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The speed and resolution at which we can scour the genome for DNA methylation changes has improved
immeasurably in the last 10 years and the advent of the Illumina 450K BeadChip has made epigenome-
wide association studies (EWAS) a reality. The resulting datasets are conveniently formatted to allow
easy alignment of significant hits to genes and genetic features, however; methods that parse significant
hits into discreet differentially methylated regions (DMRs) remain a challenge to implement. In this paper
we present details of a novel DMR caller, the Probe Lasso: a flexible window based approach that gathers
neighbouring significant-signals to define clear DMR boundaries for subsequent in-depth analysis. The
method is implemented in the R package ChAMP (Morris et al., 2014) and returns sets of DMRs according
to user-tuned levels of probe filtering (e.g., inclusion of sex chromosomes, polymorphisms) and probe-
lasso size distribution. Using a sub-sample of colon cancer- and healthy colon-samples from TCGA we
show that Probe Lasso shifts DMR calling away from just probe-dense regions, and calls a range of
DMR sizes ranging from tens-of-bases to tens-of-kilobases in scale. Moreover, using TCGA data we show
that Probe Lasso leverages more information from the array and highlights a potential role of hypome-
thylated transcription factor binding motifs not discoverable using a basic, fixed-window approach.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

DNA methylation is an essential epigenetic modification for nor-
mal mammalian development. It refers to the addition of a methyl
group at the 50 position of cytosine nucleotides (C) to form 5-meth-
ylcytosine (mC) and in mammalian cells occurs predominantly at
CpG dinucleotides. CpG dinucleotides are underrepresented in
mammalian genomes but the majority of these loci (70–80%) in a
given cell population exhibit high levels of methylation (mClocus:
>85%). CpGs that remain constitutively unmethylated tend to
cluster into CpG-rich regions called CpG islands (CGIs). Curiously,
pluripotent stem cells harbour an additional 33% of mC at non-CG
(CpH) dinucleotides, however; this epigenetic mark is less stable
and, consequently, these loci often exist as partially methylated
(mClocus: 25–50%). Although in theory every methylated cytosine
has the potential to become de-methylated, less than 22% of autoso-
mal CpGs are dynamically regulated [2]. Nevertheless, the prevail-
ing pattern of variation in DNA methylation leaves a cell-specific
stamp, which together with other epigenetic alterations such as
histone modifications and non-coding RNAs, contribute to a series
of exquisitely coordinated mechanisms that control gene expres-
sion both temporarily and spatially.

Correct acquisition of DNA methylation in proliferating cells is
governed by the DNA methyltransferases (DNMT), a family of three
catalytically-active enzymes comprising maintenance (DNMT1)
and de novo (DNMT3a and DNMT3b) functions. Perturbation of
these genes in mouse results in a range of detrimental phenotypes,
which highlights the indispensable role of DNA methylation in nor-
mal development. These phenotypes include genome-wide partial
methylation loss, developmental delay, erroneous germline
imprints, sterility and embryonic lethality.

Given the clear importance of DNA methylation, concerted
efforts are underway to understand the impact of more subtle
DNA methylation differences on normal development and disease.
Our understanding is gradually coming into focus due to a number
of high-information content methylation technologies that have
emerged in the last 5 years (reviewed in [3]). These include whole
genome bisulfite sequencing (WGBS; [4,5]), methylated immuno-
precipitation sequencing (MeDIP-seq; [6]), reduced-representation
bisulfite sequencing (RRBS; [7]) and the Illumina Infinium Human
Methylation 450K BeadChip (herein termed, ‘‘450K BeadChip’’;
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[8]). All these platforms are capable of generating genome-wide or
whole genome methylation profiles (‘‘methylomes’’) and deliver
high-information content, albeit with different foci [9]. For example,
although WGBS is not amenable to studying large cohorts (due to
the number of reads required to cover each cytosine with sufficient
depth), it can resolve entire methylomes at single nucleotide-reso-
lution; on the other hand, 450K BeadChips only assay approx. 1.8%
of CpGs but are highly amenable to studying large cohorts – a critical
requirement for statistical power; MeDIP and RRBS lie somewhere
in between. All the aforementioned technologies with the exception
of MeDIP-seq, use bisulfite converted DNA to resolve mC at single
base-resolution; in contrast, MeDIP uses an antibody to enrich for
the methylated fraction of the genome and provides a region-based
‘‘consensus’’ methylation level, with resolution concomitant with
sequence insert size [10].

