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Abstract Curve of left ventricular (LV) volume changes
throughout the cardiac cycle is a fundamental parameter for
clinical evaluation of various cardiovascular diseases. Cur-
rently, this evaluation is often performed manually which is
tedious and time consuming and suffers from significant in-
terobserver and intraobserver variability. This paper intro-
duces a new automatic method, based on nonlinear dimen-
sionality reduction (NLDR) for extracting the curve of the LV
volume changes over a cardiac cycle from two-dimensional
(2-D) echocardiography images. Isometric feature mapping
(Isomap) is one of the most popular NLDR algorithms. In this
study, a modified version of Isomap algorithm, where image
to image distance metric is computed using nonrigid registra-
tion, is applied on 2-D echocardiography images of one cycle
of heart. Using this approach, the nonlinear information of
these images is embedded in a 2-Dmanifold and each image is
characterized by a symbol on the constructed manifold. This
new representation visualizes the relationship between these
images based on LV volume changes and allows extracting
the curve of the LV volume changes automatically. Our meth-
od in comparison to the traditional segmentation algorithms
does not need any LV myocardial segmentation and tracking,
particularly difficult in the echocardiography images. More-
over, a large data set under various diseases for training is not
required. The results obtained by our method are quantitative-
ly evaluated to those obtained manually by the highly experi-
enced echocardiographer on ten healthy volunteers and six
patients which depict the usefulness of the presented method.
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Introduction

Quantitative measurement of the left ventricle (LV) function is
an important step in the assessment of heart diseases [1–3]. A
number of indices of the LV function are derived from the
measurement of LV volume such as LV ejection fraction (the
ratio of change in LV volume between end diastole (ED) and
end systole (ES)) and LV volume changes over time (one or
two cardiac cycle). These indices are fundamental parameters
for global LV function assessment [1–3]. The LV volume
changes throughout the cardiac cycle provide a possibility of
more detailed assessment of cardiac hemodynamic (LV filling
and ejection phases) and can be used as a tool for differenti-
ation between normal subjects and patients with a wide variety
of cardiac diseases. For example, in coronary artery diseases,
normal pattern of LV filling and emptying will be changed.
This parameter has become the main criteria for selection of
an imp l an t ab l e c a r d i ove r t e r - d e f i b r i l l a t o r and
resynchronization therapy [4]. Besides, in several clinical
studies, LV volume changes have been used as an outcome
variable [4]. Currently, echocardiography is the preferred
method for calculation of this parameter because of its low
cost, availability, and high temporal resolution. Two echocar-
diography methods are used to estimate LV volume changes
throughout the cardiac cycle [2, 3]; first, visual inspection and
second, manual tracing of the endocardial borders, both car-
ried on by highly experienced echocardiographer. Visual as-
sessment is based on the recognition of LV wall motion
pattern from apical views of the heart. The second method
requires accurate manual delineating of the endocardial bor-
ders of LVon echocardiography images of a complete cardiac
cycle. This method is tedious and time consuming. In

A. Shalbaf (*) :H. Behnam : R. Shalbaf
Department of Biomedical Engineering, School of Electrical
Engineering, Iran University of Science & Technology, Tehran, Iran
e-mail: shalbaf@iust.ac.ir

Z. Alizadeh Sani
Rajaie CardiovascularMedical & Research Center, Iran University of
Medical Science, Tehran, Iran

J Digit Imaging (2015) 28:91–98
DOI 10.1007/s10278-014-9722-z



addition, these two methods are subjective and highly depen-
dent on training and experience. Thus, a robust and accurate
automated method for calculating LV volume changes is
highly desirable, particularly for the less experienced
echocardiographer.

