reflect an intervention’s impact on particular subgroups or the overall transmission 

patterns. These population level approaches may be most suitable for trials in which clear 

incidence outcomes are equivocal, or in which there are clear decreases in incidence but the 

underlying cause is unknown. While the methods can be applied to a trial with any targeting 

strategy, clinical and demographic data from sequenced individuals are required.

Phylodynamics is the use of pathogen sequences to reconstruct epidemic history using viral 

genealogies and explicit population genetic models.114,116,117 Despite great methodological 

potential and scientific interest, phylodynamics has to date been rarely used for impact 

evaluation. This is likely related to a lack of consensus about the interpretation of the 

estimated parameter Ne, (nominally the effective population size, a quantity proportional to 

the number of infected individuals, and estimated by coalescent approaches within the 

product Ne * tau, where tau is the mean (viral) generation time). Estimates of both Ne and 

tau can be strongly affected by epidemic stage, transmission dynamics, or population 

sampling,11,118,119 and come with large variances. There is poor resolution of population 

size changes in the recent past (~5 years).119 Additionally, simulation studies have shown 

that it may be difficult to disentangle the effects of changing incidence and changing 

transmission networks on phylodynamic parameters;119,120 information on transmission 

network structure might be required for accurate parameter estimation. On a positive note, 

there is a growing base of modeling approaches to understand the relationships between 

epidemic models, phylogenetics, and transmission networks, which could be utilized to 

better understand how transmission network structure affects phylogenetic trees, and to 

model outcomes of specific prevention trial designs.60,114,121–125 Of particular interest is the 

incorporation of stochastic birth-death processes into phylodynamic estimation of epidemic 

parameters in lieu of standard coalescent models, allowing for more realistic assumptions 

about changes in epidemic size through time.126–130
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CHALLENGES AND SOLUTIONS FOR IMPLEMENTING PHYLOGENETIC 

STUDIES IN GENERALIZED EPIDEMICS

Phylogenetic analyses of HIV transmission and other epidemiological questions hold great 

promise to further our understanding of generalized epidemics and inform prevention 

efforts. However, we must consider how differences between concentrated and generalized 

epidemics will affect the design and implementation of such studies. Below we note several 

key challenges that must be met, followed by potential solutions.

HIV transmission networks will be difficult to detect with limited population sampling

As seen in phylogenetic studies of concentrated HIV epidemics, a large sampling fraction 

(e.g. >25% of infected individuals in a community) is needed to identify transmission pairs 

or clusters. This result is seen empirically24 and in simulations.121122 For phylogenetic 

studies in generalized HIV epidemics, especially in regions where prevalence can exceed 

10%, a substantial number of individuals will need to be sampled and sequenced.

Potential solution 1—Population sampling that is biased toward sequencing of incident 

cases can both decrease the required sample fraction and increase the probability of 

identifying transmission linkages. This “targeted” sampling strategy contrasts with the 

opportunistic sampling strategy generally found in standard phylogenetic studies. The 

approach is suited for studies that seek to identify HIV transmissions, rather than reconstruct 

viral evolutionary history. As such, phylogenetic studies of transmission will be most 

informative and efficient when epidemiological questions are not simply overlaid onto ad-

hoc phylogenies reconstructed from randomly sampled individuals in a population (the 

standard approach for phylogenetic studies in e.g. systematics, biogeography and 

phylodynamics).

Potential solution 2—Population sampling conducted over multiple time periods, with 

the initial sample completed prior to the intervention, increases the probability of identifying 

transmission pairs or clusters with phylogenetic analysis. Transmission studies in 

concentrated epidemics generally involve post-hoc use of sequence datasets which allows 

for retrospective analyses of epidemic history or transmission dynamics. The utility of HIV 

phylogenetics to inform prevention trials cannot be fully realized, however, based solely on 

retrospective analyses. The sampling frequency required to improve transmission cluster 

detection is unclear, and will likely vary according to local incidence rates.