Because sequence-based approaches often provide broad and
uninterrupted methylomic coverage it is not surprising that these
technologies are responsible for identifying the bulk of differentially
methylated regions (DMRs) that distinguish cell-, tissue- and dis-
ease-specific phenotypes. DMRs are discrete genomic sequences
that harbour a distinct methylation signature across a number of
CpGs (and/or non-CpGs) capable of distinguishing one phenotype
from another. Their identification and utility have far-reaching
implications for clinical applications because they ultimately
reduce the scale of the genome to a handful of regions; once DMRs
are validated and replicated it paves the way for time-, cost- and
effort-effective assays that will inform subsequent functional stud-
ies and deliver diagnostic tools.

Even though the majority of DMRs have been identified using
sequencing-based methods, the majority of methylomes have been
generated using the 450K BeadChip; for example, the latest version
of the MARMAL-AID database [11] contains 450K data for more
than 9000 samples from nearly 200 different tissues and almost
100 different diseases. For technical manufacturing reasons though,
the coverage of CpGs on 450K BeadChips has to be restricted. As a
result, and possibly for historical reasons, CpG distribution on the
450K BeadChip is skewed towards CGIs and genes. Moreover con-
tiguous CpGs are not always covered. This has therefore opened
up the challenge to implement a comprehensive algorithm for
DMR calling on 450K BeadChip datasets. A simple approach is to
count significant signals emanating from a fixed-size sliding-win-
dow. This way a DMR could be defined if a window (or contiguous
windows) of certain size capture a specified number of significantly
associated probes. As discussed above however, this is contentious
due to the distribution of CpGs and risks restricting DMR calling to
regions most heavily probed. There are a number of DMR calling
methods within the public domain that have application to the
450K BeadChip. These include ‘Bump Hunting’ [12], ‘Block Finding’
[13], ‘AClust’ [14], and ‘DMRcate’ [15].

Here we introduce an alternative DMR calling method, the Probe
Lasso. Probe Lasso utilises a flexible window (‘‘probe-lasso’’) based
on probe density to gather neighbouring significant-signals to define
clear DMR boundaries. The principal motive for developing this algo-
rithm is to redirect subsequent analysis away from just probes/
regions located in promoters/CGIs, which the array is skewed toward
and leverage information from putatively important, but largely
ignored, intergenic regions. To illustrate this we benchmark Probe
Lasso against a fixed window approach. Probe Lasso shares similari-
ties with another DMR calling method, ‘Comb-p’ [16] although there
are notable differences; in particular, Comb-p uses auto-correlation
data to first correct individual probe p-values, then defines DMRs
based on peaks of corrected p-values. In contrast, Probe Lasso gathers
neighboring significant signals from probes in regions that can
extend according to the probe’s genomic/epigenomic annotation
and then uses auto-correlation information to combine the p-values
of probes within a DMR.
2. Materials and methods

2.1. Preprocessing and methylation-variable position (MVP) calling

Probe Lasso is implemented within the Bioconductor package
ChAMP [1], and relies on a series of objects created using this pack-
age. The following provides a brief description of a typical workflow
using ChAMP. Raw data (.idat files) are loaded using the champ.load
function to derive a list object that contains, among other things,
methylation levels (‘beta’) of probes for samples specified in a sam-
ple sheet (‘pd’) and detection p-values (‘detP’) for each probe. We
remove samples with call rates (i.e., detP <0.01) less than 98%, and
then remove probes that do not provide complete information
across all samples. Beta values are inter-array normalised using
one of a variety of publically available procedures with the champ.-
norm function and subject to singular variable decomposition (SVD)
analysis with champ.svd to identify potential confounding factors.
MVPs are then identified for appropriate contrasts using
champ.mvp, which implements the limma package [17] and the
resulting object is used for DMR calling using champ.lasso.

