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Abstract

Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse 

in the brain using experimental models. This review, which considers opiates, methamphetamine, 

and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the 

pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome 

(neuroAIDS) and drug abuse comorbidity. Clinical findings are less concordant than experimental 

work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-

genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, 

and addictive behavior. However, genetic differences alone cannot account for individual 

variability in the brain “connectome”. Environment and experience are critical determinants in the 

evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over 

determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular 

macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected 

bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself 

derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. 

The negative consequences of coexposure to HIV and drug abuse are determined by numerous 

factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated 

throughout life and their progenitors appear to be targets of HIV and opiates/psychostimulants. 

The chronic nature of HIV and drug abuse appears to result in sustained alterations in the 

maturation and fate of neural progenitors, which may affect the balance of glial populations within 

multiple brain regions.
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1. INTRODUCTION

For several decades drug abuse has been recognized as a significant risk factor for acquiring 

HIV infection and has been suggested to worsen some aspects of HIV infection within the 

brain. However, the enormity of the problem has been emphasized by a sustained nearly 

two-decade effort of the National Institute on Drug Abuse (NIDA) to study and treat this 

problem. As initially affirmed by Dr. Alan I. Leshner, former director of NIDA, “Drug 

abuse and HIV are truly interlinked epidemics” (Swan, 1997; Biber, Neumann, Inoue, & 

Boddeke, 2007; Andres et al., 2011). Despite widespread acceptance of this concept and 

impressive new gains in our understanding of this problem, there is a realization that the 

interplay between HIV and drug abuse is more complex than initially surmised. Many 

authoritative reviews describing the effects of drug abuse on neuroAIDS have been 

published and our goal here is not to repeat past dialogue. During the past decade, there has 

been considerable new information—especially with respect to increasing evidence that glia 

are fundamental sites of convergent drug abuse-HIV interactions and the emerging 

realization of the influence of host genetic factors on the severity of drug abuse and 

neuroAIDS comorbid interactions. This review will highlight recent findings emphasizing 

the role of glia and genetic factors in shaping the interactions of opiates and 

psychostimulants with neuroAIDS. Reviews on the effects of cannabinoids and ethanol on 

HIV neuropathogenesis are provided elsewhere within this issue, and not repeated here.

1.1. OPIATES AND HIV—PRECLINICAL AND CLINICAL FINDINGS

In this review, we will use the term “opiate” to refer to products or derivatives that can be 

found naturally in the opium poppy, Papaver somniferum. Opiates include heroin, morphine, 

and codeine; whereas, “opioids” refer to the endogenous system of related peptides and 

receptors initially revealed through the actions of opiate drugs.

Chronic opiate abuse alone is sufficient to promote neurodegenerative changes in the CNS. 

Clinical evidence from a cohort of preferential opiate abusers in Edinburgh, UK 

demonstrates that chronic abuse accelerates Alzheimer’s disease-like pathology in HIV-

negative individuals (Ramage et al., 2005; Anthony et al., 2010). Chronic preferential opiate 

abuse caused an accumulation of hyperphosphorylated tau-positive neuropil threads in the 

frontal and temporal cortex, and in the locus coeruleus compared to similarly aged-control 

subjects (Anthony et al., 2010). Increases in hyperphosphorylated tau were accompanied by 

increases in glycogen synthase kinase 3β and cyclin-dependent kinase-5 levels, as well as 

microgliosis—indicative of accelerated aging, and signaling events associated with 

Alzheimer’s disease prematurely (Anthony et al., 2010).

There are compelling reasons to investigate opioid and HIV interactions and their role in a 

more severe and/or accelerated neuropathogenesis. In a seminal pre-combination 

antiretroviral (cART) era investigation, the presence of multinucleated giant cells and HIV 

p24 reactivity in the CNS was found more frequently in preferential opioid drug users (25 of 

45; 56 percent) than in non-drug-abusing men (6 of 35; 17 percent) with AIDS (Bell, Brettle, 

Chiswick, & Simmonds, 1998). Chronic opiate exposure has been reported to increase the 

progression to HIV encephalitis (HIVE) in pre-cART era reports (Bell et al., 1998; Nath et 

al., 2000; Bell et al., 2002), and also worsens neuropathology in cART-treated patients 
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(Smith, Simmonds, & Bell, 2014). Even in cART-treated patients, chronic opiates aggravate 

CNS inflammation (Anthony, Ramage, Carnie, Simmonds, & Bell, 2005; Anthony, Arango, 

Stephens, Simmonds, & Bell, 2008) and worsen HIV-associated neurocognitive disorders 

(HAND) symptomatology—including deficits in verbal and working memory and increased 

peripheral neuropathy (Cohen, 2009; Byrd et al., 2011; Byrd, Murray, Safdieh, & Morgello, 

2012; Robinson-Papp et al., 2012; Meyer et al., 2013). A recent study of a cART naïve 

population of injecting drug users who preferentially abuse heroin in Indonesia showed 

consistent reductions in CD4 counts to non-injecting drug abusers (Meijerink et al., 2014). 

Another recent report suggests that concurrent exposure can selectively increase the severity 

some features of HIVE (Smith et al., 2014). Despite increasing clinical evidence that chronic 

opiate exposure can worsen neuroAIDS, it remains unknown how opioids interact with 

individual HIV expressed gene products to affect subclasses of neurons, astroglia, and 

microglia (Nath et al., 2002; Hauser, Fitting, Dever, Podhaizer, & Knapp, 2012).

Some clinical studies are inconsistent with the findings cited above, and report minimal or 

no neurocognitive differences between HIV ± opiate abuse (Royal, III et al., 1991; Donahoe 

& Vlahov, 1998), suggesting that there are critical genetic (Kreek, Bart, Lilly, LaForge, & 

Nielsen, 2005; Proudnikov et al., 2012), pharmacokinetic (Eap, Buclin, & Baumann, 2002), 

pharmacodynamic, sex (Zubieta et al., 2002; Becker & Hu, 2008; Hahn et al., 2014), and/or 

possible age-dependent differences among opiate abusers that can influence outcomes 

(discussed later). Moreover, the timing of opioid co-exposure in relation to the onset of HIV 

infection or vice versa may have a marked influence on outcome (Fitting et al., 2012). It is 

hoped that advances in the understanding of disease mechanisms, experimental models, and 

methodology will reveal opiate-HIV interactions with increasing clarity.

Preclinical studies more regularly suggest that chronic opiate exposure plays a fundamental 

role in the pathogenesis of HIV in the CNS (Hauser et al., 2012). Briefly, morphine can 

exacerbate HIV-1 toxicity through separate actions in neurons (Gurwell et al., 2001; Hu, 

Sheng, Lokensgard, & Peterson, 2005; Bruce-Keller et al., 2008), including human neurons 

(Hu et al., 2005; Turchan-Cholewo et al., 2006) and in glia. Many of the harmful neurotoxic 

effects are mediated through μ opioid receptors (MOR) (Zou et al., 2011; Hauser et al., 

2012) and differ depending on the CNS cell type involved. Glial targets can include μ opioid 

receptor-expressing astroglia (Hauser et al., 2007; Zou et al., 2011; Hauser et al., 2012; El-

Hage et al., 2013), microglia (Turchan-Cholewo et al., 2008; Turchan-Cholewo et al., 2009; 

Zou et al., 2011; Suzuki et al., 2011; El-Hage et al., 2013; Sorrell & Hauser, 2014), 

oligodendroglia (Hauser et al., 2009; Hauser et al., 2012; Hahn et al., 2014), and glial 

precursors (Khurdayan et al., 2004; Buch et al., 2007; Hahn et al., 2010; Hahn, Podhaizer, 

Hauser, & Knapp, 2012). Details of opiates and HIV interactions in neurons and glia have 

been reviewed previously (Hauser et al., 2005b; Hauser et al., 2006; Hauser et al., 2007; 

Banerjee et al., 2011; Abt & Meucci, 2011; Hauser et al., 2012; Reddy, Pilakka-Kanthikeel, 

Saxena, Saiyed, & Nair, 2012; Festa & Meucci, 2012; Dutta & Roy, 2012).

1.2. PSYCHOSTIMULANTS AND HIV

Numerous authoritative reviews exist on the generalized effects of chronic psychostimulant 

(such as methamphetamine, MDMA) abuse on brain pathology (Cadet & Krasnova, 2009; 
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Buttner, 2011; Buch et al., 2012; Clark, Wiley, & Bradberry, 2013; Cadet, Bisagno, & 

Milroy, 2014; Halpin, Collins, & Yamamoto, 2014). Evidence suggests that 

psychostimulants can act directly on both neurons and glia to disrupt CNS function and 

promote the injury of vulnerable subpopulations of neurons in the CNS. The vulnerable 

subpopulations include dopaminergic, noradrenergic, and serotonergic neurons. Minimal 

attention has been given to stimulants besides methamphetamine, such as 3,4-

methylenedioxymethamphetamine (MDMA or ecstasy), ketamine, or γ-hydroxybutyrate 

(GHB) (Colfax & Guzman, 2006), other than evidence that club drug use increases risky 

sexual behavior associated with increasing HIV transmission (Zuckerman & Boyer, 2012).

Chronic methamphetamine abuse and disruptions to dopaminergic function are especially 

deleterious with HIV-infected individuals (Nath et al., 2000; Theodore, Cass, Nath, & 

Maragos, 2007; Nath, 2010). Methamphetamine addiction results in marked structural 

pathology in the brain (Berman, O’Neill, Fears, Bartzokis, & London, 2008) and increases 

the probability of neuropsychological deficiencies in HIV-infected individuals (Rippeth et 

al., 2004). Many comprehensive reviews exist on the mechanisms underlying the neurotoxic 

effects of methamphetamine alone (Quinton & Yamamoto, 2006; Cadet, Krasnova, Jayanthi, 

& Lyles, 2007; Theodore et al., 2007; Ferris, Mactutus, & Booze, 2008; Berman et al., 2008; 

Krasnova & Cadet, 2009; Cadet & Krasnova, 2009; Nath, 2010; Kaushal & Matsumoto, 

2011; Coller & Hutchinson, 2012; Cisneros & Ghorpade, 2012; Clark et al., 2013; Cadet et 

al., 2014).. Briefly, methamphetamine has both direct and indirect toxic effects on neurons. 

Indirect neurotoxicity is mediated by disrupting glia and/or targets such as the blood brain 

barrier (BBB) or the immune system. Chronic methamphetamine exposure can be 

accompanied by neurodegeneration. Dopaminergic neurons and presynaptic terminals are 

particularly vulnerable (Czub et al., 2001; Flora et al., 2003; Theodore, Cass, & Maragos, 

2006a).

Methamphetamine selectively injures neurons in specific brain regions such as the basal 

ganglia (Seiden & Ricaurte, 1987), although the precise sequence of direct and indirect 

events leading to neuronal injury is not fully understood. Acute exposure to 

methamphetamine induces rapid release of dopamine from presynaptic terminals, while 

chronic dopamine use results in lasting decreases in striatal dopamine and serotonin and 

their metabolites (Kogan, Nichols, & Gibb, 1976; Wagner et al., 1980; Cass, 1997) that are 

accompanied by the destruction of dopaminergic presynaptic terminals in the caudate 

nucleus (Wagner et al., 1980; Brunswick, Benmansour, Tejani-Butt, & Hauptmann, 1992; 

Nakayama, Koyama, & Yamashita, 1993; Krasnova & Cadet, 2009; Pereira et al., 2012; 

Halpin et al., 2014; Nickell, Siripurapu, Vartak, Crooks, & Dwoskin, 2014). 

Methamphetamine inhibits the function of the vesicular monoamine transporter 2 (VMAT2) 

(Hanson, Sandoval, Riddle, & Fleckenstein, 2004; Hanson, Rau, & Fleckenstein, 2004) and 

the dopamine transporter (DAT) (Volkow et al., 2001; Theodore, Cass, & Maragos, 2006b; 

Krasnova & Cadet, 2009; Cadet & Krasnova, 2009; Halpin et al., 2014; Nickell et al., 2014). 

VMAT2 transports dopamine (and other monoamines) from the cytosol into presynaptic 

vesicles (Qi, Miller, & Voit, 2008; Cartier et al., 2010), while DAT reuptakes dopamine 

from the synaptic cleft into the presynaptic terminal. A transmembrane pH gradient is 

necessary for vesicular uptake (Sulzer & Rayport, 1990). Methamphetamine, a weak base, 

limits acidification of the presynaptic cytoplasm and therefore can disrupt vesicular 
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transport. By targeting VMAT2, methamphetamine elevates levels of dopamine within the 

presynaptic terminal. Cumulative increases in dopamine and oxidative byproducts further 

reduce levels of VMAT2 creating a destructive positive feedback cycle. In humans, many 

(but not all) markers of dopamine nerve terminals, such as dopamine itself, tyrosine 

hydroxylase, and DAT, are decreased in brains of psychostimulant abusers (Wilson & Kish, 

1996; Wilson et al., 1996). These effects may be enduring (McCann et al., 1998).

Methamphetamine-related disruption of intracellular redox potential, nitrogen metabolism, 

and pH exert the greatest burden on vesicular trafficking at presynaptic terminals, which 

include losses in DAT (Fleckenstein, Metzger, Wilkins, Gibb, & Hanson, 1997; Brown et 

al., 2002; Hanson et al., 2004) and VMAT2 function (Miller, Gainetdinov, Levey, & Caron, 

1999; Larsen, Fon, Hastings, Edwards, & Sulzer, 2002). The selective presynaptic harm may 

be worsened by excessive peripheral ammonia caused by concurrent methamphetamine-

induced hepatotoxicity (Halpin & Yamamoto, 2012).

