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Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a
species; however, few investigations demonstrate how naturally occurring SNPs may increase strain
virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain
genotype—patient disease phenotype relationships. Whole-genome sequencing of approximately 800
serotype M59 group A Streptococcus strains, recovered during an outhreak of severe invasive infections
across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene
regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the
hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at
codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed
that the H201R replacement significantly increased expression of mga and 54 other genes, including
many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain
caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive
magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more
virulent in a nonhuman primate model of joint infection. These findings show that the H201R
replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to
how a naturally occurring SNP in bacteria contributes to human disease phenotypes. (Am J Pathol
2015, 185: 462—471; http://dx.doi.org/10.1016/j.ajpath.2014.10.018)

Investigating the genetic basis for altered virulence pheno-
types of bacteria is crucial to our ability to understand human
infectious diseases. These molecular pathogenesis data are
needed to generate new clinical tools, such as diagnostics and
vaccines,' ~ and they may guide public health maneuvers
during outbreaks.*> Within this context, single-nucleotide
polymorphisms (SNPs) are the most common source of
genomic variation within a particular species or serotype of
bacteria.®® However, little data exist bearing on the effect of
naturally occurring SNPs on host-pathogen interactions and
increased strain virulence.”'> Most investigations of strain
genotype—disease phenotype relationships have focused on
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large regions of genetic variation, such as pathogenicity
islands, recombination events, and mobile genetic elements
(ie, plasmids), that introduce new gene content or multiple
polymorphisms to a strain.'”~'® In comparison, the effect of
SNPs on strain virulence has been less intensely studied, with
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Single Amino Acid Replacement

most investigations relying on random mutagenesis or animal
passage experiments to discover mutations that alter strain
phenotypes in vitro. Herein, we demonstrate that a naturally
occurring SNP in a key regulatory gene in an important
human pathogen significantly increases the expression of
multiple virulence factors, and as a result, significantly
increases strain virulence.

Group A Streptococcus (GAS; Streptococcus pyogenes),
a human-specific pathogen, is a major cause of morbidity and
mortality worldwide.'” GAS infections range in severity from
mild pharyngitis (strep throat) to life-threatening necrotizing
fasciitis (flesh-eating disease), toxic shock syndrome, and
synovitis.'"® GAS strains are taxonomically categorized by
serologic- or sequence-based typing of the highly variable
emm gene that encodes the M-protein virulence factor.'®
To date, >200 M-types have been described.”’ Although
some GAS serotypes, such as M1 and M3, are globally
disseminated,”" M59 strains are an uncommon cause of
human disease, representing <1% of GAS recovered from
large population-based studies of pharyngitis or invasive
infections.”””' However, a hypervirulent serotype M59 GAS
clone recently emerged, and its progeny rapidly spread across
Canada and some parts of the United States to cause several
hundred severe invasive infections.”” > To investigate the
population genetic structure of strains comprising the epidemic
and understand the host-pathogen interactions underlying
strain virulence, our laboratory sequenced the genome of
approximately 800 serotype M59 GAS strains.”” >* An un-
expected discovery was that the most highly polymorphic
gene was the multiple gene regulator of group A Streptococcus
(mga), a key transcriptional regulator that influences approxi-
mately 10% to 20% of the GAS transcriptome, depending on
the strain or serotype studied.”® ** More important, every SNP
in mga encoded a missense (amino acid changing) or nonsense
(premature protein termination) codon, suggesting selection
for altered Mga sequences. Furthermore, one particular SNP
encoding an arginine to histidine replacement in amino acid
201 of Mga (H201R) arose independently at least five times
and was identified in 34 strains overall.”” These genomic data
led us to hypothesize that the Mga H20IR amino acid
replacement significantly alters the virulence phenotype of
M59 GAS. We used genome-wide transcript studies, a mouse
model of skin and soft tissue infection, and a newly developed
nonhuman primate model of joint infection to compare Mga
wild-type and H201R strains. Results demonstrated that the
Mga H201R amino acid replacement significantly increases
M59 GAS virulence.

Materials and Methods

Bacterial Strains and Growth Conditions

GAS strains were grown routinely on trypticase soy agar
containing 5% sheep blood or in Todd-Hewitt broth
containing 0.2% yeast extract (THY; Becton Dickinson
and Company, Franklin Lakes, NJ) at 37°C with 5% CO,.
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When appropriate, chloramphenicol was added to a final
concentration of 8 pg/mL.