2.2. Dependencies

To call DMRs effectively champ.lasso requires each probe to
have genetic and epigenetic feature annotation and polymorphism
data. Genetic and epigenetic feature annotation is maintained in
the Bioconductor package IlluminaHumanMethylation450kmanifest
and contains information such as chromosome, mapping position,
nearby genes and/or CGIs; polymorphism data is held in the Bio-
conductor package Illumina450ProbeVariants.db, which contains
allele frequency information of variants within a probe, within
10 bp of target locus or at target locus for four different ancestry
groups (African, American, Asian and European) derived from
1000 Genomes Project [18] data.

2.3. Probe Lasso rationale

Fig. 1A illustrates that probe spacing on the 450K BeadChip is not
uniform with regard to gene feature: probes within 200 bp of a tran-
scription start site (‘‘TSS200’’) are most densely spaced whereas
probes in 30 UTRs and intergenic regions (‘‘IGRs’’) are least-densely
spaced. Unsurprisingly, given the definition of CGIs and their deriv-
atives [8], Fig. 1B reveals that probe density decreases the further a
probe maps from a CGI (CGI ? shore ? shelf ? open sea). Further-
more, probe spacing at a specific gene feature covaries with its CGI
relation (herein termed ‘‘genetic/epigenetic feature’’), which diver-
sifies probe spacing even more (Fig. 1C). Taken together, these fig-
ures show that gathering neighbouring significant signals on the
450K BeadChip requires a dynamic calling framework.

2.4. Probe Lasso workflow

To account for uneven probe spacing, Probe Lasso generates
dynamic, flexible windows (‘‘lassos’’) that are tailored to local fea-
ture content. Fig. 2 summarises how Probe Lasso calls DMRs. Much
like the real thing, probe-lassos can be envisaged as having a centre
and a radius; once derived, a probe-lasso is ‘‘thrown’’ around a
probe and its radius extends upstream and downstream, centred
on the targeted CpG itself. (Meaningful DMR calling using non-
CG loci exclusively cannot be facilitated owing to their scant distri-
bution on the 450K BeadChip.) Importantly, probe-lasso derivation
is entirely dataset- and user-specific. For example, datasets can be
filtered a priori for probes mapping to sex chromosomes (filterXY);
datasets can also be filtered for the inclusion/exclusion of probes
potentially affected by polymorphisms of a specified minor



Fig. 1. Probe spacing on the Illumina 450K BeadChip. (A) Probes are gene-centric, with those near transcription start sites (TSSs) most densely spaced. (B) Probe spacing is
sparser the further a probe’s distance from a CpG island (CGI). (C) Combining genetic and epigenetic annotation information reveals a diverse range of probe spacing.
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allele-frequency (mafPol.lower, mafPol.upper) in a chosen popula-
tion (popPol); also, only probes with association statistics inform
probe spacing calculations to derive probe-lassos.

Following probe filtering, Probe Lasso calculates probe spacing
for each probe in the dataset; these data are binned into one of
the 28 genetic/epigenetic categories (i.e., 7 gene features � 4 CGI
relations) and transformed into quantile distributions. Next, a con-
tingency is set up depending on two user-specified parameters, las-
soStyle and lassoRadius. If lassoStyle = max, the probe-lasso sizes
will be at most 2 � lassoRadius bp; if lassoStyle = min, the probe-
lassos will be at least 2 � lassoRadius bp. Because each genetic/epi-
genetic category has unique probe spacing, Probe Lasso identifies
the genetic/epigenetic category that conforms to user-specified
maximum (or minimum) lassoRadius and derives the quantile at
which it occurs. The derived quantile is then applied to each
genetic/epigenetic distribution of probe spacings to create probe-
lassos that vary according to genetic/epigenetic-feature (see Fig. 3).

Depending on which genetic/epigenetic feature a probe maps
to, an appropriately sized probe-lasso is thrown around each
probe, centred at the target locus. Probe Lasso counts the number
of significant probes caught within the probe-lasso bounds and a
probe is selected if this number is greater than or equal to the
user-specified threshold, minSigProbesLasso. Champ.lasso pro-
duces a map of probe-lasso boundaries so that overlapping- and
neighbouring lassos are merged if they are separated by less than
the user-specified threshold, minDmrSep. A DMR is called when
probe-lasso boundaries cease merging. DMR coordinates are
defined by the minimum and maximum genomic coordinates of
probe-lasso boundaries for probes in the DMR. A secondary set of
coordinates are also output, known as the ‘DMR core’, defined by
the minimum and maximum genomic coordinates of probes
within the DMR. DMRs that are smaller than the user-specified
parameter, minDMRsize are filtered out from subsequent analysis.