Dopamine and the accumulation of other amines within the presynaptic cytoplasm can 

activate trace amine-associated receptor 1 (TAAR1) (Borowsky et al., 2001; Bunzow et al., 

2001; Reese, Bunzow, Arttamangkul, Sonders, & Grandy, 2007). TAAR1 is localized within 

the presynaptic membranes of monoaminergic neurons and located intracellularly suggesting 

segregation to internalized vesicles (Xie & Miller, 2009; Revel et al., 2011). TAAR1 

reportedly can dimerize with dopamine D2 receptors (Espinoza et al., 2011) and TAAR1 

activation phosphorylates DAT, resulting in increased dopamine efflux and eventually DAT 

internalization (Miller, 2011). TAAR1 likely mediates key aspects of aberrant function 

following methamphetamine (Xie & Miller, 2009) and perhaps cocaine (Revel et al., 2011) 

exposure.

Methamphetamine and cocaine exposure can result in excessive glutamate within the 

extracellular space (ECS) at synaptic and extrasynaptic sites (Miyatake, Narita, Shibasaki, 

Nakamura, & Suzuki, 2005; Quinton & Yamamoto, 2006; Davidson et al., 2007; Cadet et 

al., 2007; Kaushal & Matsumoto, 2011; Pereira et al., 2012). Glutamate overflow, especially 

at extrasynaptic sites (Sattler, Xiong, Lu, MacDonald, & Tymianski, 2000; Hardingham, 

Fukunaga, & Bading, 2002), can induce excitotoxic neuronal injury and even death through 

overactivation of extrasynaptic GluN2B NMDA receptors (Ivanov et al., 2006; Liu et al., 

2007). The NMDA receptor antagonists MK-801 or dextromethorphan can attenuate 

methamphetamine neurotoxicity (Thomas & Kuhn, 2005), suggesting that microglial 

activation and dopamine terminal losses may be intimately linked to excitotoxic 

glutamatergic transmission and imbalances in synaptic and extrasynaptic glutamate 

(Beardsley & Hauser, 2014).

Chronic HIV-1 or SIV infection deplete dopamine and reduce the number of dopamine 

terminals in the basal ganglia (Reyes, Faraldi, Senseng, Flowers, & Fariello, 1991; Nath et 

al., 2000; Czub et al., 2001; Maragos et al., 2002; Wang et al., 2004), which appears to be 

worsened by methamphetamine exposure (Nath et al., 2000; Czub et al., 2001; Maragos et 

al., 2002; Cass, Harned, Peters, Nath, & Maragos, 2003; Scheller et al., 2005) or dopamine 

agonists (Nath, Maragos, Avison, Schmitt, & Berger, 2001; Czub et al., 2001; Czub et al., 

2004).
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Dopaminergic neurons are especially vulnerable to Tat and/or gp120-induced insults (Hu, 

Sheng, Lokensgard, Peterson, & Rock, 2009). When methamphetamine is administered after 

intrastriatal HIV-1 Tat injection, it acts synergistically to diminish levels of dopamine and 

dopamine metabolites (Maragos et al., 2002). Dopamine D2 receptors levels are also 

decreased as indicated by reductions in raclopride binding (Maragos et al., 2002). 

Interestingly, HIV-1 Tat may directly inhibit VMAT2 function in the CNS (Theodore, Cass, 

Dwoskin, & Maragos, 2012). More recently, HIV-1 Tat has been demonstrated to interact 

directly with the DAT (Zhu, Mactutus, Wallace, & Booze, 2009; Zhu, Ananthan, Mactutus, 

& Booze, 2011; Midde, Gomez, & Zhu, 2012; Midde et al., 2013). Thus, HIV-1 Tat disrupts 

the same molecular targets as methamphetamine albeit through independent mechanisms, 

which is likely to contribute to the devastating neurological and psychiatric consequences of 

methamphetamine and HIV comorbidity.

Brain aging has been demonstrated to be accelerated in cocaine abusers (Ersche, Jones, 

Williams, Robbins, & Bullmore, 2013). Since psychostimulants alone cause marked 

pathogenesis, it is not surprising that in combination with HIV, the pathologic consequences 

to the brain can be severe (Cadet et al., 2014). Many authoritative reviews exist on cocaine 

neurotoxicity (Ferris et al., 2008; Nath, 2010; Bowers, Chen, & Bonci, 2010; Narayanan, 

Mesangeau, Poupaert, & McCurdy, 2011; Kousik, Napier, & Carvey, 2012; Pierce & Wolf, 

2013; Clark et al., 2013; Cadet et al., 2014). Accordingly, only some of the more recent 

findings regarding the actions of cocaine will be discussed.

The dopamine transporter is thought to be a major site of cocaine action. By inhibiting DAT 

function, dopamine accumulates in the synaptic cleft, overactivating dopamine receptors 

postsynaptically and increasing its rewarding properties. Restricting DAT function alone as 

demonstrated in DAT knockout mice, however, is insufficient to block cocaine conditioned-

place preference (Sora et al., 1998). When dopamine and serotonin transporters are both 

deleted, mice no longer self-administer or show cocaine place preference (Sora et al., 2001). 

These findings and others suggest that dopamine and serotonin, as well as norepinephrine, 

act in concert to contribute to cocaine’s addictive properties (Sora et al., 2001; Hall et al., 

2004; Hall et al., 2009). Overall, cocaine appears to primarily act by inhibiting presynaptic 

dopamine transporters, but also hinders serotonin and norepinephrine transporters (Sora et 

al., 2001; Hall et al., 2004; Kreek et al., 2005; Hall et al., 2009), and may also secondarily 

dysregulate inhibitory GABAergic function (Cameron & Williams, 1994). Cocaine also 

modulates the endogenous opioid system, especially MOR, κ opioid receptors (KOR), and 

preprodynorphin (Kreek et al., 2005).

1.3. THE CENTRAL ROLE OF GLIA

Although neuronal interconnections form the synaptic circuitry that underlie behavior 

(Hebb, 1949; Yuste & Bonhoeffer, 2001), astroglia and microglia provide essential 

structural, trophic, and metabolic support necessary for maintaining synaptic integrity and 

function. Importantly, in HIV, glia are both targets and effectors in the progression of 

disease. Not only do glia harbor the virus and release inflammatory mediators, but they may 

also be functionally compromised and/or killed in the process. Unlike neurogenesis, which 

is restricted to limited brain regions and neuronal types, glia continue to be generated 
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throughout ontogeny (discussed below). This includes microglia, and all classes of 

macroglia (including astroglia, oligodendroglia, and ependymal cells). The ability of glial 

populations to respond in a dynamic fashion to both HIV infection/exposure and to drugs of 

abuse prompts our glia-centric viewpoint, which provides extensive insight into the 

pathogenesis of neuroAIDS and into the molecular and cellular mechanisms by which drug 

abuse affect the progression the disease.

2. MICROGLIA

In the central nervous system (CNS), the principal cell types that are productively infected 

are perivascular macrophages and brain-resident microglia. Astrocytes can also become 

infected, and this is particularly evident in vitro; however, the production of new virions by 

astrocytes is greatly restricted compared to microglia (discussed below). Although the virus 

itself can infect and replicate in microglia, much of the subsequent spiraling inflammation, 

synaptodendritic injury, and neurotoxicity arise from the response of bystander microglia 

and astroglia that are not necessarily infected.

2.1. MICROGLIA AS INNATE IMMUNE EFFECTORS

A seminal study by Ginhoux et al., (2010) reports that microglia originate from a 

mesenchymal (incipient myeloid) precursor in the murine yolk sac on embryonic day 8.25–

8.5, seed the incipient CNS in embryonic day 9.25–9.5, and remain in the CNS throughout 

life. Despite considerable overlap with myeloid-lineage cells (“myeloid” refers to the bone 

marrow) such as monocytes and macrophages, which also originate from a common 

progenitor in the yolk sac, microglia are an ontogenically distinct population—since they 

never inhabit the bone marrow (Saijo & Glass, 2011). This finding concurs with evidence 

that microglia and perivascular CNS macrophages can differ functionally and 

phenotypically—especially in their response to HIV (see below).

Akin to monocyte-derived macrophages (MDMs), microglia possess a wide variety of 

“pattern” or “pathogen” recognition receptors (PRRs) related to innate immune function. 

PRRs include Toll-like receptors (TLRs), nucleotide-binding oligomerization domain 

receptors (NOD-like receptors or NLRs), Mac-1, CD14 (Nadeau & Rivest, 2000), and a 

wide-variety of scavenger receptors, including those that recognize and remove low-density 

lipoproteins (Husemann, Loike, Kodama, & Silverstein, 2001; Coraci et al., 2002), and 

receptors for advanced glycation end-products (RAGE) (Farina, Aloisi, & Meinl, 2007). 

Microglia can express major histocompatibility complex-I (MHC-I) and MHC-II complexes, 

that allow them to contribute to adaptive immunity by processing both intracellular and 

extracellular foreign proteins for presentation as antigens to T-lymphocytes.

2.2. MICROGLIA AND HIV

Despite substantial overlap, microglia and perivascular CNS macrophages can differ 

functionally and phenotypically in their response to HIV (Fischer-Smith et al., 2001; 

Guillemin & Brew, 2004) or simian immunodeficiency virus (SIV) (Williams et al., 2001). 

Given that microglia reside and replicate within the brain throughout life (Ginhoux et al., 

2010; Saijo & Glass, 2011), the virus must enter the brain before microglia can become 
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infected. Perivascular macrophages are the major cell by which HIV (Fischer-Smith et al., 

2001) or SIV (Williams et al., 2001) seeds the CNS. Perivascular macrophages originate 

from HIV infected and uninfected MDMs, which are thought to have some ability to traffic 

bidirectionally between the blood and perivascular sites within the CNS parenchyma 

(Gonzalez-Scarano & Martin-Garcia, 2005). Although infected MDMs are the major source 

of virions initially seeding CNS microglia, once the infection is established in microglia 

(Cosenza, Zhao, Si, & Lee, 2002)—current evidence suggests that resident microglia 

become a sustained site of both active and latent infection (Kaul, Garden, & Lipton, 2001; 

Garden, 2002; Persidsky & Gendelman, 2003; Fischer-Smith & Rappaport, 2005; Kramer-

Hammerle, Rothenaigner, Wolff, Bell, & Brack-Werner, 2005; Gonzalez-Scarano & Martin-

Garcia, 2005), and that HIV evolves independently in distinct CNS cell types (Schnell, 

Joseph, Spudich, Price, & Swanstrom, 2011). The exchange of HIV between MDMs and 

microglia makes the brain a reservoir of latent infection (Kaul et al., 2001; Persidsky & 

Gendelman, 2003; Fischer-Smith & Rappaport, 2005; Kramer-Hammerle et al., 2005; 

Gonzalez-Scarano & Martin-Garcia, 2005; Schnell et al., 2011; Joseph et al., 2014). This is 

thought to be particularly important in the post-cART era in which antiretroviral drugs have 

more limited access to the CNS parenchyma (where microglia reside) because of the BBB.

Infected macrophages and microglia produce “virotoxins” (Nath & Geiger, 1998), i.e., viral 

protein products such as Tat and gp120, Vpr and others, as well as “cellular toxins” 

including extracellular reactive oxygen species (ROS), reactive nitrogen species (RNS), and 

numerous cytokines, including TNF-α, IL-1β, IFN-γ, and IL-6, and chemokines (Persidsky, 

Buttini, Limoges, Bock, & Gendelman, 1997; Seilhean et al., 1997; Fiala et al., 1997; Kraft-

Terry, Buch, Fox, & Gendelman, 2009). Both virotoxins and cellular toxins can 

independently interact in unique ways with opiates and psychostimulants, and will be the 

topic of the discussions that follow. In addition, cellular toxins [e.g., quinolinic acid 

(Guillemin, Kerr, & Brew, 2005) or the neurotoxic amine, Ntox (Giulian et al., 1996)], as 

well as excess glutamate (Gupta et al., 2010), released by macrophages/microglia also have 

toxic bystander effects on neighboring neurons (Mayne, Holden, Nath, & Geiger, 2000; 

Langford & Masliah, 2001; Saha & Pahan, 2003; Schuenke & Gelman, 2003; Yi, Lee, Liu, 

Freedman, & Collman, 2004; Eugenin et al., 2006; Alirezaei, Kiosses, Flynn, Brady, & Fox, 

2008; Turchan-Cholewo et al., 2009; Kiebala & Maggirwar, 2011). The actions of 

macrophages and microglia in the context of HIV have been extensively reviewed (Masliah 

et al., 1997; Kaul et al., 2001; Gonzalez-Scarano & Martin-Garcia, 2005).

Microglia can express a wide-variety of neurotransmitter receptors, including AMPA and 

NMDA receptors, which presumably allows microglia to coordinate and synchronize their 

responses with neuronal function (Hanisch & Kettenmann, 2007; Pocock & Kettenmann, 

2007; Gras et al., 2012; Eggen, Raj, Hanisch, & Boddeke, 2013; Prada, Furlan, Matteoli, & 

Verderio, 2013). Excitotoxic levels of glutamate can trigger inflammatory responses by 

microglia, including the release of proinflammatory cytokines and reactive oxygen species 

(ROS) (Noda, Nakanishi, Nabekura, & Akaike, 2000; Hagino et al., 2004). HIV-1 virions 

and gp120 have been shown to increase levels of extracellular glutamate by direct effects on 

uptake mechanisms in astroglia (Wang et al., 2003), and the increased glutamate likely 

drives further microglial reactivity.
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2.2.1. Opioid and HIV actions in microglia—Microglia display more pronounced glial 

reactivity than astroglia in HIV-infected opiate abusers (Anderson et al., 2003). HIV-1 

gp120 and/or Tat released from infected glia (microglia and astrocytes) trigger (1) cytokine 

release, (2) inflammatory lipid production by bystander glia (Bandaru, Patel, Ewaleifoh, & 

Haughey, 2011), (3) destabilize intracellular ion homeostasis, and (4) increase extracellular 

glutamate (Wang et al., 2003; Zou et al., 2011; Podhaizer et al., 2012) and extracellular ATP 

levels (Sorrell & Hauser, 2014) (figure 1). Bystander neurons are directly and indirectly 

damaged (Masliah et al., 1997; Kaul et al., 2001; Gonzalez-Scarano & Martin-Garcia, 2005; 

Mattson, Haughey, & Nath, 2005; Ellis, Langford, & Masliah, 2007). Opiates can affect all 

aspects of the above processes, including (1) MDM trafficking across the BBB, (2) viral 

replication in MDMs, microglia and astroglia (largely in in vitro studies), (3) the production 

of proinflammatory cytokines and chemokines, and (4) losses in extracellular ion 

homeostasis. The effects of opiates in MDMs and microglia have been comprehensively 

reviewed elsewhere (Chao, Hu, & Peterson, 1996; Rock & Peterson, 2006; Hauser et al., 

2007; Banerjee et al., 2011; Hauser et al., 2012; Dutta & Roy, 2012; Regan, Dave, Datta, & 

Khalili, 2012; Reddy et al., 2012). Accordingly, only a few recent findings will be briefly 

considered in the present review.