Different image processing techniques have been pro-
posed for automatic computation of LV volume changes
from two-dimensional (2-D) echocardiography images.
In all these techniques [4–12], first inner wall of LV
is separated automatically in all images of a cardiac
cycle. This is done with different image processing
methods such as active contour models [5–7], active
shape model [8], active appearance motion model [9],
a combination of database-guided segmentation and an
information fusion framework for robust shape tracking
[4, 10], a weighted radial edge filtering algorithm [11],
and a combination of multiresolution edge detection
technique based on the global maximum of wavelet
transform and radial search algorithm [12]. It should
be noted some of these image processing algorithms
are also used in segmentation of LV from cardiac MR
images [13–15]. Then, LV volume changes are calculat-
ed by applying a standard approximating equation on
LV extracted contour in each image. However, automatic
segmentation and tracking the endocardial borders of the
LV in 2-D echocardiography images are difficult image
processing tasks due to the high level of uncorrelated speckle
noise, and artifacts from valves and papillary muscles [9, 16].
Moreover, because of the opening of the mitral valve during
diastole phase, automatic segmentation of the LV in four
chamber view is difficult. Furthermore, in some of these
methods [4, 8–10], a large data set under various diseases is
required for training of shape and textural information within
LV region.

In this study, we attempt to overcome these difficulties by
proposing a new automatic method based on nonlinear dimen-
sionality reduction (NLDR), for estimation of LV volume
changes during a cardiac cycle. NLDR algorithms include a
class of machine learning techniques embedding data sets
from high to lower dimensional parameterizations while re-
specting the intrinsic geometry of the data sets [17–20]. The
paper by Tenenbaum et al. [17] offers an excellent explanation
of the NLDR method with examples of how it works and can
be used; additional detail is provided in [18–20]. These algo-
rithms can be used for image analysis because images can be
thought of as points in a high dimensional space with dimen-
sion size equal to the number of pixels in the image. By these
approaches, the images of one cycle of heart are embedded in
a 2-D space (each image is characterized by a symbol in 2-D
space). This new useful parameterization visualizes the rela-
tionship between these images based on LV volume changes
and allows extracting the curve of the LV volume changes
automatically.

Materials and Methods

Cardiac Cycle

A cardiac cycle can be divided into seven phases (Fig. 1) [1].
First, “Atrial Contraction”, that is the result of the atrial
musculature contraction which gives an additional thrust to
inflow blood into the ventricles. Second, “Isovolumetric Con-
traction”, during which ventricular volume does not change
because all valves are closed. In addition, the ventricular
volume is maximum called the end diastolic volume. Third,
“Rapid Ejection”, the first third of the ejection period in which
70 % of ventricular emptying occurs. Fourth, “Reduced Ejec-
tion”, it is the last two third of the ejection period in which the
rate of ejection decreases so that only 30 % of ventricular
emptying occurs. Fifth, “Isovolumetric Relaxation”, the ven-
tricular volume remains constant during this phase because all
valves are closed. Moreover, the ventricular volume is mini-
mum called the end systolic volume. Sixth, “Rapid Filling”, in
this phase, blood flows into the ventricles rapidly from the
atrium. Seventh, “Reduced Filling”, during this phase, the
change in ventricular volume is very little due to low blood
entering to the ventricles and less compliant of ventricles.

LV Volume Computation from 2-D Echocardiography Images

The American Society of Echocardiography (ASE) recom-
mends several methods for LV volume computation from 2-D
echocardiography images based on geometric models of the
LV, dimensions, and area measurements obtained from long
axis apical and short axis views [2, 3, 21]. According to the
ASE, the biplane method of discs (modified Simpson’s rule)

Fig. 1 Two cardiac cycles diagram. The color bar illustrates seven
phases of cardiac cycle (First phase: black, second: red, third: yellow,
forth: green, fifth: blue, sixth: magenta, seventh: cyan) [1]
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based on paired long axis apical views (two and four chamber)
is the best method to compute LV volume (Fig. 2). In this
process [2, 3, 21], the inner wall of the LV from the two and
four chamber views is separated. Then, the main axis of LV in
two views (maximal distance from the mid-mitral annulus to
the LVapex) is determined and next LV contour is divided into
20 equal sections so that each section is perpendicular to the
main axis (Fig. 2). Finally, LV volume is calculated according
to the summation of areas of 20 elliptical discs of equal height
whose centers are all in the main axis. Generally, for LV
volume calculation using modified Simpson’s rule, the two
apical views are used. However, for routine use, one apical
view is accepted and can be applied to either long axis apical
views [3]. In this case, the area of the disc is assumed to be
circular and equation for LV volume calculation is as follows:

LV Volume ¼ π
4

X

i¼1

20

di
2 � L

20
ð1Þ

where di is the diameter of the ith disc LV contour and L is
the length of the LV main axis from the two or four chamber
views.

Data Description

The study was performed according to the Helsinki Declara-
tion and approved by the Regional Committee for Medical
Research Ethics. Two consecutive cardiac cycles of 2-D im-
ages of ten healthy volunteers and six patients (ischemic heart
disease) from apical four chamber view were acquired using
an ultrasound machine (General Electric Vivid 3, Horten,
Norway), including the electrocardiogram (ECG) recording.
Each cardiac cycle was identified by selecting the two con-
secutive R-wave of ECG signal synchronized with the end of
diastole. The heart rates ranging are from 45 to 95 beats per

minute (bpm) and the frame rates of image recording are from
40 to 70 frames per second (fps). Moreover, the curve of the
LV volume changes in each cardiac cycle is calculated by a
highly experienced echocardiographer. To do this, the echo-
cardiographer first manually detects the inner wall and main
axis of the LV in each image of a cardiac cycle. Then, LV
volume is calculated using single plane modified Simpson’s
rule method (Eq. (1)).

NLDR Algorithms

NLDR algorithms embed data sets from high to lower dimen-
sional parameterizations while the intrinsic geometry of the
data sets is respected [17–20]. Images can be thought of as
points in a high dimensional space with dimension size equal
to the number of pixels in the image. However, when image
sets vary due to a small number of factors (lighting, deforma-
tion, etc.), these images have a natural low dimensional pa-
rameterization in high dimensional space which can be ex-
tracted by NLDR algorithms [17–20].

NLDR algorithms have been used for visualization of
image sets (rendered faces, handwritten digits, head
pose, and writing style) [17, 19, 22]. Moreover, these
algorithms have been widely used for medical image
analysis such as visualization of cardiopulmonary MR
images [23] and echocardiography images [24], classifi-
cation in brain MR images [25], tracking of the LV in
3-D echocardiography images and heart in 3-D CT
images [26], segmentation of breast MR images [27],
assessment of regional and global wall motion abnor-
malities in echocardiography images [28], and detection
of polyps in CT colonography images [29, 30].

Isometric feature mapping (Isomap) [17], Locally
Linear Embeddings [18, 19], and Laplacian eigenmaps
[20] are the most popular NLDR algorithms. In this
paper, we have used Isomap algorithm. This algorithm
attempts to extract low dimensional parameterizations
for data sets in a high dimensional space in such a
way that pairwise geodesic distances are preserved so
that nearby and far points in high dimensional space
map to nearby and far points in low dimensional space
[17]. The most common image distance metric for com-
puting the pairwise geodesic distances in Isomap algo-
rithm is the square root of the sum of squared pixel
intensities difference between homologous pixels [17].
However, when image sets vary due to the nonrigid
deformation of a specific object, an alternative image
distance metric based on measuring similarity in terms
of nonrigid deformation in image sets is required [22,
31]. This leads to capturing the variation of image sets
in the resulting embedding more accurately. Echocardi-
ography images of one cardiac cycle vary due to the
nonrigid deformation of the LV caused by the subject’s

Fig. 2 LV volume calculation from 2-D echocardiography image using
modified Simpson’s rule based on paired long axis apical views (L is the
longer of the two main axes of the LVand, ai, bi are the diameters of the
ith disc LV contour from the two and four chamber views)
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heartbeat. Therefore, in this study, we have used an
image distance metric based on the parameters of the
nonrigid transformation model produced by a fully au-
tomated image registration method. This nonrigid trans-
formation model is based on an affine transformation
for modelling the global LV motion and a B-spline free-
form deformation transformation for modelling the local
LV deformation [32, 33]. Image registration as an opti-
mization problem finds the optimal parameters of the
transformation model so that the mapped image at the
time t1, is as close as possible to the reference image
taken at time t2. In conclusion, the final parameters of
nonrigid transformation model calculated by image reg-
istration method between image pairs are used to define
pairwise image distance measure [28].