Next, a p-value is estimated for the DMR itself. Because DNA
methylation levels at neighbouring probes can be substantially
correlated [19], Fisher’s method for combining p-values is inappro-
priate. Instead, Probe Lasso uses Stouffer’s method [20] to assign
weights to individual p-values, which are based on the underlying
correlation structure of measured beta values, before combining
them. To this end, Probe Lasso recovers all normalised beta values
(from champ.norm) and p-values (from champ.MVP) of probes in
the dataset captured in a DMR. A correlation matrix of normalised
beta values within each DMR is calculated, which is then used to
weight each probe’s p-value by the inverse sum of its squared cor-
relation coefficient. This has the effect of down-weighting p-values
of highly correlated (non-independent) probes and up-weighting
p-values of uncorrelated (independent) probes. p-Values for DMRs
are corrected for multiple testing with the false discovery rate
(FDR) method [21].

In the end, Probe Lasso returns a data frame containing all probes
in all DMRs, along with genome annotation for each probe and DMR
details such as DMR coordinates, size and FDR-corrected p-value.
2.5. Probe Lasso and sliding fixed-window parameters

As a proof-of-principle we benchmarked the Probe Lasso algo-
rithm against a sliding fixed-window approach to DMR calling using
data from The Cancer Genome Atlas (TGCA, http://cancerge-
nome.nih.gov; [22]). To ensure the MVP list was consistent between
algorithms, we kept the following probe-filtering parameters con-
stant across both algorithms: filterXY = TRUE, mafPol.lower = 0, maf-
Pol.upper = 0, popPol = ‘‘eur’’. The following DMR-classifiers were
kept constant across both algorithms: minDmrSep = 1000, and minD-
mrSize = 0. We also set the threshold of significance for MVPs cap-
tured by lassos/windows using adjPVal = 0.05. Finally, the
algorithms were compared for increasingly stringent DMR-calling
conditions, by varying the minimum number of significant probes
captured in a lasso/window to 3, 5 and 7 (i.e., Probe Lasso algorithm:
minSigProbesLasso = 3|5|7). Parameters exclusive to the Probe-Lasso
algorithm that controlled the dynamic nature of probe-lasso sizes
were set as follows: lassoStyle = ‘‘max’’, lassoRadius = 2000.

For the sliding fixed-window approach we chose three window
sizes: 250 bp, because this returned a comparable number of
probes/DMRs when using Probe Lasso with the above mentioned
parameters; 750 bp, because this corresponded to the mean size
of dynamic windows using Probe Lasso with the above mentioned
parameters; and an extreme case of 2000 bp. Contiguous windows
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Fig. 2. Schematic figure illustrating the Probe Lasso workflow. After probe spacing distributions have been calculated for each of the 28 genetic/epigenetic features, a quantile
is set that is based on a user-specified min/max lasso size and lasso radius. This quantile results in 28 dynamic window sizes (‘probe-lassos’) that are thrown around each
significantly-associated probe. If these lassos capture a user-specified number of significant probes, that probe’s lasso boundaries are retained. Overlapping- and
neighbouring-lasso boundaries less than a user-specified distance apart are then merged to define DMR boundaries. All probes in the dataset are then binned into the DMRs
and their p-values combined for the DMR, weighted by the underlying correlation structure of probe methylation values.
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overlapped 50%. Sliding fixed-window approaches are referred to
herein as ‘window.250’, ‘window.750’ and ‘window.2000’.