Acute exposure to opiate drugs such as morphine (El-Hage et al., 2013) or methadone (Li et 

al., 2002) tend to increase HIV replication by infected microglia. However, depending on 

the duration and timing of exposure, morphine can increase, act in a neutral manner, or 

inhibit HIV expression (Peterson, Gekker, Hu, Cabral, & Lokensgard, 2004). Moreover, 

selective MOR agonists such as endomorphin-1, but not DAMGO or morphine (Peterson et 

al., 1999) can increase HIV-1 replication in infected microglia—suggesting the involvement 

of a non-traditional MOR variant in HIV replication (Peterson et al., 1999) or suggesting 

that “biased agonism” (Hauser et al., 2012) may be operative. We have recently found that 

specific subsets of MOR splice variants, including MOR-1X and MOR-1K were 

differentially expressed by human astrocytes, but not expressed at detectable levels in 

microglia (Dever, Xu, Fitting, Knapp, & Hauser, 2012; Dever et al., 2014). Moreover, the 

expression of each MOR variant may be differentially regulated by HIV and in a cell 

specific manner (Dever et al., 2012; Dever et al., 2014). Thus, microglia express a subset of 

MOR variants each of which may respond uniquely to morphine and/or HIV (Dever et al., 

2012; Dever et al., 2014). Collectively, the findings indicate that the effects of MOR 

activation on HIV replication and the response of microglia to HIV (discussed below) are 

complex and may differ significantly depending on context.

Acute exposure of microglia to HIV-1 Tat increases glutamate release via the xc
− cystine-

glutamate antiporter (Gupta et al., 2010). Tat-dependent increases in extracellular glutamate 

were attenuated by inhibitors of p38, p42/44 MAPK, or NADPH oxidase or by inhibiting the 

xc
− cystine-glutamate antiporter directly (Gupta et al., 2010). Interestingly, morphine co-

exposure with Tat can significantly increase glutamate release from microglia above 

maximal levels of secretion seen with Tat alone (Gupta et al., 2010). Although excitatory 

amino acid transporters-1 and 2 (EAAT1 or GLAST and EAAT2 or GLT-1, respectively) 

are minimally expressed by resting microglia and thought to be primarily expressed by 

astrocytes, recent evidence suggests both transporters are inducible in microglia with 
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immune activation (Gras et al., 2011). Because the function of EAAT1/2 is reduced 

markedly by morphine by itself (Zou et al., 2011), or in combination with Tat (Zou et al., 

2011) or gp120 (Podhaizer et al., 2012) in astrocytes, future studies examining the potential 

contributions of microglial EAAT1/2 to HIV protein ± morphine-induced increases in 

extracellular glutamate are warranted.

Chronic opiates disrupt glial function, which is especially problematic in microglia where 

normal cellular functions have been hijacked by the virus (Hauser et al., 2012). HIV-1 alone 

causes increases in extracellular glutamate, ROS, and reactive nitrogen species (RNS) by 

overactivating microglia (Gendelman et al., 1997; Nath, 1999; Kaul et al., 2001; Kaul & 

Lipton, 2005; Gonzalez-Scarano & Martin-Garcia, 2005; Li, Li, Steiner, & Nath, 2009). 

Opiates have been shown to modulate (typically, but not always, worsening) all of these 

neuroinflammatory events (Chao et al., 1996; Rock & Peterson, 2006; Hauser et al., 2007; 

Banerjee et al., 2011; Hauser et al., 2012; Dutta & Roy, 2012; Regan et al., 2012; Reddy et 

al., 2012). However, the nature of opiate-HIV interactions in microglia is complicated and 

depends on a variety of factors that are incompletely understood. For example, we find that 

isolated microglia display transient increases in cytokine and ROS production in response to 

acute morphine and HIV-1 Tat co-exposure that are quite robust (Turchan-Cholewo et al., 

2009). However, after 24 h of sustained exposure to morphine and Tat the inflammatory 

response of isolated microglia has faded to levels below that seen with Tat alone and this is 

not due to increased microglial death (Turchan-Cholewo et al., 2009). Alternatively, when 

microglia are cocultured with astroglia (Zou et al., 2011; Podhaizer et al., 2012; Hauser et 

al., 2012), or when glial inflammation and/or neuronal injury is examined in vivo (Bruce-

Keller et al., 2008; El-Hage, Bruce-Keller, Knapp, & Hauser, 2008; Fitting et al., 2010a), 

prolonged morphine and HIV-1 Tat co-exposure results in neuroinflammation and/or 

neuronal injury that is evident for as long as 10 days. Although the sustained microglial 

activation is presumed to be driven through reverberating inflammatory signaling between 

MOR-expressing astroglia and microglia (Suzuki et al., 2011; Zou et al., 2011; Podhaizer et 

al., 2012; Hauser et al., 2012), additional study is needed to confirm this notion and to 

identify the mechanisms involved.

MDMs can display phenotypic heterogeneity in their expression of PRRs and in response to 

regional differences in the extracellular milieu (Kigerl et al., 2009). CD163 and CD16 co-

expressing MDMs appear to be preferentially involved in HIV (Ancuta, Wang, & Gabuzda, 

2006; Fischer-Smith, Tedaldi, & Rappaport, 2008) or SIV (Borda et al., 2008) replication 

and AIDS progression. Akin to MDMs, microglia can also display considerable functional 

heterogeneity (Carson et al., 2007; Hanisch & Kettenmann, 2007; Saijo & Glass, 2011; 

Scheffel et al., 2012; Hanisch, 2013), and a variety of intermediate states of activation 

(Colton, 2009). The phenotypic heterogeneity extends to opioid receptors and endogenous 

opioid peptides, since both macrophages and microglia can variably express MOR, δ, and κ 

opioid receptors (Chao et al., 1996; Peterson, Molitor, & Chao, 1998; Sheng, Hu, 

Lokensgard, & Peterson, 2003; Gekker et al., 2004; Turchan-Cholewo et al., 2008).

Emerging evidence indicates that microglia contribute to synaptic plasticity and the stability 

of synaptodendritic structure during maturation and in response to CNS disorders in adults 

(Wake, Moorhouse, Jinno, Kohsaka, & Nabekura, 2009; Tremblay, Lowery, & Majewska, 
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2010; Paolicelli et al., 2011; Ransohoff & Stevens, 2011; Antonucci et al., 2012). Opiate 

drugs such as morphine and methadone can directly trigger the retraction of dendritic spines 

in cerebral cortical neurons (Liao, Lin, Law, & Loh, 2005; Liao et al., 2007; Liao, 

Grigoriants, Loh, & Law, 2007), and affect the plasticity of adult neurons (Robinson & 

Kolb, 1999; Robinson & Kolb, 2004; Liao et al., 2005; Liao et al., 2007; Liao et al., 2007). 

Morphine’s actions at MOR trigger decreases in NeuroD phosphorylation that impede 

glutamatergic signals originating from AMPA receptors (Liao et al., 2005). Subsequent 

increases in MOR-driven, dynamin-dependent receptor internalization retracts spines (Liao 

et al., 2005; Liao et al., 2007; Liao et al., 2007). In striatal medium spiny neurons, the 

relationship is less clear since only a subset of medium spiny neurons express MOR, despite 

evidence indicating that opiate-induced spine losses are consistent among all medium spiny 

neurons (Fitting et al., 2010a). While morphine may disrupt the excitotoxic response by 

decreasing NeuroD phosphorylation, and restricting glutamatergic transmission through 

neuroprotective AMPA and NMDA receptor subtypes (Liao et al., 2005; Liao et al., 2007; 

Liao et al., 2007), neurons in the striatum are less likely to be directly affected than in the 

cerebral cortex since only a subset of medium spiny neurons express MOR. MOR-

expressing microglia and astroglia appear to contribute to the interactive neurotoxicity of 

morphine and Tat in the striatum (Zou et al., 2011; Sorrell & Hauser, 2014). In addition, 

e.g., GABA and fractalkine may serve as “off” signals—switching off overactive microglia 

(Beardsley & Hauser, 2014), and opiates can possibly modify these signals (Krebs, Gauchy, 

Desban, Glowinski, & Kemel, 1994; You et al., 1996; Steiner & Gerfen, 1998; McQuiston, 

2007; Bagley et al., 2011; Suzuki et al., 2011). Thus, the innate immune and 

neurotransmitter signals disrupted by opiates and HIV strategically converge and are 

integrated into a unique “neuroimmune” logic by microglia.

2.2.2. Psychostimulant and HIV actions in microglia

2.2.2.1. Methamphetamine and HIV: Methamphetamine enhances HIV-1 replication in 

microglia (Liang et al., 2008). In addition to direct effects on viral replication, combined 

HIV Tat or gp120 and methamphetamine induce oxidative stress and free radical production 

in the CNS, which likely originates from reactive microglia (Banerjee, Zhang, Manda, 

Banks, & Ercal, 2010).

Psychostimulants including methamphetamine, cocaine, and ecstasy have all been suggested 

to activate the innate immune system (Clark, Wiley, & Bradberry, 2013). Immune activation 

may be an essential component of neurobiological adaption in alcohol and cocaine addiction 

(Crews, Zou, & Qin, 2011). Neuronal damage-associated molecular patterns (DAMPs), can 

directly activate, or under pathophysiological conditions, overactivate microglia (Block, 

Zecca, & Hong, 2007; Biber et al., 2007). DAMPs are released from stressed or injured cells 

(Bianchi, 2007; Srikrishna & Freeze, 2009) and trigger innate immune activation. Multiple 

classes of PRRs appear to be triggered through drug and alcohol abuse (Crews et al., 2011; 

Yakovleva, Bazov, Watanabe, Hauser, & Bakalkin, 2011; Beardsley & Hauser, 2014). 

Methamphetamine also reportedly affects subpopulations through the activation of trace 

aminoacid associated receptor-1 (TAAR1) (Bunzow et al., 2001; Reese et al., 2007; Xie & 

Miller, 2009). TAAR1 is co-expressed on dopamine D2 receptor and DAT-positive neurons 
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in the striatum and TAAR1 activation results in increases in cAMP levels (Xie & Miller, 

2009; Espinoza et al., 2011).

Alternatively, dopamine and norepinephrine, which accumulate in the synaptic cleft 

following psychostimulant exposure, are thought to be able to elicit responses in microglia 

(Farber, Pannasch, & Kettenmann, 2005), while GABAB receptor activation reduces 

lipopolysaccharide (LPS) –induced IL-6 and IL-12 p40 release (Kuhn et al., 2004). 

Minocycline preferentially blocks macrophage/microglial activation (IL-1β and IL-6 are 

attenuated, but not TNF-α), but fails to mitigate striatal dopaminergic neurotoxicity because 

minocycline does not attenuate methamphetamine-induced increases in TNF-α (Sriram, 

Miller, & O’Callaghan, 2006). Thus, as noted earlier in the context of opiate abuse, the 

innate immune and neurotransmitter signals disrupted by psychostimulants converge in 

microglia, which attempts to integrate the diverse input into a coordinated and measured 

response.

HIV-1 activates microglia directly causing increases in both viral and cellular toxins as 

outlined earlier. Tat alone mediates much of the glial proliferative and cytokine/chemokine-

secreting effects of HIV-1. Methamphetamine exacerbates the neurotoxic effects of HIV-1 

through enhanced cytokine production and microglial activation (Theodore et al., 2006a; 

Theodore et al., 2006b; Theodore et al., 2007) (Figure 2). Dopamine losses evident in the 

SIV model can be prevented by inhibiting macrophage/microglial activity (Scheller et al., 

2005). As with methamphetamine, HIV-1 Tat causes a rapid increase in cortical neuronal 

excitability that is exacerbated by cocaine (Napier, Chen, Kashanchi, & Hu, 2014). 

However, in the case of cocaine, despite considerable overlap, some of the events triggering 

neuroinflammation and microglial activation differ. For example, TAAR1 is activated by 

methamphetamine and MDMA, but may play a less central role in cocaine’s actions 

(Bunzow et al., 2001).

