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Abstract

Mitochondrial impairment as evidenced by decline in adenosine 5′-triphosphate (ATP) is 

associated with oxidative stress in Alzheimer’s neuropathology and suggests that mitochondria 

may fail to maintain cellular energy, through reduced ATP production in neurons. To gain insights 

into the ATP characteristics of Alzheimer’s disease transgenic (Tg) mice, we investigated ATP 

contents in the brain and whole blood of Tg mice at three ages (1-, 5- and 24-month-old). Overall, 

our results demonstrate that tissue ATP contents in Tg mice are significantly reduced, suggesting a 

decrease of tissue ATP production and mitochondrial dysfunction.
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INTRODUCTION

Alzheimer’s disease (AD) is characterized by progressive cognitive impairment beginning 

with prominent deficits in short-term memory [1]. Due to the high energy demands of 

neurons and glia, a considerable amount of adenosine 5′-triphosphate (ATP) is consumed in 

the brain. Also, because no energy storage (such as fat or glucose) is available in the central 

nervous system (CNS), brain cells must continually produce ATP to maintain activity and 

energy homeostasis [2]. Mitochondria are known as the power house of the cell and play a 

prominent role in ATP production during the Krebs cycle. However, aged/damaged 

mitochondria are thought to produce excess free radicals, which can actually decrease ATP 

supply and lead to energy decline and mitochondrial impairment induced by oxidative stress 

in AD neuropathology [3, 4]. Moreover, Mao et al. have implicated that oxidative stress can 

contribute to the etiopathology of AD [5]. Our previous studies also support this hypothesis 

and suggest that oxidative stress can lead to antioxidant system imbalance and oxidative 
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macromolecule damage characterized by protein modifications and DNA oxidation in AD 

transgenic mice [6–10].

Furthermore, inflammatory pathways can be activated as a response to oxidative stress in the 

AD brain, which may exacerbate AD neuropathology. There are two types of inflammation 

pathways, which include acute (beneficial) and chronic (detrimental) stages. The former is 

an early stage response and is predominantly important for quickly activating the immune 

system [11]. However, upon continual activation of acute inflammation, reactive oxygen 

species (ROS) accumulate which can damage mitochondria and increase ROS production, a 

cycle that leads to cell malfunction and apoptosis [12]. In addition, defects in mitochondria 

may cause reduced ability to maintain cellular energy, leading to changes in oxygen 

consumption, alternations in mitochondrial membrane potential, and abnormal ATP levels in 

neurons. Camandola’s group reported that Cl−-ATPase and Na+/K+-ATPase were abnormal 

in the AD brain, resulting in the reduction of gradients of Na+, K+ and Cl− between cell 

membranes and resulted in cellular excitotoxicity and neuronal apoptosis [13].

In this study, we used an AD-Tg mouse model (B6.Cg-Tg) that begins to develop amyloid 

plaques at 6-month of age [14]. To obtain a better understanding of ATP characteristics of 

AD-Tg mice at different age stages, we investigated ATP contents in the brain and whole 

blood of Tg mice compared to their age-matched wild type (Wt) littermates at 1-, 5- and 24-

month-old in this study.

MATERIALS AND METHODS

Chemicals and reagents

Sodium chloride (NaCl), potassium chloride (KCl), sodium phosphate dibasic (Na2HPO4), 

potassium phosphate monobasic (KH2PO4), ethylenediaminetetraacetic acid (EDTA), 

potassium hydroxide (KOH) and perchloric acid (PCA) were purchased from Sigma (St. 

Louis, MO). The ATP bioluminescence assay kit was obtained from Promega ENLITEN® 

(Madison, WI). 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4 were 

used to make 1X phosphate buffered saline (PBS). 30% KOH was applied as a neutralizing 

agent. 5% PCA was utilized for ATP extraction.

Animals

An AD-Tg mouse model (B6.Cg-Tg (APPswe, PSEN1dE9) 85Dbo/J, stock no. 005864) and 

Wt mice (C57BL/6J, stock no. 000664) from the Jackson Laboratory (Bar Harbor, ME) 

were investigated in this study. Animals were divided into different age groups at 1-, 5- and 

24-month-old (N=3/group). All procedures for the handling of mice were approved by the 

Institutional Animal Care and Use Committee at Louisiana Tech University.