HIV sequencing requirements may be extensive

As large sample fractions will be required for informative phylogenetic analyses of 

generalized epidemics, significant de novo sequencing effort will be necessary, even with 

“targeted” sampling of incident infections. This will require extensive technical capability 

and ability for large volumes of sequences to be generated relatively rapidly. Except for the 

SATuRN database,61 there are no standing HIV sequence databases in the region that can be 

readily used for molecular epidemiological studies, in contrast to resource-rich settings that 

have a larger proportion of sequences deposited compared to their epidemic size (Figure 2).
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Potential solution—Developing a sequencing pipeline is necessary for large scale HIV 

phylogenetic and molecular epidemiology projects. Five features of this pipeline are 

required: 1) the pipeline must work on clinical samples; 2) it must scale across multiple 

diverse HIV genomes (different subtypes), based on a universal primer set, or alternative 

methods of genome enrichment that produce equivalent amplification rates across diverse 

samples; 3) it must scale from 100s to 1000s of samples with ~75% sequencing success rate 

across a wide range of genome copy number (viral loads of the individual samples); 4) it 

must produce accurate consensus sequences with no manual editing; 5) it must detect and 

accurately quantify minority variants; and 6) it must maximize the informative phylogenetic 

signal, by extending sequencing from one gene (typically the partial pol gene sequenced to 

around 1kbase length), to the whole viral genome (9.8kbase in length).131 A component of 

this solution may be the development in Africa of the capacity for high-throughput full 

genome HIV sequencing.

The development of a pan-African sequence database (analogous to the LANL HIV 

Sequence Database), will provide an important resource for future studies. The few 

phylogenetic studies of HIV transmission in Africa to date79,132 suggest that extra-

community HIV transmission sources are common. The potential role of a large pan-African 

database would be to provide sets of African outgroup sequences, in order to identify extra-

community sources and to clarify their impact vs. undiagnosed local sources. The database 

would also be useful for studying the spread of inter-subtype recombinants and for 

characterizing the diversity of regional epidemics in Africa, i.e. for phylodynamics and 

phylogeography of the African HIV epidemic.

Methodological challenges: Integrating molecular epidemiology into phylodynamics

Molecular epidemiology and phylodynamics have both been areas of active methodological 

development, as evidenced by the articles referenced above. Nonetheless, current studies in 

molecular epidemiology that define risk factors for transmission do not make full use of the 

data available, and do not adequately account for the uncertainty and arbitrariness inherent 

in clustering.

Potential solution—A preferable approach would be to integrate the estimation of 

transmission risk factors (and other statistics of molecular epidemiology) directly into a 

phylodynamic inference framework, so that all of the data available could be used and 

arbitrary clustering would not be a prerequisite step. Some authors have begun this 

process,133 but further methodological development and validation is needed. Additionally, 

the development of consistent quantitative definitions of transmission clusters, e.g. based on 

tree shape characteristics such as average branch lengths or nodal support, can make the 

identification of clusters more rigorous;134 this includes assessing the statistical significance 

of trait clusters via simulation procedures similar to those used to examine gene flow among 

populations.135

Ethical challenges: risks to individual privacy and stigmatization

Ethical challenges in studies involving transmission dynamics in HIV epidemics extend 

beyond those faced by randomized HIV control trials136 and apply to both concentrated and 
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generalized epidemics. Phylogenetic studies conducted at the village or small community-

level may involve collection of HIV sequences and individual clinical and demographic 

data, and in some studies may include geographic location data. The risk of individual 

identification could result in the loss of privacy and, in locations where HIV transmission or 

reckless exposure is a criminal offence, prosecution. Additionally, an important goal in 

phylogenetic studies of transmission is to identify traits associated with individuals and 

groups responsible for onward HIV transmission. Thus there is the potential for 

stigmatization of individuals linked with or have common features of transmission network 

members, either underlying (e.g. socioeconomic or demographic group) or proximate (e.g. 

injection-drug use or sexual practice).22,23 In contrast to the stigma related to HIV-infection, 

this challenge will include HIV-negative individuals as well.