Considerable evidence points toward sigma-1 receptors as a molecular target of cocaine 

actions (Su, Hayashi, Maurice, Buch, & Ruoho, 2010; Matsumoto, Nguyen, Kaushal, & 

Robson, 2014). Sigma-1 receptors are widely expressed throughout cells of the nervous 

system and elsewhere, and can contribute to a variety of pathological processes (Maurice & 

Su, 2009; Su et al., 2010). Cocaine increases chemokine (C-C motif) receptor 5 (CCR5) and 

CXCR4 HIV co-receptor expression, while transiently viral replication in human PBMCs in 

vitro (Roth, Whittaker, Choi, Tashkin, & Baldwin, 2005). Cocaine significantly increases 

the number of HIV-infected human peripheral blood mononuclear cells (PBMCs) and 

increases viral load in an infectious humanized SCID mouse model of HIV (Roth et al., 

2005). In these studies, the sigma-1 receptor antagonist, BD1047, attenuated the effects of 

cocaine on HIV replication in HIV-infected humanized SCID mice, suggesting the sigma-1 

receptor is a molecular target of cocaine’s actions (Roth et al., 2005). Peterson and 

colleagues similarly demonstrated using BD1047 that sigma-1 receptor blockade prevented 

cocaine-induced HIV replication in microglia (Gekker et al., 2006). These investigators 

subsequently showed the TGF-β inhibitor, SB-431542 (Inman et al., 2002), or 

immunoneutralizing TGF-β1 antibodies, to be effective in negating the cocaine-induced 

increases in HIV-1 expression (Gekker et al., 2006). Cocaine treatment accelerates 

monocyte extravasation across the endothelium of the BBB through an MCP-1-dependent 
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mechanism that is initiated via sigma-1 receptors (Yao et al., 2010; Yao et al., 2011). 

Understanding the regulation of MCP-1 expression and functional role of sigma-1 receptors 

following cocaine exposure should provide novel insight into the basic mechanisms by 

which cocaine augments the severity of neuroAIDS (Yao et al., 2010).

3. ASTROGLIA

3.1. CRITICAL FUNCTIONS IN NEURONAL SUPPORT AND GLIOTRANSMISSION

Astrocytes form a close association with neurons and are strategically positioned to provide 

structural support, and to maintain metabolic, trophic, and functional processes including 

synaptic transmission that were previously thought to be regulated by neurons themselves 

(Parpura, Basarsky, Liu, Jeftinija, & Haydon, 1994; Araque, Parpura, Sanzgiri, & Haydon, 

1999; Volterra & Meldolesi, 2005; Haydon & Carmignoto, 2006). Astrocytes also express 

nearly every class of neurotransmitter receptor, which permits them to coordinate their 

response precisely with neurons (Zhang & Barres, 2010; Beardsley & Hauser, 2014). The 

“tripartite synapse” refers to the intimate association between astrocytes and pre- and post-

synaptic interconnections (Parpura et al., 1994; Araque et al., 1999; Perea, Navarrete, & 

Araque, 2009). Gliotransmission refers to the selective uptake and/or release of specific 

neurotransmitters by astroglia through vesicular (Montana, Malarkey, Verderio, Matteoli, & 

Parpura, 2006), extracellular membrane microvesicles (Verderio et al., 2012; Verderio, 

2013), and/or nanotubes (Verderio, 2013). Gliotransmission significantly modulates 

neurotransmission (De Pittà et al., 2012; Tewari & Parpura, 2013).

In addition to modulating synaptic transmission, astrocytes regulate extrasynaptic 

transmission within the extracellular space (ECS) of the CNS (Sykova & Nicholson, 2008). 

This includes regulating “intersynaptic crosstalk” or the movement of excess 

neurotransmitters, including glutamate, between synapses, as well as the management of ion 

homeostasis (Vargova, Jendelova, Chvatal, & Sykova, 2001; Sykova, 2005) and of the 

movement of water within the ECS (Amiry-Moghaddam et al., 2003; King, Kozono, & 

Agre, 2004). The coordinated movement of ions and water within the ECS ultimately 

regulates tissue volume, including brain swelling during specific pathological conditions 

(Sykova, 2005; Anderova et al., 2011; Zamecnik et al., 2012). Aquaporin-4 (AQP-4) 

channels expressed largely by astrocytes are critical for regulating the volume of water 

within the ECS (Amiry-Moghaddam et al., 2003; King et al., 2004). Because HIV-induced 

deficits in astroglial glutamate and perhaps K+ buffering capacity, as well as AQP-4 

function, appear to be independently disrupted by HIV and substance abuse (Wang et al., 

2003; Li et al., 2006; Berman et al., 2006; Knackstedt, Melendez, & Kalivas, 2010; Kalivas 

& Volkow, 2011; Zou et al., 2011; Hauser et al., 2012; Cisneros & Ghorpade, 2012; 

Podhaizer et al., 2012), extrasynaptic transmission within the ECS is likely to be highly 

compromised in HIV-infected substance abusers.

3.2. INNATE IMMUNE EFFECTORS

Astroglia are particularly adept at sensing metabolic instability in neurons and in the 

surrounding microenvironment. They are critical for interpreting and translating intercellular 

communication between neurons and microglia—especially during pathologic situations 
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(Maragakis & Rothstein, 2006; Molofsky et al., 2012; Verkhratsky, Rodriguez, & Parpura, 

2013). Astrocytes can express a variety of PRRs categories against PAMPs and DAMPs, 

including TLRs, NODs, complement receptors [CR1, CR2, C3aR, C5aR (Gasque, Dean, 

McGreal, VanBeek, & Morgan, 2000)], mannose receptor (Liu et al., 2004), and RAGE 

(Husemann & Silverstein, 2001; Farina et al., 2007; Beardsley & Hauser, 2014). Thus, 

astroglia can act as transducers--both sensing neuronal injury and conveying information 

about neuron injury to microglia. Emerging evidence also suggests that astrocytes may 

express MHC-II following injury or stress (Jensen, Massie, & De Keyser, 2013).

3.3. ASTROGLIA AND HIV

Astroglia (Gorry, Purcell, Howard, & McPhee, 1998; Brack-Werner, 1999; Gorry et al., 

2003; Kramer-Hammerle et al., 2005; Kramer-Hammerle, Hahn, Brack-Werner, & Werner, 

2005) and perhaps also pericytes (Nakagawa, Castro, & Toborek, 2012), are the only 

resident CNS cells besides microglia that can become infected. Unlike microglia, astroglia 

tend not to display productive infection; rather, they harbor latent infection that can be 

reactivated from latency by specific proinflammatory cytokines such as TNF-α, GM-CSF or 

IFN-γ in SIVmac251-infected astrocytes (Guillemin et al., 2000; Carroll-Anzinger, Kumar, 

Adarichev, Kashanchi, & Al-Harthi, 2007; Narasipura et al., 2012) or specific, class I 

histone deacetylase (HDAC) inhibitors (Narasipura, Kim, & Al-Harthi, 2014). Latent HIV is 

dormant, meaning that viral DNA has been integrated into the host DNA, but that new 

virions are not being produced. A number of hypotheses have been put forth in an attempt to 

explain fundamental differences in the regulation of HIV infectivity by astroglia. The 

activation of NF-κB was proposed to play a less central role in driving viral production by 

astrocytes than in microglia (Conant, Atwood, Traub, Tornatore, & Major, 1994). 

Subsequent studies also suggested differences in Rev-astroglial RNA helicase DDX1 

interactions (Fang et al., 2005). In addition, a specific class I HDACs and a lysine-specific 

histone methyltransferase, SU(VAR)3–9, demonstrated in an U87MG astroglial cell line 

(Narasipura et al., 2014), were proposed as uniquely restricting HIV transcription in 

astroglia. Overexpression of nef (an early, regulatory gene), but not gag (a late structural 

gene), is seen in approximately 20% of astrocytes in infected individuals (Saito et al., 1994). 

Accordingly, Nef serves as a marker and perhaps contributing factor of restricted HIV 

infection in astroglia (Saito et al., 1994).

Besides being cellular sites of latent infection (Canki et al., 1997; Bencheikh, Bentsman, 

Sarkissian, Canki, & Volsky, 1999; Brack-Werner, 1999; Kramer-Hammerle et al., 2005), 

astroglia respond robustly following exposure to HIV proteins (Tat and gp120) or intact 

virions (Wang et al., 2003; Li, Bentsman, Potash, & Volsky, 2007) by releasing 

proinflammatory cytokines. Following exposure to viral products, astroglia release toxic and 

inflammatory cellular products (e.g., glutamate, ROS or cytokines such as TNF-α, IFN-γ, 

and IL-6) creating pathophysiological conditions that are detrimental for neurons (Genis et 

al., 1992; Bell, 1998; Nath, Conant, Chen, Scott, & Major, 1999; Kaul et al., 2001; Garden, 

2002; Persidsky & Gendelman, 2003).

The nature of the inflammatory response can differ among individual astrocytes (Zhang & 

Barres, 2010; Fitting et al., 2010b), as well as among microglia (Carson et al., 2007; 
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Scheffel et al., 2012; Hanisch, 2013). Astrocytes are quite heterogeneous in the expression 

of a wide variety of phenotypic characteristics (Emsley & Macklis, 2006), including many 

receptor classes, and/or in their response to cues within the local microenvironment of the 

CNS (Shao & McCarthy, 1994; Shao, Porter, & McCarthy, 1994; Zhang & Barres, 2010; 

Fitting et al., 2010b). Astroglial heterogeneity has been historically attributed to unique 

environmental milieu imparted by neighboring neurons. Conversely, astrocytes generated 

along specific spatiotemporal domains within the ventricular zone (VZ) retain unique 

phenotypic characteristics throughout life (Tsai et al., 2012). Domain-specific astroglial 

variants have recently been shown to specify synaptic identity and regulate the ability of 

neurons to regenerate (Tsai et al., 2012).

Opiates and psychostimulants destabilize astroglial function directly. The destabilization 

usurps the ability of astrocytes to support neurons metabolically and trophically, while 

disrupting gliotransmission. Despite some attempts at neuroprotection, the net consequences 

of exposing astroglia to opiates or psychostimulants is they are less likely to aid neurons or 

to mitigate a reactive microglial response to HIV infection (Hauser et al., 2007).

3.4. EFFECTS OF OPIATES AND HIV IN ASTROGLIA

Histopathological studies demonstrate that astrocytes display fewer reactive changes than 

microglia in a chronic opiate abusing cohort of HIV-infected patients (Anderson et al., 

2003). Nevertheless, astroglial function is markedly affected and astroglia are able to 

transduce and amplify signals from HIV-infected or uninfected perivascular macrophages 

and microglia—even in the absence of substance abuse co-exposure (Hauser et al., 2007). 

The release of proinflammatory cytokines and chemokines (e.g., MCP-1, MCP-5, and 

RANTES) can recruit macrophages/microglia, and these newly arriving cells likely 

contribute to neurotoxicity (El-Hage et al., 2005). The consequences of opiate abuse and 

HIV interactions in astroglia have been exhaustively reviewed previously (Peterson et al., 

1998; Hauser et al., 2005a; Hauser et al., 2007; Banerjee et al., 2011; Hauser et al., 2012; 

Dutta & Roy, 2012; Reddy et al., 2012). Accordingly, we will only highlight key aspects of 

the interactions in the paragraphs that follow.

The high degree of phenotypic heterogeneity and plasticity that occurs among individual 

astrocytes in the expression of HIV co-receptors (Podhaizer et al., 2012) or PRRs such as 

TLRs (El-Hage, Podhaizer, Sturgill, & Hauser, 2011), as well as in the response to HIV 

proteins Tat and gp120 (Fitting et al., 2010b) are often-overlooked. Moreover, the 

prevalence of HIV infection appears to increase in immature astroglia (Tornatore, Nath, 

Amemiya, & Major, 1991; Tornatore, Meyers, Atwood, Conant, & Major, 1994; Tornatore, 

Chandra, Berger, & Major, 1994; Messam & Major, 2000; Lawrence et al., 2004), 

suggesting developmentally regulated differences in susceptibility to HIV-1 by astrocytes. 

With respect to opioids, astrocytes can express MOR, δ (DOR), and κ opioid receptors 

(KOR) (Stiene-Martin & Hauser, 1991; Eriksson, Hansson, & Rönnbäck, 1992; Eriksson, 

Nilsson, Wagberg, Hansson, & Rönnbäck, 1993; Ruzicka et al., 1995; Gurwell et al., 1996; 

Hauser et al., 1996; Hauser & Mangoura, 1998; Stiene-Martin, Zhou, & Hauser, 1998; 

Stiene-Martin et al., 2001; Curtis, Faull, & Eriksson, 2007; Turchan-Cholewo et al., 2008). 

Moreover, astrocytes can express endogenous opioid peptides associated with the 
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preproenkephalin gene (Shinoda, Marini, Cosi, & Schwartz, 1989; Hauser, Osborne, Stiene-

Martin, & Melner, 1990; Spruce, Curtis, Wilkin, & Glover, 1990) and preproenkephalin is 

upregulated by cytokines including IL-1β and interferon-γ (Low & Melner, 1990a; Low & 

Melner, 1990b; Ruzicka & Akil, 1997). Unlike neurons, which typically produce and release 

fully processed enkephalin pentapeptides with a high affinity for DOR, astroglia tend to 

release larger, intact or partially processed proenkephalin peptides that can have high 

affinity at DOR or KOR. Overall, the wide expression of MOR, DOR and KOR by astroglia 

makes them a significant target for both endogenous opioids and exogenous opiates.

By disrupting astrocyte function, opiate drug abuse likely subverts their ability to maintain a 

homeostatic balance of ions and neurochemicals within the ECS, which promotes neuronal 

injury and death. Morphine can modify cytokine and chemokine production by astroglia 

(Mahajan, Schwartz, Shanahan, Chawda, & Nair, 2002; El-Hage et al., 2005; Mahajan et al., 

2005a; Mahajan et al., 2005b; El-Hage et al., 2008; Sawaya, Deshmane, Mukerjee, Fan, & 

Khalili, 2009; Avdoshina, Biggio, Palchik, Campbell, & Mocchetti, 2010). Opiates short-

circuit the ability of astroglia to protect neurons from HIV (Hauser et al., 2005b; Hauser et 

al., 2007; reviewed in Hauser et al., 2012). Opiates can intrinsically affect the expression of 

the glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2) (Ozawa, Nakagawa, 

Shige, Minami, & Satoh, 2001; Mao, Sung, Ji, & Lim, 2002). In the presence of HIV-1 Tat, 

opiates exacerbate the deleterious effects of the disease on intracellular signaling and [Ca2+]i 

homeostasis (El-Hage et al., 2005; El-Hage et al., 2008), which results in further reducing 

the ability to buffer extracellular glutamate (Zou et al., 2011). The failure to buffer 

extracellular glutamate lowers the threshold for excitotoxicity in neurons (Zou et al., 2011; 

Podhaizer et al., 2012). Furthermore, opiate exposure alone can increase ROS (Zou et al., 

2011; Podhaizer et al., 2012) and some proinflammatory cytokines (Mahajan et al., 2002; 

Mahajan et al., 2005b) in sufficient amounts to potentially be directly neurotoxic (Zou et al., 

2011).