3. Results and discussion

3.1. Dataset

We downloaded raw intensity data (idat files) for 38 normal
colon and 40 colorectal cancer samples from TCGA and fed these
through the ChAMP pipeline. After filtering out one normal colon
sample that had <98% of probes passing detection filters
(p < 0.01), we filtered out probes mapping to the sex chromosomes,
non-CG probes and probes with at least 1 poor-detection value
(N = 22,720). The final dataset comprised 448,832 autosomal
probes in 77 samples. We found no evidence of technical con-
founders using champ.SVD (see Supplementary Fig. 1).
3.2. Methylated variable positions and DMR calling

After implementing champ.MVP we found 192,981 MVPs (FDR
<0.05) and these were distilled into DMRs using Probe Lasso (‘lasso
DMRs’) and a sliding window approach (‘window DMRs’). Imple-
menting Probe Lasso as part of champ.lasso outputs a series of



Fig. 3. An example quantile distribution of probe spacing for each gene/CGI feature. The black horizontal and vertical dashed lines indicate the quantile (43rd) that results
from choosing a maximum lasso size of 2000 bp.

Fig. 4. Enrichment plot illustrating the distribution of genetic/epigenetic features for probes captured using the Probe Lasso algorithm (dark-grey bars), a sliding-fixed
window approach (mid-greys) and all MVPs (light-grey). As predicted, the sliding fixed window approach enriched for probes near transcription start sites (TSSs) and CGIs.
Conversely, the Probe Lasso enriches for CGI shelves and open sea, which is more in keeping with the genetic/epigenetic features of all MVP probes.
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figures that allows the user to gauge whether their chosen param-
eters were set appropriately. These are: the quantile distribution of
probe spacing split by genetic/epigenetic feature (Fig. 3), showing
the quantile derived from user specified parameters; a plot
showing the sizes of lassos thrown around significant probes
(Supplementary Fig. 2); and the dataset-specific range of probe
spacing split by genetic/epigenetic feature (Supplementary Fig. 3).
3.3. DMR localization

The principal aim of the Probe Lasso is to moderate DMR calling
away from regions that are simply more probe-dense. We calcu-
lated the enrichment of genetic-, epigenetic- and genetic/
epigenetic-features for probes in lasso DMRs, window DMRs and
for the global MVP distribution. We used previously published



Table 1
Summary of the number of DMRs and probes within DMRs called using the Probe Lasso and fixed sliding-window approach. Sequence overlap is relative to the amount of
sequence discovered in Probe Lasso DMRs.

Algorithm Stringency
(# probes)

# DMRs # Probes Total DMR
sequence [Mb]

DMR sequence
overlap [%]

Total DMR core
sequence [Mb]

DMR core sequence
overlap [%]

Probe Lasso 3 7028 38,524 10.0 4.8
Window.250 7416 41,028 3.3 15.0 2.2 19.4
Window.750 13,458 92,470 16.7 43.5 10.2 46.2
Window.1000 16,178 148,323 52.3 81.3 28.2 82.9

Probe Lasso 5 1226 11,556 2.6 1.5
Window.250 1428 11,335 0.5 5.3 0.4 6.7
Window.750 4425 39,455 4.7 22.9 3.2 25.7
Window.2000 7385 84,610 22.2 67.9 13.8 70.2

Probe Lasso 7 395 5035 0.9 0.6
Window.250 400 4068 0.1 3.7 0.1 4.5
Window.750 1690 18,748 1.7 17.2 1.2 18.4
Window.2000 3840 52,443 11.0 58.6 7.4 61.4
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definitions of epigenetic relations [8]. Fig. 4 and Supplementary
Fig. 4A and B illustrates that window DMRs, regardless of window
size, were heavily skewed towards probe dense regions (e.g., most
genetic features within CGIs and some CGI shores) and away from
probe-sparse regions (e.g., 50 UTRs, gene bodies, 30 UTRs and inter-
genic regions occurring within CGI shelves and open sea). There
were significant differences in feature enrichment profiles for all
three window-based approaches (with all three stringencies) com-
pared with those of just MVPs (p-value range: 0.0015–0.0109, Kol-
molgorov–Smirnov test). In contrast, lasso DMR enrichment
profiles were not significantly different (p > 0.1, Kolmolgorov-
Smirnov test) to the enrichment of just MVPs, apart from when 7
probe stringency was employed (p = 0.026).
Fig. 5. DMR, probe and sequence sharing between Probe Lasso and window.250
algorithms. Approximately 50% of DMRs are shared between the two methods (A),
but the number of probes shared is less (B). When DMR sequences are analysed, we
see a drastic reduction in shared information (C), which is due to Probe Lasso DMRs
leveraging more information from IGRs, which are typified by lower CpG density.
This trend is maintained even when probe-lasso boundaries are controlled for (D).
3.4. DMR coverage