In summary, suppose that there are n images as the high
dimensional data points, the improved version of Isomap
algorithm is as follows:

Compute the distance between all pairs of images in
the input space using the method described above.
Then, create a neighborhood graph, in which each im-
age is taken as a node and is connected to its k nearest
neighbors (the value of k is specified by the user and
usually selected 5 to 10). Thus, in this graph, the edge
between two nodes exists if these two nodes are neigh-
bors and the length of this edge is the distance between
the two images. After that, the shortest path for each
pair of nodes through neighborhood graph named geo-
desic distance is computed using Dijkstra’s or Floyd-
Warshall shortest path algorithm [34, 35]. By calculation
of geodesic distance between all pairs of nodes, the
matrix of pairwise geodesic distance is constructed.
The final step applies multidimensional scaling (MDS)
[36] on the resulting geodesic distance matrix to con-
struct the low dimensional data points.

Statistical Analysis

In this paper, the mean absolute distance (MAD) is used for
measuring the difference between paired curve symbols as
follows:

MADi ¼ 1

N

X

j¼1

N

distance LC j ; LH j

� ��� �� ð2Þ

where LC and LH are the sets of symbols along the
curve of LV volume changes obtained by the proposed
method (or other methods) and the reference one, re-
spectively. N is the number of symbols in each curve,
and i is the number of sequence of data set. The overall
performance measure for each of method is the

averaged distance on the whole test set of sequences.
We also record the standard deviation of the distance
metric for across sequences.

Results

Visualization of Echocardiography Images

By manually defining a rectangular region of interest (ROI)
around the LVon ED image, the approximate region of the LV
is extracted from echocardiography images (Fig. 3). This
image is chosen because of its maximum LV volume at one
cardiac cycle. Then, the coordinates of extracted rectangular
ROI are applied on all images of a cardiac cycle automatically.
Figure 4 demonstrates ten selected images over one cycle of
heart in two subjects. These images are considered as points in
a high dimensional space (dimension is equal to the number of
pixels in the image). Thus, the dimension of first space is
52000 for these 260×200 pixel images. Although the input
dimension is very high, these images which are different due
to LV nonrigid deformation caused by the subject’s heartbeat
have a natural low dimensional parameterization in high di-
mensional space. This low dimensional parameterization can
be extracted by improved Isomap algorithm. Consequently,
the echocardiography images of one cycle of heart have been
embedded in a 2-D space by the improved Isomap algorithm
with k=8 neighbors (Fig. 5). In this figure, the symbols are the
nonlinear projection of the consecutive images of one cycle of
heart which are joined by a line based on the frame order and
in this way we generate a curve in the 2-D space that is called
manifold. In all cases, the cyclic nature of the heart motion
leads to a cyclic closed manifold. It is noted that the horizontal
and vertical axes do not have units.

Improved Isomap algorithm attempts to extract a low di-
mensional (2-D) data from LV echocardiography images