HIV-1 Tat is a potent activator of NF-κB (Conant, Ma, Nath, & Major, 1996; El-Hage et al., 

2008) resulting in the release of a large number of cytokines and chemokines by astroglia 

(Conant et al., 1998; Kutsch, Oh, Nath, & Benveniste, 2000; El-Hage et al., 2005; El-Hage 

et al., 2006b; El-Hage et al., 2008). Besides potential actions destabilizing glutamate and 

triggering inflammation, Tat shares a Cys-Cys-Phe motif found in β-chemokine sequences 

such as CCL5 (Albini et al., 1998) that at least partly account for Tat’s chemotactic 

properties. HIV-1 Tat also destabilizes Ca2+ in astroglia (El-Hage et al., 2005) by 

mechanisms involving IP3-dependent release (Kumar, Manna, Dhawan, & Aggarwal, 1998). 

Increased [Ca2+]i dysregulates nuclear-cytoplasmic trafficking of NF-κB subunits (El-Hage 

et al., 2008), and leads to release of CCL2, CCL5, IL-6 and TNF-α. Morphine exacerbates 

this cycle (El-Hage et al., 2005; El-Hage et al., 2006a; El-Hage et al., 2006b; El-Hage et al., 

2008), presumably by augmenting Tat-induced increases [Ca2+]i. Unlike other neural cell 

types, MOR can couple to Gβγ (Bonacci et al., 2006; Mathews, Smrcka, & Bidlack, 2008), 

Gq/11-α (Hauser et al., 1996), and/or Gsα via MOR-1K splice variants (Dever et al., 2014) in 

astroglia resulting in cellular excitation. Opiate and HIV-induced increases in astroglial-

derived cytokines in turn enhance microglial recruitment and activation (El-Hage et al., 

2006b). Morphine’s unique actions in HIV-1-exposed astrocytes, in particular, appear to 

drive escalating, intercellular feedback loops with microglia and perivascular macrophages 
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that increase and sustain inflammation (El-Hage et al., 2006b; Hauser et al., 2007). We have 

proposed that, unlike other HIV-1-infected organs, which also can harbor MOR-expressing 

macrophages, the brain is unique because of the inflated response of astroglia to opioids 

(Hauser et al., 2007; Hauser et al., 2012). As a partial test this assertion, we recently tested 

whether drugs with selective anti-inflammatory activity in glia could attenuate the 

deleterious effects of HIV and opiate exposure. We found that ibudilast (also known as 

AV411 or MN-166) or an analogue lacking phosphodiesterase activity (AV1013), both of 

which preferentially suppress glial inflammation, attenuates HIV-1 ± morphine-dependent 

increases in HIV-1 replication and in HIV-1 Tat ± morphine-induced cytokine release and 

neurotoxicity in vitro (El-Hage et al., 2014).

This concept is supported by findings that HIV Tat ± morphine-induced death of medium 

spiny neurons is largely mediated via MOR-expressing glia (Zou et al., 2011), including 

astroglia (El-Hage et al., 2005; El-Hage et al., 2006b; El-Hage et al., 2008) and microglia 

(Turchan-Cholewo et al., 2008; Bokhari et al., 2009; Turchan-Cholewo et al., 2009; Gupta et 

al., 2010). Alternatively, the extent to which synaptodendritic culling is similarly driven by 

glia has not yet been established. Although glia undoubtedly play a significant role, as noted 

earlier, there is some evidence that morphine can converge with HIV Tat to cause spine 

retraction through direct actions on the dendrites of cerebral cortical neurons (Liao et al., 

2005; Liao et al., 2007; Liao et al., 2007). Additionally, since morphine can excite 

dopaminergic neurons projecting from the ventral tegmental area (VTA) to striatal neurons 

by hyperpolarizing inhibitory GABAergic interneurons in the VTA (Johnson & North, 

1992), it is likely that HIV-1 and opiate-related alterations in synaptic organization are 

affected by a complex interplay of events.

3.5. Effects of psychostimulants and HIV in astroglia

A number of reviews on the effects of psychomotor stimulants by themselves (Cadet & 

Krasnova, 2009; Clark et al., 2013; Beardsley & Hauser, 2014; Cadet et al., 2014) and in the 

context of HIV (Hauser et al., 2007; Nath, 2010; Cisneros & Ghorpade, 2012; Buch et al., 

2012) on astrocytes are available. Briefly, methamphetamine and cocaine are thought to 

affect astrocyte function through a variety of indirect and direct actions. The profile of 

inflammatory cytokines released by astrocytes in response to methamphetamine notably 

include the release of TNF-α, IL-1β, IL-6, and the chemokine MCP-1, as well as 

intercellular adhesion molecule-1 (ICAM-1) (Flora et al., 2002; Nakajima et al., 2004; 

Theodore et al., 2006a; Goncalves et al., 2008; Clark et al., 2013). The astroglial response to 

cocaine is more limited than the response to methamphetamine. Cocaine can increase the 

expression of TNF-α, IL-1β, and IL-6 transcripts, while downregulating the anti-

inflammatory cytokine IL-10 (Clark et al., 2013). These cytokines fuel inflammatory 

cascades and the release of chemokines such as MCP-1, which recruit macrophages and 

activate microglia within the CNS (Yao et al., 2010). Glial inflammation is proposed to be 

an essential step in the maladaptive neuroplasticity accompanying addiction (Crews et al., 

2011; Frank, Watkins, & Maier, 2011; Clark et al., 2013). Excessive or sustained high levels 

of inflammation result in neuronal injury and potentially neuronal death (Jayanthi et al., 

2005; Krasnova & Cadet, 2009; Buttner, 2011).
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Gliotransmission has been reported to be necessary for reinstatement of cocaine-seeking 

behavior (Turner, Ecke, Briand, Haydon, & Blendy, 2013). Mice expressing a dominant 

negative soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 

variant driven by a GFAP-dependent promoter were used to selectively disrupt 

gliotransmission (Turner et al., 2013). However, in these studies, the transmitter 

substance(s) released during gliotransmission are uncertain. Gliotransmission can involve 

the vesicular release of excitatory transmitters, including glutamate, serine, and adenosine 

triphosphate (ATP) (Pascual et al., 2005; D’Ascenzo et al., 2007; Parpura & Zorec, 2010; 

Santello, Cali, & Bezzi, 2012; Martineau, 2013; Van Horn, Sild, & Ruthazer, 2013). Of 

these, glutamate appears to contribute to drug-seeking behavior and other aspects of cocaine 

addiction (Beardsley & Hauser, 2014)

In combination with methamphetamine, HIV Tat exacerbates the disruption of EAAT-2 and 

perhaps EAAT-1 (aka, glutamate/aspartate transporter or GLAST) in astroglia (Cisneros & 

Ghorpade, 2012), and may additionally increase the release of glutamate from injured 

presynaptic terminals. Interestingly, ceftriaxone, which upregulates EAAT2 expression in 

astroglia, protects neurons against Tat or gp120-induced injury (Rumbaugh, Li, Rothstein, & 

Nath, 2007). Collectively, methamphetamine and HIV appear to dysregulate the buffering of 

extracellular glutamate by astrocytes, which contributes to excitotoxic injury in neurons. 

Propentofylline, which is thought to affect multiple molecular targets in both astroglia and 

microglia (Sweitzer, Schubert, & De Leo, 2001; Sweitzer & De Leo, 2011), impairs 

reinstatement to cocaine through an EAAT-2-related mechanism (Reissner et al., 2014). 

Furthermore, anti-inflammatory drugs with preferential actions in glia such as minocycline 

and/or ibudilast can limit key aspects of methamphetamine’s locomotor behaviors and/or 

reinforcing properties (Snider et al., 2012; Snider, Vunck, Hendrick, & Beardsley, 2012) or 

aspects of cocaine sensitization (Chen, Uz, & Manev, 2009; Chen & Manev, 2011).

Cocaine affects BBB permeability and increases MDM trafficking across the barrier (Fiala 

et al., 1998; Zhang et al., 1998; Gan et al., 1999). Key aspects of the higher rates of CNS 

infection (Fiala et al., 2005) and encephalitis (Clark et al., 2013) caused by cocaine are 

fueled by sigma 1 receptor-induced increases in MCP-1 derived from glia and especially 

astrocytes--recruiting new MDMs into the CNS (Yao et al., 2010). Moreover, sigma 1 

receptor-dependent increases in the expression of activated-leukocyte cell adhesion 

molecule by endothelial cells (Yao et al., 2011), which increases diapedesis of MDMs and 

the recruitment of perivascular macrophages. Methamphetamine increases the shedding of 

matrix metalloproteinases (MMPs), especially MMP-1 and MMP-2 from astroglia, which 

can disrupt the blood brain barrier (BBB) (Conant et al., 2004). Besides, MMP-1 and 

MMP-2, HIV-1 Tat can increase MMP-5, which may reduce long-term potentiation (LTP) 

in the hippocampus (Conant et al., 2010). MMP-5 can cleave GluN1 NMDAR subunits 

(Szklarczyk et al., 2008) and aquaporin-4 (AQP-4).

AQP-4 expressed by astroglia (Rash, Yasumura, Hudson, Agre, & Nielsen, 1998) is 

essential for moving water from the ECS through astrocytes and across the BBB into the 

vasculature (King et al., 2004; Tait, Saadoun, Bell, & Papadopoulos, 2008). AQP-4 is 

intimately linked to astroglial function (King et al., 2004). AQP-4 levels are increased in 

HIV-associated dementia (HAD); however, it is uncertain whether this is a maladaptive or a 

Hauser and Knapp Page 18

Int Rev Neurobiol. Author manuscript; available in PMC 2015 January 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



compensatory response to counteract the effects of chronic inflammation (St Hillaire et al., 

2005). Interestingly, the effects of cocaine are attenuated in AQP-4-null mice, leading to 

speculation that AQP-4 regulates cocaine reinforcement and dependence by alternating 

dopamine and glutamate release associated with drug reward (Li et al., 2006). Although 

AQP-4 expression per se appears to be unaffected by cocaine exposure (Narayana et al., 

2014), AQP-4-null mice display attenuated locomotor and reward responses to cocaine 

suggesting its involvement in the neurobiological actions of cocaine (Li et al., 2006). By 

virtue of their critical role in regulating the volume of water within the ECS (Amiry-

Moghaddam et al., 2003; King et al., 2004), including pathological brain swelling (Sykova, 

2005; Anderova et al., 2011; Zamecnik et al., 2012), AQP-4 channels are likely to be 

important in regulating HIV and psychostimulant interactions.

4. GENETIC FACTORS THAT MODULATE HIV-1 INFECTIVITY AND 

NEUROPATHOGENESIS

4.1. INTRODUCTION

There are huge differences in the susceptibility of individuals to addiction or to acquiring 

HIV.. Emerging evidence indicates that different gene polymorphisms underlie the marked 

differences in HIV infectivity and/or in the response to combination antiretroviral therapy 

(cART) among individuals. Gene profiling differences have also suggested that HAND 

disorders of different severity may represent fundamentally different disease courses, and 

not a continuum of a single pathophysiological process (Gelman et al., 2012).

Polymorphisms in the genes associated with HIV-1 co-receptors and/or their endogenous 

ligands can markedly influence AIDS progression (Smith et al., 1997; Winkler et al., 1998; 

Carrington, Dean, Martin, & O’Brien, 1999). CCR5 in particular (Carrington et al., 1999), 

and mutations thereof, e.g., CCR5Δ32 (Huang et al., 1996; Boven, van der Bruggen, van 

Asbeck, Marx, & Nottet, 1999), as well as mutations in key cytokines, e.g., IL-10 (Shin et 

al., 2000) or TNF-α (Quasney et al., 2001), or other genes linked to specific 

neurodegenerative disorders such as apolipoprotein ε4 (ApoE4) (Verghese, Castellano, & 

Holtzman, 2011) may have a marked influence on neuroAIDS outcome measures (Shapshak 

et al., 2004a; Shapshak et al., 2011). Mutations in other human gene products, such as the 

specific apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G 

(APOBEC3G) (Kim et al., 2010), an innate viral restriction factor that inhibits the 

production of HIV (Mangeat et al., 2003; Shindo et al., 2003; Bishop, Holmes, Sheehy, & 

Malim, 2004), may have deleterious consequences. In this section, we will cite and discuss 

several examples in which human genetic variability is beginning to uncover essential sites 

of drug abuse and neuroAIDS interplay.

CCR5 plays a critical role in HIV infection as a co-receptor for entry of CCR5-preferring 

strains that appear largely responsible for initial infection (Berger, Murphy, & Farber, 1999; 

Moore, Kitchen, Pugach, & Zack, 2004). The importance of CCR5 in HIV infectivity is 

supported by evidence by a wide variety of approaches. CCR5 levels in general, and in brain 

MDMs and microglia, have been correlated with the severity of HIV neurologic disease 

(Vallat et al., 1998; An, Osuntokun, Groves, & Scaravilli, 2001). Individuals homozygous 
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for the CCR5Δ32 mutation resist infection by HIV (Huang et al., 1996; Boven et al., 1999). 