Genome-Wide Transcript Analysis

Serotype M59 GAS strains MGAS15252 (reference) and
MGAS18055 (naturally occurring Mga H201R sequence)
were recovered from patients in Canada with invasive
infections.”** Strain MGAS15252 was selected as the
reference because its genome has been sequenced to closure,
it expresses mga and Mga-regulated genes at levels similar to
other M59 GAS strains (Kachroo P), and it has been used in
numerous mouse and nonhuman primate virulence
studies.”** Genome-wide transcript analysis was performed
as previously described.'® Briefly, triplicate cultures were
grown in THY overnight, diluted 1:50 in fresh THY media,
and harvested at late-logarithmic (ODggy = 1) phase of
growth. RNA was stabilized (RNAprotect Bacteria Reagent;
Qiagen, Valencia, CA), cells were homogenized using bal-
listic disintegration (Lysing Matrix B and FastPrep96 Auto-
mated Homogenizer; MP Biomedicals, Santa Ana, CA), and
nucleic acids were extracted using standard methods
(RNeasy96; Qiagen). RNA quality (model 2100 Bioanalyzer;
Agilent Technologies, Santa Clara, CA) and quantity (Qubit
2.0 fluorometer; Life Technologies, Carlsbad, CA) were
assessed. RNA sequencing libraries were prepared according
to manufacturer’s instructions (ScriptSeq version 2; Epi-
Centre Biotechnologies, Madison, WI), and sequenced using
a MiSeq Instrument (MiSeq reagent kit; Illumina Inc., San
Diego, CA). RNA transcripts were quantified as previously
described (CLC Bio, Cambridge, MA)” using reference
strain  MGAS15252  (http://www.ncbi.nlm.nih.gov/nuccore;
Accession number CP003116). Differences >1.7-fold and
P < 0.05, using Baggerly’s test and Bonferroni’s correction
for multiple comparisons, were considered statistically
significant (Supplemental Table S1).

Construction of Isogenic Mutants

Isogenic mutant strains were generated using MGAS15249
because its genome has been sequenced, it is genomically
representative of the epidemic serotype M59 GAS clone, and
it has the most common allele (wild-type sequence) for all
major regulatory genes.”> An isogenic mutant strain lacking
the gene encoding mga was generated by in-frame insertional
inactivation with a spectinomycin-resistance cassette, as
previously described (Supplemental Figure S1).' The mga-
deleted strain was then complemented in frans using the
pDC123 low-copy plasmid®™ containing either no insert
(designated Amga) or the coding sequence of the full-length
mga gene with its native promoter (designated wild type). To
generate an isogenic mutant strain carrying the Mga H201R
sequence (designated H201R), the plasmid containing the
wild-type allele was used as a template for site-directed
mutagenesis, according to the manufacturer’s instructions
(QuikChange II; Stratagene, Life Technologies). The
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Table 1  Probes and Primers Used for This Research

Primer Sequence Application

delMga A 5'-ATAGCGAGTGTTGCCATGTTAG-3' Upstream fragment of mga for isogenic deletion

delMga B 5 -GTTATAGTTATTATAACATGTATTATGCAT- Upstream fragment of mga for isogenic deletion
TAACTTCATGTCCTTATC-3’

delMga C 5 -CTATTTAAATAACAGATTAAAAAAATTATAAAC- Downstream fragment of mga for isogenic deletion
ATCATCATAGGATTTCAGACGT-3’

delMga D 5'-AATTTCCTCAGTCTTAGAGGCATCT-3' Downstream fragment of mga for isogenic deletion

delMga E 5'-CATTTTCAAGAGCTAATGTTGGT -3’ Sequencing and PCR confirmation of deletion mga

delMga F 5'-TATACTTGTCGCTAGATTCTCT-3’ Sequencing and PCR confirmation of deletion mga

delMga G 5'-AGCTGCCTGCCTGTTGACCAATC-3’ Sequencing and PCR confirmation of deletion mga

delMga H 5'-ATCTAGCTTAGCTTGCAGATCAGTC-3' Sequencing and PCR confirmation of deletion mga

Mga-spc forward
Mga-spc reverse

pDC-Mga top
pDC-Mga bottom
pDC-Mga Top2
pDC-Mga Top3
pDC-Mga Bottom?2
H201R top

H201R bottom

5'-GATAAGGACATGAAGTTAATGCATAATACATGTT-
ATAATAACTATAAC-3’
5'-ACGTCTGAAATCCTATGATGATGTTTATAAT -
TTTTTTAATCTGTTATTTAAATAG-3’
5'-GGAAGATCTTAGAGTAATAGGTCAAATAATC-3’
5'-GGGAATCCATATGCTATGATGATGTTGCTTGC-3’
5'-ATGGTTCATACGGACTTG-3’
5'-TGCTATTAGTATCGTGACAAG-3’
5'-GATCAATCAGCTCACTT-3'
5'-GTAGATGTCAAAGTTCGTTTTACACTATTTCAG-3'
5'-CATCTACAGTTTCAAGCAAAATGTGATAAAGTC-3'