Potential solution—Although sampling from generalized epidemics in regions of high 

prevalence might make such identifications unlikely, principles and governance on patient 

identifiable data will be necessary. Data from phylogenetic studies of transmission should be 

reported in ways where individuals cannot be identified. For example, the UKRDB and the 

Swiss HIV Cohort Study have adopted the strategy where only a minority (e.g. 10%) of the 

sequences collected will be released, with these sequences chosen at random. This includes 

location data; one approach is to reduce the resolution of location data by including a set 

number of individuals (e.g. 200) in the location set, such that individual identification by 

location is not possible. These data security strategies will also be addressed in the patient 

consent process and the tight restriction needed on data release must be recognized by 

funding agencies and scientific journals.

CONCLUSIONS

Opportunities to implement phylogenetic methods at the inception of HIV prevention studies 

should not be lost. Progress in computational and analytic techniques for reconstructing HIV 

phylogenies is ongoing. The costs associated with HIV gene or genome sequencing will 

continue to decrease; rapid, high-throughput sequencing will produce more sequences and 

larger databases. These advances make it all but certain that sequences or specimens 

collected in broad reaching studies will eventually be sequenced and used for phylogenetic 

analyses. However, planning for such analyses from the beginning will maximize their 

usefulness and the likelihood that phylogenetic analyses can be used in impact evaluations. 

Additionally, implementing these analyses prospectively will help in identifying hidden sub-

populations or core-transmitter groups, as well as monitoring the spread of transmitted drug 

resistance, especially among rapidly transmitting networks or clusters.
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Figure 1. 
Example population-level HIV phylogeny reconstructed from HIV pol sequences, to 

illustrate the basic approach to identifying traits associated with transmission using a 

phylogeny. Putative clusters of linked transmissions are identified using (ad-hoc) criteria 

such as pairwise genetic distance and/or nodal support (yellow boxes).137 Individual clinical 

or demographic traits are then examined for significant association with linked or unlinked 

individuals in the phylogeny (red lineages designate individuals with a certain trait, e.g. a 

particular transmission risk group). Note that not all individuals are included in transmission 

clusters, and that transmission clusters do not include all individuals with the “red” trait.
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Figure 2. 
The regional distribution of HIV sequences deposited in the LANL HIV Sequence Database 

scaled to the estimated number of persons living with HIV, by WHO region and sub-

Saharan Africa (inset). Map generated through query of the LANL database for number of 

sequences sampled by geographic region and country (http://www.hiv.lanl.gov; queried on 

June 26, 2013). Numbers were scaled to the 2011 WHO estimates on numbers of persons 

living with HIV by region and country (http://apps.who.int/gho/data/).
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Table 1

Categories of genetic analysis related to HIV epidemiology, with examples provided from recent studies 

conducted in areas with generalized epidemics.

Analysis Description Examples

Molecular Epidemiology Quantification of risk factors for transmission 
and epidemic spread; Description of subtypes, 
recombinant forms and drug resistance 
mutations.

Population viral diversity in Mozambique,90 Togo,91 Gabon,92 

Swaziland,96 Kenya,105 and South Africa;97 Identification of 
superinfection in Uganda138 and Zambia;139 Genetic linkage of 
seroconverters;107,110,111 Source of local infections;78,79 and 
Sexual network analysis106

Phylodynamics Quantification of epidemic growth or decline; 
and the cross-validation or enhancement of 
epidemiological model fitting

Epidemic growth in east Africa 67,68, Angola 69, and 
Cameroon72; Comparison of HIV-2 and HIV-1 population 
dynamics in west Africa73

Phylogeography Evaluation of the relationship between human 
migration (both temporary and permanent) and 
disease spread; identification of geographical 
hubs of transmission; and identification of 
local and imported cases

Subtype diversity and recombination;62–65,104 Spatial distribution 
in east Africa;67 Evolution of subtype C in Zimbabwe;66 

Evolution of HIV-1 in Guinea-Bissau;71 Historical diversity in 
Kinshasa, DRC;14 Global spread13
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