CCR5 blockade employing the antagonist maraviroc to inhibit viral entry has marked clinic 

efficacy (MacArthur & Novak, 2008). Experimental reductions in CCR5 levels using gene 

silencing strategies have been successful in reducing HIV infectivity experimentally (Lee et 

al., 1999; Anderson & Akkina, 2007).

The importance of HIV co-receptors in viral infectivity and pathogenesis cannot be 

underestimated. Polymorphisms of CCR5, such as CCR5Δ32 (Huang et al., 1996; Boven et 

al., 1999) or CCR2 (Smith et al., 1997), can confer significant protection against HIV 

progression, while other mutations can worsen disease progression. Two studies have 

demonstrated that dual single nucleotide polymorphisms (SNPs) in the RANTES gene 

promoter (−471 and −96) reduce HIV disease advancement (McDermott et al., 2000; 

Gonzalez et al., 2001), while only one of these studies found an effect on transmission risk 

(McDermott et al., 2000). The RANTES-28G mutation increases RANTES transcript levels 

and is associated with increased protection against the clinical progression of HIV infection 

(Liu et al., 1999). The apparent eradication of HIV in a patient receiving a transplant of 

hematopoietic stem cells harboring a mutation (CCR5Δ32) in the chemokine (C-C Motif) 

receptor 5 (CCR5), a major HIV co-receptor that facilitates cell infection with HIV, has 

highlighted the insights that might be gained into mechanisms of HIV infectivity/

pathogenesis by studying the role of genetic variability (Hutter et al., 2009; Allers et al., 

2011).

Although polymorphisms of CXCR4 also exist, these are far less frequently identified than 

CCR5 polymorphisms. A likely reason may be that the deletion of CXCR4 or its cognate 

ligand SDF-1/CXCL12 is lethal (Ma et al., 1998; Zou, Kottmann, Kuroda, Taniuchi, & 

Littman, 1998). Combined mutations in multiple HIV co-receptors and/or in the cognate 

ligands of these co-receptors can interact to confer more or less protection against HIV 

infectivity or subsequent pathogenesis (Shapshak et al., 2004b; Gelman et al., 2012; Levine, 

Sinsheimer, Bilder, Shapshak, & Singer, 2012). Lastly, “elite suppressors” or “controllers” 

is the term given a subset of individuals who maintain plasma HIV copy numbers below 50 

copies/mL (Han et al., 2008). SNPs in macrophage inflammatory protein 1α coincide with 

differences in disease progression (Gonzalez et al., 2001). In sum, gene variations in β-

chemokines and their receptors can have marked influences on the clinical course HIV 

infection. There is considerable debate regarding the extent to which combinations of 

protective/non-protective allelic variants contribute to the subset of patients who are elite 

suppressors and are able to intrinsically suppress HIV replication (Miura et al., 2008; Baker, 

Block, Rothchild, & Walker, 2009).

Levels of monocyte chemoattractant protein (MCP-1 or CCL2) and its cognate receptor, 

CCR2, are increased with HIV infection and coincide with neurological impairment 

(Sozzani et al., 1997; Cinque et al., 1998). MCP-1 is released by HIV-exposed MDMs, 

microglia, and astrocytes (Conant et al., 1998; Nath et al., 1999). MCP-1 released by 

resident glia has been proposed as a key event in recruiting MDMs into the brain, an event 

that is exacerbated by opiates and psychostimulants (Zhang et al., 1998; Fiala et al., 2005; 

Eugenin, Dyer, Calderon, & Berman, 2005; Eugenin et al., 2006; Hauser et al., 2007; 

Berman et al., 2008; Yao et al., 2010). MCP-1 release from glia, especially astroglia, is a 
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significant site of drug abuse and HIV interactions (Hauser et al., 2007). Morphine 

exacerbates the release of chemokines, especially RANTES and MCP-1, from HIV Tat-

exposed astrocytes (El-Hage et al., 2005; El-Hage et al., 2006b) and microglia (Turchan-

Cholewo et al., 2009) in a time- and concentration-dependent manner, while cocaine 

accelerates monocyte extravasation across the BBB endothelium through a MCP-1-

dependent mechanism that is absent in CCR2 knockout mice (Yao et al., 2010). A number 

of mutations in the CCR2 and CCL2 genes have been demonstrated to affect aspects of HIV/

AIDS. The CCR2 V64I allele is associated with a more rapid onset of neurocognitive 

impairment, but even after adjusting for estimated time of seroconversion, there is no 

correlation with increased viral loads in cerebrospinal fluid (CSF) or in plasma, of HIV-

infected subjects (Singh et al., 2004). Interestingly, the CCR2 V64I allele affords some 

protection against progression to AIDS, especially during early phases of the disease process 

(Ioannidis et al., 2001; Mulherin et al., 2003), perhaps at the expense of CNS function. An 

MCP-1 (CCL2) -2578G/A promoter polymorphism was shown to enhance protein 

production and was associated with significantly reduced risk of acquiring HIV infection 

(Gonzalez et al., 2002). However, once infected, patients with this genotype showed faster 

disease progression and enhanced risk for HAD, presumably due to enhanced infiltration of 

infected monocytes (Gonzalez et al., 2002). CCR2 gene polymorphisms can act in a 

cooperative manner with other genes to affect HIV pathogenesis, including CCR5 (Rigato et 

al., 2008). By contrast, no connections were found between CCR2 V64I or CCR5Δ32 

mutations and HIV infectivity in “preferential” opiate abusers in northeastern India (Sarkar 

et al., 2010). However, as is common with most drug abusing cohorts, complicated 

individual abuse patterns and polydrug use confound the interpretation of the findings: 59% 

of these subjects abused spasmo-proxyvon, which contains the synthetic opiates 

dextroprophoxyphene or prophoxyphene and acetaminophen (Mahanta, Borkakoty, Das, & 

Chelleng, 2009), 54% abused heroin, and 15% abused “brown sugar” (partially purified 

heroin) (Sarkar et al., 2010).

TNF-α is important in triggering subsequent proinflammatory cascades such that any 

abnormalities in the regulation of TNF-α responsiveness are likely to have resounding 

consequences for the CNS (Bradley, 2008; McCoy & Tansey, 2008). Accordingly, it is 

perhaps not surprising that polymorphisms in the TNF-α promoter are associated with 

higher incidence of HAND (Quasney et al., 2001). Notably, both classes of abused drugs, 

opiates and psychostimulants, can increase the release of TNF-α from HIV or virotoxin-

exposed glia (Gendelman et al., 1997; Fiala et al., 1997; Zhang et al., 1998; Flora et al., 

2002; Fiala et al., 2005; Sriram et al., 2006; Sawaya et al., 2009). Alternatively, it has been 

argued that while TNF-α appears to serve as a marker for HIV progression, interferon-γ may 

play a more central role as a causal factor in the development of the disease based on genetic 

analyses of polymorphisms of both genes in the same patient population (Shapshak et al., 

2004a).

4.1.1 Mitochondrial genetics—Within the CHARTER cohort, several mtDNA SNP 

haplotypes are associated with marked protection from peripheral neuropathies (African 

haplogroup L1c and European haplogroup J) (Holzinger et al., 2012). mtDNA 

polymorphisms have also been linked to bipolar disorder, and may be associated with an 
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increased risk for neurodegenerative/neurocognitive disorders (Chinnery et al., 2001; Lin & 

Beal, 2006), especially those associated with aging (Kato, 2001). Dopaminergic neurons 

may be particularly susceptible to mtDNA damage (Bender et al., 2008). Interestingly, 

methamphetamine increases mtDNA damage (Bachmann et al., 2009), and CNS damage 

caused by in utero methamphetamine exposure can be rescued by increasing DNA repair 

through the enhancement of oxoguanine glycosylase 1 activity (Wong, McCallum, Jeng, & 

Wells, 2008).

4.2. GENE VARIATION IN OPIATE DRUG ABUSE AND HIV INTERACTIONS

Given the importance of host genetic variability in determining and revealing fundamental 

mechanisms underlying HIV infectivity and pathogenesis, might host genetics also reveal 

basic processes underlying the interactions between substance abuse and HIV? An 

examination of specific human gene polymorphisms, especially genes for drug receptors 

(Bond et al., 1998; Kreek, Nielsen, Butelman, & LaForge, 2005; Kreek et al., 2005; Kreek et 

al., 2012), enzymes affecting drug metabolism (Meyer & Zanger, 1997), and/or 

neurochemical systems thought to underlie addiction (Lachman et al., 1996; Nebert, 

McKinnon, & Puga, 1996; Li et al., 2004; Kreek et al., 2005; Levine et al., 2012), has 

identified significant correlative relationships between gene polymorphisms and substance 

abuse (Kreek et al., 2005; Yuferov, Levran, Proudnikov, Nielsen, & Kreek, 2010; Crystal et 

al., 2012; Manini, Jacobs, Vlahov, & Hurd, 2013; Jacobs, Murray, Byrd, Hurd, & Morgello, 

2013). Because addiction is principally a CNS disorder with neurobehavioral/

neuropsychiatric underpinnings (Leshner, 1997; Volkow, Wang, Fowler, & Tomasi, 2012), 

examining substance abuse-HIV interactions in the brain seems a logical direction. The 

potential importance of studying human gene polymorphisms as an approach to identify 

novel factors and mechanisms underlying drug abuse and neuroAIDS pathogenesis cannot 

be underestimated.

In a sample population of 1,031 women, polymorphisms in OPRM1, the gene encoding 

MOR, were associated with the severity of HIV infection or the response to cART 

(Proudnikov et al., 2012). These investigators found both negative and positive correlations 

with HIV severity in a small subset of OPRM1 polymorphisms, while most variants 

displayed no association with HIV progression. Interestingly, although a subset of the 

patients sampled undoubtedly were substance abusers, many were not—suggesting that 

MOR receptor is inextricably linked to processes influencing HIV pathogenesis irrespective 

of opiate exposure. Although the mode of action is unclear, MOR activation can alter the 

expression of HIV-1 chemokine coreceptors involved in HIV entry, and MOR can undergo 

heterologous desensitization with CXCR4 (Szabo et al., 2002; Steele, Henderson, & Rogers, 

2003; Patel et al., 2006; Finley et al., 2008; Burbassi, Aloyo, Simansky, & Meucci, 2008; 

Pitcher et al., 2014) or CCR5 (Chen et al., 2004; Happel, Steele, Finley, Kutzler, & Rogers, 

2008; Song et al., 2011). Lastly, non-opioid genes may influence opiate drug and HIV 

interactions. For example, the presence of an apolipoprotein ε4 (ApoE4) allele increases the 

likelihood of neurotoxicity in response to combined morphine and HIV-1 Tat exposure in 

isolated human neurons in vitro (Turchan-Cholewo et al., 2006). The mechanisms 

responsible for opiate interactions with ApoE4 are unclear. Possessing an ApoE4 allele and 

increased ApoE4 levels in CSF was associated with an increased probability of 
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neurocognitive impairment in HIV-infected patients in one study (Andres et al., 2011), while 

another failed to find a linkage between the ApoE4 gene frequency and cognitive deficits in 

HIV-infected subjects (Morgan et al., 2013).

A potentially important role of OPRM1 splice variants in neuroAIDS is indicated by our 

findings showing quantitative differences in specific human MOR splice variant expression 

levels with HIV encephalitis and/or neurocognitive status (Dever et al., 2012; Dever et al., 

2014). In addition, MOR-1 (exon 1), MOR-1A, MOR-1X, and MOR-1K splice variants 

appear to differ across CNS cell types (Dever et al., 2012; Dever et al., 2014). Evolving 

evidence suggests that there are significant functional differences among MOR splice 

variants (Pan et al., 2005; Majumdar et al., 2011; Dever et al., 2012; Xu et al., 2014; Lu, Xu, 

Xu, Pasternak, & Pan, 2014). Thus far, the findings are limited to neural cells isolated from 

a relative small number of individuals, and from imprecisely defined brain regions. 

However; if our initial findings remain supported, this would be highly significant—

indicating the existence of quantitative and functional differences in MOR subtypes among 

cell types.

A novel, truncated 6-transmembrane spanning (6TM) MOR-1K splice variant has been 

described, which unlike canonical 7-transmembrane spanning (7TM) MOR isoforms, 

couples into Gαs, increases [Ca2+]i and nitric oxide, and causes cellular excitation 

(Shabalina et al., 2009; Gris et al., 2010). Interestingly, HIVE and perhaps cognitive 

impairment correlates with increased MOR-1K (Dever et al., 2014), but not with MOR-1A 

or MOR-1X splice variants (Dever et al., 2012), in patient samples obtained through the 

National NeuroAIDS Tissue Consortium.

Global RANTES/CCL5 knockout reduced microgliosis and was neuroprotective in mice 

concurrently treated with morphine and HIV-1 Tat protein (El-Hage et al., 2008). This 

insinuates that CCL5-to-CCR5 signaling increases neuroinflammation even in non-

infectious models, suggesting that in addition to viral entry, CCR5 blockade may be 

inherently neuroprotective (El-Hage et al., 2008). Preclinical studies in the SIV model 

demonstrating maraviroc protection against inflammatory markers in neuroAIDS lend 

support to this assertion (Kelly et al., 2013). Moreover, findings from other investigators 

suggest that CCR5 blockade may have advantages in other aspects of disease management 

besides preventing viral entry (Hunt et al., 2013). CCR5 blockade, either genetically or by 

maraviroc, eliminates synergistic morphine and Tat-related neurotoxicity in glial-neuronal 

co-cultures (unpublished results).