Table 1 summarises the number of DMRs called using both algo-
rithms for each of the three different stringencies. Comparing like-
for-like window sizes (window.750) we can see that the sliding
fixed-window approach is less discerning than Probe Lasso across
all three stringencies: under the least stringent condition (minSigP-
robesLasso = 3) nearly a fifth of all probes tested fall into window
DMRs. Reducing the window size by two-thirds (window.250)
resulted in a similar output of probes and DMRs as Probe Lasso,
whereas increasing the window size (window.2000) resulted in lit-
tle data reduction from the original MVP list, with over three-quar-
ters of significant probes and a third of all probes tested being
binned into DMRs. As expected, increasing stringency reduced the
number of DMRs called, to the point where less than a 1 Mb of
genetic- and epigenetically-diverse sequence can be followed up
for targeted analysis (e.g., Probe Lasso, 7 significant probes per
lasso).

We next assessed the uniqueness of window DMRs and Probe
Lasso DMRs. With stringency at its lowest and comparing algo-
rithms with similar numbers of DMRs (window.250), 24.3% of all
DMRs were unique to Probe Lasso and 27.3% were unique to win-
dow DMRs (Table 1 and Fig. 5A). The number of unique DMRs
increased with stringency: 31.6% of lasso DMRs and 38.7% of win-
dow DMRs were unique using 5 significant probes; and 37.3% of
lasso DMRs and 37.7% of window DMRs were unique using 7 signif-
icant probes. The proportion of probes unique to each algorithm
was higher than the proportion of unique DMRs (Probe Lasso:
37.8%; window.250: 40.3%; Fig. 5B).

When sequence sharing was analysed we observed even more
exclusivity: for example, of the 9.95 Mb of sequence covered by
lasso DMRs (using 3 significant probes), 63.7% was unique (Table 1
and Fig. 5C). Moreover, sequence exclusivity for DMRs from differ-
ent algorithms rose disproportionally to DMR exclusivity when
stringency was increased to 5 probes (78.7% unique sequence of
2.6 Mb) and then 7 probes (83.8% unique sequence of 0.9 Mb). To
confirm this was not due to ‘‘dead space’’, that is, DMR boundaries
extending into regions for which we have no data, we constrained
each DMR boundary to the genomic coordinates of the first and last
probe in each DMR (the ‘‘DMR core’’). Here we observed a similar
trend with increased stringency: for 3 probes, 54.9% of the 4.8 Mb
DMR core sequence was unique to Probe Lasso DMRs; for 5 probes
75.4% of 1.53 Mb was unique; and for 7 probes 81.5% of 0.62 Mb
was unique. So although the two algorithms pick DMRs that overlap
by nearly 50%, the sequences likely to be followed up could differ
drastically.

This is partly due to Probe Lasso picking DMRs across a range of
genetic- and epigenetic-features and is reflected in the distribution
of DMR sizes. Fig. 6 shows that Probe Lasso calls DMRs ranging
from 19 bp through to 25 Kb. It also highlights that fixed-window
approaches are somewhat constrained to calling DMRs only as
small as the window size, although this is ameliorated by focussing
on DMR cores (Supplementary Fig. 5). Nonetheless, Probe Lasso
strikes a decent balance between a wide-range of DMR sizes and
a focussed number of DMRs.