Fig. 3 One image from the sequence with the rectangular box shows the
localized LV
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(52000-D) so that geodesic distances between these images
are preserved. Therefore, nearby and far images in high di-
mensional space map to nearby and far symbols in 2-D space.
Consequently, in Fig. 5, manifold symbols visualizes the
relationship between these images based on distance between
them in high dimensional space or other words based on the
nonrigid deformation of the LV which results in LV volume
changes. As demonstrated in these manifolds (Fig. 5), changes
in LV volume in seven phases of the cardiac cycle are ob-
served. The highly experienced echocardiographer by inves-
tigating ECG signal have determined manifold symbols cor-
responding to the seven phases of the cardiac cycle for two
above cases and demonstrated with different symbols and
colors in Fig. 5. As illustrated in these figures (especially for
the normal case), in three phases of the cardiac cycle (second,
fifth, and seventh phases), where there are no remarkable
changes in LV volume, the distances between symbols are
very small. In addition, during the third and fourth phases of

the cardiac cycle, in which there are considerable changes in
LV volume, symbols are far apart and the distances between
them are high. Besides, there is significant distance between
consecutive symbols in the manifold during the first and the
sixth phases because of considerable LV volume changes.
Moreover, because of the highest volume difference (highest
LV deformation) between ED and ES images compared to any
other two images, the distance between these two symbols is
approximately maximum compared to the distance of any
other two symbols (Fig. 5). Finally, with increased LV wall
motion in healthy case compared with the patient case (in-
creasing the difference between LV echocardiography im-
ages), the distances betweenmanifold symbols have increased
and consequently the areas of resultant manifold have in-
creased. Consequently, this new visualization demonstrates
hemodynamic information of a cardiac cycle and allows a
concise evaluation of various stages of ventricular systolic
and diastolic function.

Fig. 4 Ten selected images over one cycle of heart in two cases. Top healthy case and bottom patient case
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Fig. 5 The 2-D nonlinear embedding of one cycle of LVechocardiogra-
phy images using improved Isomap algorithm (with k=8 neighbors) in
two cases. Left, healthy case (68 fps, 74 bpm, LVejection fraction=72%).
Right patient case (42 fps, 86 bpm, LV ejection fraction=30 %). The

seven phases of the cardiac cycle are depicted with different symbols and
colors. (First phase: black, second: red, third: yellow, forth: green, fifth:
blue, sixth: magenta, seventh: cyan). (The horizontal and vertical axes
are dimensionless.)
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Automatic Computation of LV Volume Changes

As described, manifold symbols visualize the relationship be-
tween LVechocardiography images of one cycle of heart based
on LV volume changes. Therefore, the curve of LV volume
changes can be extracted from the resultant manifold. To do this,
after automatically determining the symbol corresponding to ES
image using themethod described in [24], the Euclidean distance
between ES symbol and all other symbols in the resultant
manifold is calculated. The curve obtained from this distance
calculation based on frame number corresponds to LV volume
changes of one cycle of the heart (Fig. 6). The LV volume
changes curve obtained from the proposed method for a healthy

case is similar to LV volume changes curve observed in Fig. 1
for a normal heart. It is noteworthy that the obtained curve of LV
volume changes is not scaled based on milliliter. If we want to
determine the exact volume at each symbol of this curve, we
must scale this obtained curve. To do this, the inner wall
(endocardium) and main axis of the LV from the ED and ES
images (extracted using the method described in [24]) are de-
tected by the highly experienced echocardiographer. The detect-
ed endocardium contour andmain axis of the LVare then used to
compute LV volume according to the single plane modified
Simpson’s rule (Eq. (1)) in each of these two images. Then,
calculated ED and ES volumes are used to scale the derived
curve of LV volume changes so that ED volume corresponds to
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Fig. 6 The curves of the LV volume changes measured by the proposed method in one complete cardiac cycle in two cases. Left healthy case and right
patient case. (First phase: black, second: red, third: yellow, forth: green, fifth: blue, sixth: magenta, seventh: cyan)
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Fig. 7 Comparison between the curves of LV volume changes measured
by proposed method (solid line), standard Isomap method (dashed line),
the image segmentation method (dash-dot line) and those obtained by the

highly experienced echo cardiologist (dotted line) in one complete cardiac
cycle in two cases. Left healthy case and right patient case
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maximum Euclidean distance and ES volume corresponds to
minimum Euclidean distance (minimum Euclidean distance is
zero). In general, the Euclidean distance of each symbol to ES
symbol in the resultant manifold is scaled as follows:

a ¼ EDvolume − ESvolume

maximumdistance toESsymbol − minumundistance toESsymbol

volume ¼ distanceof eachsymbol toESsymbolð Þ � a½ � þ ESvolume

ð3Þ

Thus, the curve obtained from the distance of each symbol
to ES symbol in the resultant manifold (curve of LV volume
changes in Fig. 6) is scaled based on milliliter. Figure 7
demonstrates the obtained curve of LV volume changes after
scaling (solid line). This figure also demonstrates the obtained
curve of LV volume changes in one complete cardiac cycle for
two above cases using the highly experienced echocardiog-
rapher (dotted line), standard Isomap method (dashed line),
and an automatic echocardiographic image segmentation
method using level set [5, 6] (dash-dot line).

For a systematic quantitative evaluation, the curves of LV
volume changes obtained by the proposed method and two
other methods mentioned above are compared to those ob-
tained by the reference experienced echocardiographer using
MAD in 32 echocardiography image sequences. Figure 8 and
Table 1 show the results of quantitative evaluation using this
metric. Result showed that the proposed method achieved
higher performance in term of MAD (lower average and
standard deviation) than the automatic echocardiography im-
age segmentation and the standard Isomap methods. Also, we
have found that for all analyzed sequences there is agreement
between reference experienced echocardiographer and auto-
matic proposed assessment.

Discussion

In this paper, a new automatic method, based on NLDR is
presented for extracting the curve of LV volume changes
nearly identical manual determination by the highly experi-
enced echocardiographer. This method also visualizes the
relationship between LV echocardiography images of one
cardiac cycle based on LV volume changes. Experimental
results demonstrate superiority of the proposed method over
the traditional segmentation algorithms for estimation of LV
volume changes curve.

Our proposed method has three advantages over other
conventional approaches of calculating LV volume changes
mentioned in the introduction section. First, any LV myocar-
dial segmentation and tracking, particularly difficult in the
echocardiography images, are not needed. Second, a large
data set under various diseases for training is not required.
Finally, in addition to extracting the curve of LV volume
changes, the relationship between images of one cardiac cycle
based on LV volume changes are visualized. However, our
proposed method has two limitations. First, the accuracy of
the proposed method relies on successful nonrigid image
registration for computing reliable image to image distance
metric in Isomap algorithm which may be affected by the
inherent limitations of echocardiography imaging modality
and independent movement of the mitral valve, although these
effects were minimized by an appropriate and accurate regis-
tration method described in the method section. Second, the
results obtained by the experienced echocardiographer as gold
standard are not ideal. However, to reach clinical acceptance,
any quantitative method should be compared against this
clinically accepted method.

These results proved that the proposed method is ap-
propriate for 2-D echocardiography images. Next, we are
going to test the algorithm on cardiac MR images. In
general, the improved Isomap algorithm can also be used
in analyzing and the visualization of other medical image
sets when images have approximately a few comprising
causes of the variation (e.g., nonrigid deformation). Finally,
this visualization of echocardiography images, by itself, may
be a useful diagnostic tool for the recognition and identifica-
tion of many cardiac diseases. However, this work needs more
research.
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Fig. 8 MAD between curves of the LV volume changes obtained by the
proposed method (solid line), standard Isomap method (dashed line), the
automatic image segmentation method (dash-dot line), and those obtain-
ed by the highly experienced echocardiographer for 32 test sequences

Table 1 Quantitative comparison between the proposed method, stan-
dard Isomap method, and the automatic segmentation method in term of
MAD for 32 test sequences

Method MAD

Automatic segmentation 2.42±0.66

Standard Isomap algorithm 2.99±1.12

Proposed method 1.59±0.62
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Conclusion

A new automatic method, based on NLDR, is successfully
presented for estimation of LV volume changes during a
cardiac cycle, with good agreement to manual assessment by
a highly experienced echocardiographer.
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