The above findings and work of others demonstrating heterologous, bidirectional cross-

desensitization (Steele et al., 2003; Rogers & Peterson, 2003; Chen, Geller, Rogers, & 

Adler, 2007; Happel et al., 2008; Song et al., 2011) or direct molecular interactions (Suzuki, 

Chuang, Yau, Doi, & Chuang, 2002; Chen et al., 2004) between CCR5 and MOR, are 

guiding the development of novel therapeutics that selectively target CCR5-MOR and HIV 

interactions. Using translationally relevant, infectious models, we have started to screen 

novel bivalent ligands comprised of linked CCR5 and opioid receptor antagonists, which 

selectively target putative CCR5-MOR heterodimers (Yuan et al., 2012; Yuan et al., 2013; 

El-Hage et al., 2013) (Figure 3).
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5. NEURAL/GLIAL PROGENITORS AND HIV

Neural progenitor cells (NPCs) are the undifferentiated precursors of both neurons and 

macroglia (astroglia and oligodendroglia); infection of NPCs might either lead to 

(occasional reports of) viral expression in more differentiated derivatives, or might directly 

influence their development and/or survival. NPCs may also be targets of HIV through 

interactions with HIV-1 proteins, or through the influence of extracellular changes that occur 

as a consequence of microglial or astroglial infection (e.g. enhanced levels of glutamate, 

upregulation of inflammatory signals) (Krathwohl & Kaiser, 2004; Okamoto et al., 2007; 

Buch et al., 2007; Peng et al., 2008; Mishra, Taneja, Malik, Khalique, & Seth, 2010; Hahn et 

al., 2010; Lee et al., 2011; Peng et al., 2011; Hahn et al., 2012). During development, both 

neurons and macroglia derive from NPCs in the subventricular zone (SVZ) lining the central 

canal of the developing CNS. While most neurons in both rodents and humans are formed 

prior to birth, production of astroglia and oligodendroglia continues postnatally (Skoff, 

1990; Skoff & Knapp, 1991; Lee, Mayer-Proschel, & Rao, 2000; Chan, Lorke, Tiu, & Yew, 

2002; Geha et al., 2010). In humans, for example, oligodendrocyte formation and 

myelination continue well into the late teenage years, to accommodate CNS growth and 

maturation. While NPCs are obviously critical for CNS development, they are also present 

and functional in the adult CNS, although their characteristics, localization, and cell-specific 

markers are somewhat different from NPCs in the developing brain. In adults, neurogenesis 

is normally quite limited, occurring only in specific regions. In humans and other primates, 

these regions include the subgranular zone of the hippocampal dentate gyrus (DG) and the 

SVZ of the lateral ventricles (aka, ependymal/subependymal zones) (Kaplan & Hinds, 1977; 

Doetsch, Garcia-Verdugo, & Alvarez-Buylla, 1997; Eriksson et al., 1998; Kornack & Rakic, 

1999). In vertebrates, including rodents, who are heavily dependent upon olfactory cues, 

neurogenesis within the adult SVZ results in a pool of cells that continually enters the 

“rostral migratory stream”, a migratory route specialized for the delivery of newly formed 

neurons to the olfactory bulb (Doetsch et al., 1997). A structure analogous to the rostral 

migratory stream remains to be validated in adult humans, although the pathway exists 

during development (Pencea, Bingaman, Freedman, & Luskin, 2001; Bhardwaj et al., 2006; 

Sanai et al., 2011; Wang et al., 2011). Unlike neurons, glia are normally formed throughout 

the lifetime of an animal, and glial progenitors undergo a constant, slow turnover throughout 

the adult CNS parenchyma (MESSIER, LEBLOND, & Smart, 1958; Imamoto, Paterson, & 

LEBLOND, 1978; Sturrock, 1979; Kornack & Rakic, 1999; Kornack & Rakic, 2001). 

Whereas neonatal NPCs proliferate routinely and robustly, adult NPCs in the SVZ and DG 

are mostly quiescent. They display somewhat different cell markers, and often respond to 

milieu signals or interact with surrounding cells differently than NPCs in young tissues. In 

response to exercise, injury/perturbation, inflammation, or other stimuli, adult NPCs can 

become more active, generating a subset of highly proliferative progenitors that can form 

neurons and/or glia that integrate into surrounding tissue (Thored et al., 2006a; Kernie & 

Parent, 2010; Wang, Plane, Jiang, Zhou, & Deng, 2011). Whether the enhanced turnover of 

adult NPCs after injury involves “active” adult NPCs or transit amplifying cells that derive 

from “quiescent” NPCs, or both, it is a somewhat different process from formation of cell 

populations in development, with different effectors and results (Romanko et al., 2004; Rola 

et al., 2006; Burns, Murphy, Danzer, & Kuan, 2009). Deficits in NPC populations appear to 
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contribute to diseases like Parkinson’s, Huntington’s, and Alzheimer’s diseases, which 

involve specific neuron types (Curtis et al., 2003; Curtis et al., 2007; Crews, Patrick, Adame, 

Rockenstein, & Masliah, 2011), and to more global injuries such as stroke/ischemia and 

epilepsy (Parent et al., 1997; Thored et al., 2006b; Curtis et al., 2007; Ohira et al., 2010). 

Increased NPC proliferation is often assumed to indicate beneficial plasticity. However, 

proliferation must renew NPCs while also producing new neurons or glia (asymmetric 

division), and cell production must be balanced to tissue requirements. In Huntington’s 

disease, for example, there is a loss of striatal neurons even though proliferation and SVZ 

size are significantly increased (Curtis et al., 2007; Kazanis, 2009), because the ratio of 

GFAP+ glia (type B cells) produced is too high (Curtis, Waldvogel, Synek, & Faull, 2005). 

Increased proliferation may also be offset by death or aberrant migration, as in some 

epilepsy models (Parent et al., 1997).

The effects of HIV and/or drugs of abuse on adult hippocampal neurogenesis have been 

recently reviewed (Eisch & Harburg, 2006; Venkatesan, Nath, Ming, & Song, 2007). 

Accordingly, the discussion here will include other brain regions and gliogenesis. It will also 

include developmental studies, because of relevance to HIV acquired in the perinatal and 

adolescent periods. Since NPCs are uniquely positioned as the forerunners of CNS neurons 

and macroglia, the potential effects of NPC infection or dysregulation by HIV are extensive. 

For example, the evidence that nestin+ or Sox-2+ human NPCs can be infected by HIV 

(Lawrence et al., 2004; Schwartz & Major, 2006; Rothenaigner et al., 2007; Hahn et al., 

2012) under conditions or in numbers that are disease-relevant remains controversial. In 

numerous experimental paradigms, HIV or HIV proteins have been shown to alter the 

proliferative and survival characteristics of NPCs. These include rodent (Khurdayan et al., 

2004; Buch et al., 2007; Hahn et al., 2012) and human NPCs (Krathwohl & Kaiser, 2004; 

Mishra et al., 2010; Hahn et al., 2012) exposed in culture or ex vivo settings, NPCs within 

the brains of gp120 and Tat transgenic rodent HIV models (Okamoto et al., 2007; Lee et al., 

2011; Hahn et al., 2012; Avraham et al., 2014), and in HIV postmortem brains (Krathwohl 

& Kaiser, 2004). In general, whether the models have examined NPCs from/in adult or 

developing systems, HIV or HIV proteins have been reported to depress NPC proliferation. 

This was also the case in human hippocampal slice cultures exposed to either X4 HIV coat 

proteins or to the CSF from HIV patients with dementia (Krathwohl & Kaiser, 2004). 

Alternatively, NPCs showed enhanced proliferation when exposed to medium from infected 

macrophages co-stimulated with LPS (Peng et al., 2008). Survival is variably reported as 

being unchanged by Tat, gp120, or HIV (Mishra et al., 2010; Lee et al., 2011; Hahn et al., 

2012; Malik, Saha, & Seth, 2014) or reduced by Tat or gp120 (Buch et al., 2007; Avraham 

et al., 2014), feline immunodeficiency virus (van Marle, Antony, Silva, Sullivan, & Power, 

2005), or by infection with a viral vector expressing HIV envelope (van Marle et al., 2005). 

The different outcomes likely reflect varied susceptibility among stages of differentiation 

(Levison, Rothstein, Brazel, Young, & Albrecht, 2000; Brazel, Nunez, Yang, & Levison, 

2005). Changes in these parameters have the potential to alter the balance of mature cells 

that derive from the NPCs.

Exposure to HIV, HIV proteins, or milieu changes that occur in the HIV-infected brain 

might also redirect the lineage of undifferentiated cells. Normally, NPCs undergo a series of 
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self-renewing divisions prior to an asynchronous division that results in one daughter cell 

that is committed to a neuron or glial cell fate/lineage. HIV infection or viral protein 

exposure appears to skew NPC fate toward production of glia/astroglia at the expense of 

neurons and/or oligodendrocytes (Hahn et al., 2010; Peng et al., 2011; Hahn et al., 2012). 

Since viral production reportedly increases as infected NPCs differentiate into astroglia 

(Lawrence et al., 2004), cell lineage choices, i.e., the formation of astroglia at the expense of 

other NPC derivatives, may increase CNS consequences of NPC infection, including the 

potential for more latent virus in the CNS. This may be especially relevant in pediatric/

adolescent patients given their larger and more mitotically active NPC population. Changes 

in the milieu can push more NPCs towards a particular lineage, for example, increasing glia 

or astroglia at the expense of neurons, which may explain the enhanced numbers of astroglia 

that we have seen in adult mice exposed to HIV-1 Tat for 3 months (Hahn et al., 2014). 

Increased astrogliogenesis also appears to be directly triggered by HIV-infected microglia 

both in vitro and in an infected SCID mouse model via a STAT3-dependent mechanism 

(Peng et al., 2011). While lineage redirection has not been directly demonstrated in the 

context of HIV, it has been well documented during development and in some diseases 

(Bithell, Finch, Hornby, & Williams, 2008; Sabo, Kilpatrick, & Cate, 2009; Lu et al., 2011; 

Ninkovic & Gotz, 2013).

HIV is a situation of reverberating inflammation. It is perhaps not surprising that HIV 

infection or viral protein exposure limits NPC proliferation, since brain inflammation is well 

known to impair neurogenesis (Monje, Toda, & Palmer, 2003; Ekdahl, Claasen, Bonde, 

Kokaia, & Lindvall, 2003; Moreno-Lopez et al., 2004; Whitney, Eidem, Peng, Huang, & 

Zheng, 2009; Lu et al., 2011). However, the relationship between inflammation and NPC 

function is nuanced. Endogenous ROS and nitric oxide may actually be necessary for NPC 

proliferation (Yoneyama, Kawada, Gotoh, Shiba, & Ogita, 2010), and the inflammatory 

milieu can inhibit, stimulate, and also influence the general direction of cell lineage 

(neuronal vs. glial), depending on the characteristics of the inflammation and the phenotype 

of the microglia involved in the inflammatory response (Butovsky et al., 2006).

5.1. Opiate and Opiate-HIV Interactions on Progenitors and Cell Populations

Morphine, which is a legal but regulated analgesic, is also an active metabolite of heroin 

(diacetylmorphine) and is used in many studies as a surrogate for heroin exposure/abuse. 

NPCs (nestin+, Sox2+; also GFAP+ in adult) and their early derivatives (e.g. DCX+/b-III 

tubulin+ neurons; CD44+/vimentin+ young astrocytes; Nkx2.2+/A2B5+/O4
+/Olig1+/Olig2+ 

young oligodendrocytes) express MOR, DOR, and KOR (Buch et al., 2007; Tripathi, 

Khurshid, Kumar, & Iyengar, 2008; Hahn et al., 2010). Furthermore, diverse agonists and 

antagonists for MOR, KOR, and DOR (e.g., heroin, morphine, β-endorphin, naltrindole, [D-

Ala2, D-Leu5]-enkephalin (DADLE), β-funaltrexamine (β-FNA), naltrexone) (Eisch, Barrot, 

Schad, Self, & Nestler, 2000; Holmes & Galea, 2002; Persson et al., 2003; Mandyam, 

Norris, & Eisch, 2004; Koehl et al., 2008; Tsai, Lee, Hayashi, Freed, & Su, 2010) affect 

their proliferation and other behaviors. To date, most opiate studies have focused on adult 

hippocampal neurogenesis, and a number have included physical exercise as a parameter, 

which promotes neurogenesis partly via β-endorphin effects (Persson, Thorlin, Bull, & 

Eriksson, 2003). Interestingly, the reduced NPCs and neurogenesis seen in transgenic HIV-1 
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gp120 mice are normalized by exercise, although the role of endogenous opiates in this 

effect was not assessed (Lee et al., 2013). When exercise is removed from consideration, 

morphine reduces adult neurogenesis (Eisch et al., 2000; Mandyam et al., 2004; Kolodziej, 

Stumm, Becker, & Hollt, 2008; Arguello et al., 2008), even after controlling for 

glucocorticoid levels (Eisch et al., 2000), and MOR-null mice show a transiently enhanced 

post-injury neurogenesis in hippocampus (Kolodziej et al., 2008). Important new evidence 

shows that opiates used in addiction therapy, such as buprenorphine, may also reduce NPC 

formation in either the perinatal (Wu et al., 2014) or adult (Pettit, Desroches, & Bennett, 

2012) CNS, disturbing the normal balance of glial populations through actions at MOR 

and/or the nociceptin/orphanin FQ receptors (Eschenroeder, Vestal-Laborde, Sanchez, 

Robinson, & Sato-Bigbee, 2012).