Fig. 6. Violin plots demonstrating the distribution of DMR sizes using the Probe Lasso and sliding fixed-window approach with different levels of stringency. Generally, the
Probe Lasso captures a wider range of DMR sizes while the smallest DMRs captured by a sliding-window based approach are often constrained to the size of a non-
overlapping window. Overall, the Probe Lasso accomplishes a similar job to the combined effort of sliding windows of various sizes, without generating an unwieldy number
of DMRs.
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3.5. Biological relevance of DMRs

Because of the disparity between the number of DMRs defined
by window.750 and window.2000 with Probe Lasso, we focussed
our attention on comparing Probe Lasso DMRs with window.250
DMRs. Analysis of each DMR set revealed both methods detect
hypermethylated DMRs in previously associated colorectal cancer
genes such as BMP3, EYA2, ALX4 and VIM [23] as well as MLH1
[24]. However, focussing on significant probes in DMRs unique to
each algorithm (Probe Lasso: N = 8947; window.250: N = 11,708)
reveals interesting differences between each method. Firstly, and
possibly unsurprisingly, significant probes in unique window.250
DMRs were most often found in TSS-associated regions
(TSS1500 = 21.5%; TSS200 = 36.7%) and CGIs (71.6%); on the other
hand, significant probes in unique Probe Lasso DMRs were most
likely to be found in gene bodies (30.3%) and IGRs (48.7%), and
highly likely to be in Open Sea (60%). Interestingly, there was little
difference in the representation of 50UTR genomic features (8.0% vs.
6.9%) and CGI shores (20.4% vs 18.5%).

As a means of characterizing the unique DMRs we next sought
to identify putative biological processes associated with unique
DMRs. We performed a motif analysis using the Discriminative
Regular Expression Motif Elicitation (DREME; [25]) tool using
16mers centred around the target sites of significant probes in
DMRs unique to each algorithm. The number of motifs discovered
in each DMR set was small (window.250 vs. Probe Lasso: 5 vs. 4)
but proportional to the number of probe motifs input from each
algorithm (11,708 vs. 8947). These motifs were then submitted
to Tomtom [26] to identify possible DNA binding proteins. A total
of 42 potential DNA binding proteins were associated with the 9
motifs identified in both DMR sets. Of these, nine were in common
and included STAT members, EGR2 and N-MYC. There were 11
DNA binding proteins associated with unique Probe Lasso DMRs
and these included PAX family members, EHF and PPARG; the
remaining 21 proteins were unique to window.250 DMRs and
included E2F1-, KLF- and SP-family members (see Supplementary
Table 2 for details). It is perhaps not surprising that more motifs
were associated with DNA binding proteins in the unique win-
dow.250 DMR set given the skew towards probes near transcrip-
tion start sites, where DNA binding activity is higher; however, it
is interesting to note that the motifs discovered in the unique
Probe Lasso DMR set were associated with a more diverse range
of Gene Ontology predictions, potentially highlighting novel path-
ways previously ignored due to historical preference for focussing
on gene promoters (see Supplementary Table 2).

Finally, we examined the subset of probes that matched signif-
icantly-associated motifs to gauge whether unique DMRs could be
characterised by unique DNA methylation patterns. Curiously, we
found probes mapping to Probe Lasso-derived motifs showed a
strong tendency for hypomethylation in colorectal samples (see
Supplementary Fig. 6A), possibly leaving these binding sites open
to the actions of transcription factors. Conversely, the opposite pat-
tern was found for window.250-derived motifs, suggesting
increased affinity for transcription at putative tumor suppressor
genes (see Supplementary Fig. 6B).

4. Conclusions

In this paper we present the Probe Lasso, a method for calling
DMRs using Illumina 450K Methylation BeadChip arrays. Probe



28 L.M. Butcher, S. Beck / Methods 72 (2015) 21–28
Lasso is implemented as part of suite of functions in the Biocon-
ductor package, ChAMP – an all-in-one analysis pipeline that takes
raw methylation data and derives MVPs and DMRs for further
investigation. Probe Lasso has considerable advantages over more
basic methods of DMR calling, such as sliding-fixed window
approaches. The first is that DMRs are not skewed towards
probe-dense regions, and is capable of leveraging more informa-
tion from the array. Secondly, using a small subset of TCGA data
we show that Probe Lasso DMRs highlight the role of hypomethy-
lated transcription factor binding motifs that play key roles in
potentially novel pathways. Finally, the Probe Lasso algorithm
introduces a framework that could lend itself to DMR calling with
whole-genome bisulfite sequencing; here, instead of using probe
spacing, and because WGBS benefits from complete coverage,
CpG density could be used to mark out DMR boundaries.
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