Measurement of ATP levels

An ATP bioluminescence assay was employed to determine ATP levels in the brain and 

whole blood of AD-Tg/Wt mouse cohorts at 3 age stages (N=3/group). Whole blood 

samples were collected from cardiac puncture under deep anesthesia after intraperitoneal 

injection of sodium pentobarbital (60 mg/kg). To prevent coagulation, 6% EDTA was added 
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(ratio 19:1) to precooled centrifuge tubes. Mice were decapitated and brains were rapidly 

removed and rinsed with 1X PBS on ice. Brain and whole blood samples were stored at −80 

°C until use. Upon use, to release ATP from cells and inhibit ATP-degrading enzymes, each 

sample was homogenized with 5% PCA (final concentration 0.5–2.5%) on ice and 

neutralized with 30% KOH to pH 7.7, then followed by centrifugation at 14,000 × g for 10 

min. Supernatants were collected and incubated with lysis buffer containing the luciferase 

reagent for 7 min at 25 °C. A GloMax 20/20 luminometer from Promega ENLITEN® 

(Madison, WI) was used according to the manufacturer instructions for measurement of the 

luminescent signal of each sample in triplicate [15]. Furthermore, sample pellets were 

reconstituted with 1X PBS and used to determine the protein concentrations by using the 

BCA assay kit from Thermo Fisher Scientific (Waltham, MA). The signal was detected at 

562 nm by using a NanoDrop 2000/2000c UV-Vis Spectrophotometer from Thermo 

Scientific (Wilmington, DE).

Statistical analyses

Statistical analyses between groups were conducted via two-way ANOVA with Tukey’s 

Multiple Comparison post-hoc test using Graphpad Prism 6.02 software (La Jolla, CA). A 

value of P<0.05 was accepted as significant. All values have been expressed as Mean ± 

SEM, N=3/group.

RESULTS AND DISCUSSION

In this study, a bioluminescence assay was used to monitor tissue ATP levels in brain and 

whole blood samples of mice at different age stages. We found a significant impact of age 

(1- v.s. 24-month-old) on ATP contents in the brains of both Tg (+P=0.025) and Wt mice 

(+P=0.023), whereas no difference was observed between Tg and Wt mice at 1-month-old, 

indicating that young animals may have low baseline levels of ATP contents at preclinical 

stages of AD phenotype. Conversely, timepoints where AD neuropathology was mature, we 

found significant effects of genotype (5-month, **P=0.003; 24-month, *P=0.043), 

suggesting a strong decrease in ATP levels in AD brains. Accordingly, brain levels of ATP 

were significantly increased in Tg and Wt mice from 1- to 24-month-old, and brain ATP 

levels in Tg mice were significantly lower than their age-matched Wt mice shown in Figure 

1A, demonstrating that the antioxidant system may be compromised in the aged mouse 

brain, thereby impacting the supply of tissue ATP in AD brains. In whole blood, we 

observed no significant impact of age, however, a dramatic increase of blood ATP levels 

was observed between Wt and Tg mice at 5-month-old (*P=0.014, Fig. 1B). This may 

indicate that the compensation of mitochondrial impairment is present at this age.

Collectively, these results suggest that AD brains are susceptible to oxidative insults, and 

mitochondrial dysfunction may be occurring, possibly secondary to increased mitochondrial 

production of ROS. Moreover, because we observed ATP levels to be lower in the brain 

than in blood, the brain may be an early site to have mitochondrial impairment in AD 

progression. Alternatively, the pattern of alternations in tissue ATP contents was not 

mirrored in blood, so that the oxidative status in the blood may not be a direct reflection of 

what is occurring in brain. In support of this contention, our previous work has also found 

that the glutathione redox status in blood not be consistent with the brain [7]. Our future 
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studies aim to gain an integrated and systematic view of bioenergetics (levels of 

deoxyribonucleotide triphosphates, oxygen consumption rate and mitochondrial 

transmembrane potential) in AD and further refine brain-blood energy relationships though 

investigating mitochondrial ATP levels in different AD-related brain regions (hippocampus 

and cortex) and in peripheral organs rich in mitochondria (muscle, heart, kidneys and liver).

CONCLUSION

In this study, we find that ATP levels are significantly increased in brains of both aged AD-

Tg and Wt mice, whereas the ATP contents in Tg mice are lower than the age-matched Wt 

mice, suggesting that abnormal tissue ATP status may be caused by mitochondrial 

dysfunction associated with the increased production of ROS [16, 17]. Furthermore, a 

decrease in energy metabolism in mitochondria may be involved in AD pathogenesis, 

thereafter leading to a decline in ATP generation [18]. Our blood ATP analysis indicates that 

there is no age difference, while ATP levels in AD-Tg mice are higher than the Wt mice, 

which might be due to the compensation of mitochondrial dysfunction. Overall, these results 

serve as a fundamental reference of the ATP status and further guide the direction of our 

future longitudinal study in mitochondrial dysfunction related to AD neuropathology.
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Figure 1. 
ATP contents were detected by ATP bioluminescence assay in the brain and whole blood of 

Wt and Tg mice at 3 age stages (1-, 5- and 24-month-old). (A) ATP levels in brains of Wt 

and Tg mice at different age stages. (B) ATP levels in whole blood samples of Wt and Tg 

animals at 3 ages. All data are expressed as Mean ± SEM, N=3/group. Statistical analyses 

were conducted via 2-way ANOVA with Tukey’s Multiple Comparison post-hoc test.

Age: 1- v.s. 24-month. +P<0.05.

Genotype: Wt v.s. Tg. *P<0.05, **P<0.01.
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