NPC proliferation is reduced by exposure to either HIV/HIV proteins or opiates 

independently, suggesting the potential for interactive, co-morbid effects of combined HIV 

and opiate exposure. Morphine interactively increases CNS inflammation in most HIV 

models (Perez-Casanova, Husain, Noel, Jr., Rivera-Amill, & Kumar, 2008; Bruce-Keller et 

al., 2008; El-Hage et al., 2008; Turchan-Cholewo et al., 2009; Bokhari et al., 2011; Dever et 

al., 2014), so it might be expected to exacerbate the effects of HIV on NPCs through 

generalized inflammation. However, as NPCs and their progeny express opiate receptors, 

there may be interactive effects that are independent of inflammation. Several studies have 

now shown that morphine exacerbates acute effects of HIV and Tat in vitro and in the 

developing brain. Our in vitro work has shown that combined exposure to morphine and Tat, 

or morphine and HIV, further depressed proliferation of murine and human NPCs and 

decreased NPC pools (Hahn et al., 2012). Morphine exposure in perinatal HIV-1 Tat-

transgenic mice had a remarkably similar effect in vivo (Hahn et al., 2012). In human NPCs, 

this effect was shown to reflect a delay at the G1 phase of the cell cycle involving increased 

extracellular-signal regulated kinase-1/2 (ERK1/2) activation and concomitant increases in 

p21 and p53 (Malik et al., 2014). The ramifications of reduced numbers of NPCs, or an 

increased astroglial population at the expense of neurons and/or oligodendroglia, are likely 

to significantly impact cognitive and motor function. It remains unclear whether the chronic 

exposure to opiates that occurs in patients or drug abusers, either during development 

(neonates, adolescents) or in adult brains, can permanently alter CNS cell populations. The 

very critical question of whether the nature of opiate exposure might yield fundamentally 

different outcomes has also not been addressed. For example, do opiates administered for 

pain yield a different outcome than opiates that have been self-administered (resulting in 

dependence and addiction)? Studies that compare outcomes of contemporaneous exposure to 

opiates and HIV/HIV proteins versus the more “real life” situation where drug exposure 

occurs prior to HIV infection are also lacking.

5.2. Psychostimulant-HIV Interactions on Progenitors and Cell Populations

Among the psychostimulants both cocaine and amphetamine/methamphetamine exposure 

can influence NPC behaviors. Similar to opiates, in most studies cocaine exposure appears 

to inhibit the proliferation of human (Hu et al., 2006) and rodent (Lee et al., 2008) NPCs in 

vitro as well as in various perinatal and adult rodent models in vivo (Dominguez-Escriba et 

al., 2006; Lee et al., 2008; Garcia-Fuster, Perez, Clinton, Watson, & Akil, 2010; Yao, Duan, 
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Yang, & Buch, 2012). A number of mechanisms for these effects have been put forward, 

including down-regulation of cyclin A related to ER stress induced by cocaine metabolites 

(Lee et al., 2008), and changes in cytoskeletal-associated genes (Lee et al., 2009). In one 

study, exposure to cocaine during critical prenatal periods reduced normal numbers and 

disturbed radial migration of GABAergic and glutamatergic neurons in the neocortex of 

developing rats (Lee, Chen, Worden, & Freed, 2011), presumably in part through effects on 

NPCs. In the dentate gyrus of adult rats, both 8 d and 24 d exposure to cocaine decreased 

NPC proliferation, but did not affect survival or newly generated cells or their morphology, 

dendritic arborization, or localization in the areas examined (Dominguez-Escriba et al., 

2006). These disparate findings are no doubt partly due to the inherently different properties 

of NPCs in developing and adult systems. Cocaine also reduced the motility of human NPCs 

in vitro through inhibition of CXCL12-to-CXCR4 signaling (Hu et al., 2006). Reduced 

motility is associated with downregulation of a transcription factor (SOX2) that supports 

progenitor phenotype, and the early differentiation of young neurons. Prenatal cocaine 

exposure also appears to have lasting, sex-specific effects on resident NPCs in adult brains 

(Patel, Booze, & Mactutus, 2012). In a genetic study with relevance to addicted individuals, 

cocaine had quite different effects on NPCs in two lines of rats bred to express different 

propensities for cocaine “abuse”. NPC proliferation was suppressed by chronic cocaine 

exposure in rats with low responses to novelty, but in rats with high novelty responses 

(enhanced sensitization/psychomotor response to cocaine) NPC proliferation was normal, as 

was the ratio of neurons-to-glia generated, although there was less survival of newly formed 

neurons (Garcia-Fuster et al., 2010).

The preponderance of studies show that methamphetamine or amphetamine exposure also 

reduces NPC proliferation and formation of new glia and/or neurons, although a few 

disparate outcomes may provide insight into important variables. The proliferation of both 

adult hippocampal and striatal progenitor cells in vivo is frequently assessed by 5-bromo-2′-

deoxyuridine (BrdU) incorporation (a thymidine analogue incorporated during DNA 

synthesis) or Ki67 antigenicity (a nuclear protein associated with cell division) (Scholzen & 

Gerdes, 2000) in species including rats, mice, and gerbils (Teuchert-Noodt, Dawirs, & 

Hildebrandt, 2000; Mao & Wang, 2001; Mandyam, Wee, Eisch, Richardson, & Koob, 2007; 

Yuan, Quiocho, Kim, Wee, & Mandyam, 2011). Similar effects are seen in vitro, where 

survival is also variably reduced (Tian, Murrin, & Zheng, 2009; Venkatesan et al., 2011; 

Bento, Baptista, Malva, Silva, & Agasse, 2011). These effects have been correlated to 

enhanced nitration and modification of function of key metabolic proteins (Venkatesan et 

al., 2011). One report suggests that a single dose of methamphetamine at 14 d of age can 

result in reduced NPC proliferation in the hippocampus of adults (Hildebrandt, Teuchert-

Noodt, & Dawirs, 1999). Another set of studies suggests that exposure to a neurotoxic dose 

of methamphetamine may temporarily increase activity of quiescent NPCs in the adult 

striatum, by effects mediated through dopamine D2 (but not D1) and neurokinin 1 receptors 

(Tulloch, Ghazaryan, Mexhitaj, Ordonez, & Angulo, 2011). These cells, most of which have 

glial phenotypes, contribute to an increase in the size of the striatum, but the increased glial 

population is not maintained in the absence of methamphetamine (Tulloch et al., 2011; 

Tulloch et al., 2014). The importance of the timing of drug exposure is highlighted in a 

study comparing self-administration in intermittent versus daily exposure (Mandyam et al., 
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2008). Increased NPC proliferation was reported with intermittent exposure to 

methamphetamine, while daily exposure had the opposite effect. Interestingly, intermittent 

exposure also resulted in formation of more immature neurons, although there was no net 

neuron gain due to offsetting effects on later stages of differentiation. Daily exposure 

decreased all aspects of cytogenesis. Other extended access self-administration models also 

showed reduced NPC proliferation and decreased neuron and/or glial formation (Mandyam 

et al., 2007; Yuan et al., 2011).

There has been very little exploration of psychostimulant-HIV interactions on NPCs. In both 

a rat hippocampal NPC cell line, and in transgenic mice, HIV-1 Tat and cocaine reduced 

NPC proliferation without affecting NPC survival. These individual effects and a modest 

tendency towards interaction were reversed by platelet-derived growth factor-BB (PDGF-

BB) through a mechanism involving both the transient receptor potential cation channel-C1 

(TRPC1), and ERK/CREB and mammalian target of rapamycin (mTOR) activation (Yao et 

al., 2012).

6. CONCLUSIONS

Although considerable progress has been made during the last decade toward identifying 

molecular and cellular sites of HIV and drug abuse convergence in the CNS, and several 

new therapeutic strategies have emerged that may prove beneficial, much work remains to 

be done. The high degree of variability in the response among individuals to HIV alone 

reveals a highly complex chemistry between host and viral genetics, a complexity that is 

undoubtedly more convoluted by drug abuse-neuroAIDS comorbidity. Moreover, many of 

the events underlying drug-abuse-HIV neuropathological interactions occur only within 

specific cell types and/or at specific times during ontogeny, which adds greatly to the 

intricacy of the problem. A full appreciation of the mechanisms underlying drug abuse and 

neuroAIDS interactions will likely require an understanding of the interrelationship of gene 

networks, rather than individual genes.
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Figure 1. 
Opiate drugs exacerbate HIV-1 neuropathogenesis through direct actions on glia—especially 

microglia and astroglia. Microglia are likely infected through interactions with infiltrating, 

perivascular macrophages, and propagate the bulk of HIV infection in the CNS. HIV-1 also 

infects astroglia, but to a far lesser extent, and perhaps without production of new virus., 

Infection results in the production of reactive oxygen and nitrogen species (ROS and RNS, 

respectively), pro-inflammatory cytokines, and the release of HIV-1 proteins such as gp120 

and Tat. All of these promote inflammation and cytotoxicity in bystander neurons and glia. 

Opiate abuse alone can cause premature Alzheimer-like changes (Anthony et al., 2010) and 

morphine by itself can enhance neurotoxicity in vitro (Zou et al., 2011); however, opiates 

appear to potentiate many of the pathophysiological effects of HIV in the central nervous 

system of infected individuals. Multiple neuronal and glial types express μ-opioid receptors 

(MOR). Many of the neurodegenerative effects of opioid-HIV interactions are the result of 

direct actions on microglia and astroglia, which then lead to a positive feedback cycle of 

inflammatory/cytotoxic signaling between HIV-1-infected microglia and astroglia. 

Abbreviations: α-chemokine “C-X-C” receptor 4 (CXCR4); altered or changed (Δ); β-

chemokine “C-C” receptor 5 (CCR5); blood-brain barrier (BBB); decreased (↓); fractalkine 

(CX3CL1); fractalkine receptor (CX3CR1); increased (↑); interferon-γ (IFN-γ); 

interleukin-6 (IL-6); intracellular Ca2+ concentration ([Ca2+]i); intracellular sodium 

concentration ([Na+]i); monocyte chemoattractant protein-1 (MCP-1 [or CCL2]); peripheral 

blood mononuclear cells (PBMCs); regulated upon activation, normal T-cell expressed, and 

secreted (RANTES [or CCL5]); Toll-like receptor (TLR). Fractalkine released by neurons 

(and astroglia) can be neuroprotective by limiting the neurotoxic actions of microglia (blue 

“┬”); red arrows suggest pro-inflammatory/cytotoxic interactions. Modified and reprinted 

from reference (Hauser et al., 2012) an “open access article distributed under the terms of 

the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), 

which permits unrestrictive use, distribution, and reproduction in any medium, provided the 

original work is properly cited.”
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Figure 2. 
Psychostimulants can increase synaptic damage through direct actions on neurons and glia, 

including both microglia and astroglia. Psychostimulants block dopamine, serotonin (5HT), 

and norepinephrine (NE) transport resulting in excessive accumulations of these 

neurotransmitters in the synaptic cleft. Dopaminergic neurons are particularly vulnerable to 

methamphetamine, which disrupts dopamine transporter (DAT) and vesicular monoamine 

transporter 1 (VMAT2) function and can damage presynaptic terminals of neurons. Synaptic 

injury is accompanied by the production of reactive oxygen (ROS) and nitrogen (RNS) 

species, and the production of damage-associated molecular patterns (DAMPs) that trigger 

activation of pattern recognition receptors (PRRs), including Toll-like receptor 9 (TLR9), 

nucleotide-binding oligomerization domain-like receptors (NLRs) and other PRRs (e.g., 

receptor for advanced glycation endproducts or RAGE) expressed by microglia and 

astroglia. Importantly, psychostimulants (especially methamphetamine) appears to activate 

neurons directly through the disruption of monoaminergic transporters and VMAT2 

mentioned above and through the activation of trace amine-associated receptor 1 (TAAR1). 

Psychostimulants also disrupt glial function directly by increasing intracellular ROS and 

likely Ca2+ concentrations ([Ca2+]i), NF-κB transcriptional activity, and by activating 

sigma-1-receptors (sigma-1; red, dashed-line outline), especially in the case of cocaine, and 

enzyme systems driving oxidative and nitrosative stress especially in microglia (and other 

cell types). Increases in NF-κB transcriptional activity result in increased microglial, and to 

a lesser extent astroglial, production of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-

γ), interleukin-1β (IL-1β), and various other cytokines, as well as tissue inhibitor of 

metalloproteinase-1 (TIMP-1). Psychostimulants also obstruct the buffering of extracellular 

glutamate by inhibiting excitatory amino acid transporters-1/2 (EAAT1/2) and the 

conversion of glutamate to glutamine by inhibiting glutamine synthetase, as well as by 

limiting glucose metabolism in astrocytes. Collectively, neuronal injury and intensified glial 

activation promotes positive microglial-astroglial, and neuronal-glial feedback that cause 

spiraling increases in neuroinflammation and neuronal injury. If unrestrained, the 

cumulative insults result in lasting neurodegenerative changes. Modified and reprinted from 

reference (Beardsley & Hauser, 2014). Reprinted from Advances in Pharmacology, Vol. 69, 
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Patrick M. Beardsley and Kurt F. Hauser, Chapter One – Glial Modulators as Potential 

Treatments of Psychostimulant Abuse, 1–69, Copyright 2014, with permission from 

Elsevier.
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Figure 3. 
Computer-generated model of a MOR-CCR5 dimer (A). The helical portions colored in blue 

and green represent CCR5, while the red and yellow helices represent MOR (A). Each 

ribbon was given an arbitrary color in order to distinguish individual helices from one 

another (A). Representation of the Poisson–Boltzmann electrostatic potentials at the surface 

of the heterodimer using the APBS plugin by PYMOL (El-Hage et al., 2013) (B). Acidic 

residues are shown in red (−2 kBT/e); basic residues are shown in blue (+2 kBT/e); white 

represents uncharged residues (B). The model predicts that a majority of the interactions 

between the two receptors are hydrophobic (B). Chemical structure of a bivalent ligand that 

binds both MOR and CCR5 receptors concurrently (C) (for complete description see, El-

Hage et al., 2013). Reprinted with permission from Lippincott Williams and Wilkins/

Wolters Kluwer Health: AIDS (El-Hage et al.), copyright 2013.
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