Amplification of spec cassette
Amplification of spec cassette

Pmga-mga cloning into pDC

Pmga-mga cloning into pDC

Sequencing of mga

Sequencing of mga

Sequencing of mga

Site-directed mutagenesis to introduce H201R

5'-TCAATCAAGACCCGACATCA-3’
5'-GGTCACGGCAACTTCGTATT-3’
5'-GCTCAATCTCAGCATCACCA-3’
5'-CAACTCGTCACTATGCGCACAT-3'
5'-GAGCGGCACCAGTGATCAT-3’

mga gRT forward
mga qRT reverse
mga Probe
tufA gRT forward
tufA gRT reverse
tuf A probe

5'-CTCCAGGACACGCGGACTACGTTAAAAA-3'

Site-directed mutagenesis to introduce H201R
RT-gPCR analysis of mga
RT-gPCR analysis of mga
RT-gPCR analysis of mga
RT-gPCR analysis of tufA
RT-gPCR analysis of tufA
RT-qPCR analysis of tufA

qPCR, real-time quantitative PCR.

sequence of mga in all isogenic strains was verified by
Sanger dideoxynucleotide sequencing (Big Dye Terminator
and ABI 3730 DNA Analyzer; Life Technologies). No
differences in growth were observed among the isogenic
strains (Supplemental Figure S2A). A real-time PCR assay
using total genomic DNA extracted from the isogenic
strains confirmed that no differences in mga gene copy
number were introduced by the in frans complementation
strategy (Supplemental Figure S2B). The sequence of all
oligonucleotides used in this research is listed in Table 1.

GAS—Human Epithelial Cell Adherence Assay

Epithelial cell adherence of the isogenic M59 GAS strains
(4mga, wild-type, and H201R) was measured as previously
described.” Briefly, the human primary keratinocyte cell line
HaCaT (Life Technologies, Grand Island, NY) was cultured in
Dulbecco’s modified Eagle’s medium (Life Technologies)
supplemented with 2 mmol/L glutamine and 10% calf serum.
HaCaT cells were resuspended at a concentration of 1 x 10%
mL, and 900 pL was seeded into each well of a 12-well tissue
culture plate and incubated for 24 hours at 37°C with 5% CO..
GAS strains were prepared by growing each strain to
ODgyy = 0.5 (early logarithmic phase of growth) and
resuspended in an equal volume of phosphate-buffered sa-
line, and 100 pL. was added to each well containing the lawn of
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HaCaT cells. After incubating for 2 minutes, the supernatant
was removed and the wells were washed five times to remove
nonadherent GAS. Then, 1 mL of phosphate-buffered saline
containing 1% saponin was added to each well, and the plate
was incubated for 30 minutes at 37°C to lyse the HaCaT cells.
GAS strains (adherent to the HaCaT cells) recovered from
each well were enumerated by serial dilution and plating.
Mean GAS recovered from eight biological replicates of each
strain was compared using the Mann-Whitney test (Prism
version 6; GraphPad Software, La Jolla, CA), with P < 0.05
considered to be statistically significant.

Virulence in a Mouse Model of Skin and Soft Tissue
Infection

Virulence of the isogenic M59 GAS strains (4dmga, wild-type,
and H201R) was tested using a mouse model of skin and soft
tissue infection, as previously described.” Briefly, 4- to 5-
week-old, 18- to 20-g, immunocompetent SKH1-hrBR hair-
less female mice (Charles River BRF, Houston, TX) were
inoculated in the s.c. tissue overlying the neck with 1 x 10®
colony-forming units (CFUs; n = 12 mice per strain). Le-
sions were measured daily using a digital caliper for 10 days,
and then on days 12 and 14 after inoculation. Mean abscess
area caused by each strain was compared using two-way
analysis of variance (Prism version 6), with P < 0.05

ajp.amjpathol.org m The American Journal of Pathology
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Figure 1  Genome-wide transcript analysis of
serotype emm59 group A Streptococcus (GAS)
strains MGAS15252 (reference) and MGAS18055
(Mga H201R amino acid replacement). A: Growth
curve of strains MGAS15252 and MGAS18055.
Arrowheads indicate the 4 time points that were
tested for gene transcript studies. B: mga
expression is highest at late-logarithmic phase
(0Dgop = 1.0). C: Principal component analysis is

shown for genome-wide transcript profiles of
strains grown to late-logarithmic phase. D: The
expression of mga and seven Mga-reqgulated genes
was significantly increased in strain MGAS18055
(H201R) compared to strain MGAS15252. Mean X-
fold change in transcripts and genomic co-
ordinates are shown for each gene. *P < 0.05
compared to MGAS15252 (Baggerly's test after
applying Bonferroni’s correction for multiple

ﬁ;’f comparisons).
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considered to be statistically significant. For histopathological
evaluation, skin lesions were excised en bloc and processed
using standard methods. Slides were examined independently
by two pathologists (M.S., R.J.O.) blinded to the strain treat-
ment groups, as previously described.” Representative micro-
graphs were obtained using a BX5 microscope fitted with a
DB70 digital camera (Olympus, Tokyo, Japan). The study
protocol was approved by the Houston Methodist Research
Institute (Houston, TX) Animal Care and Use Committee.

Vlirulence in a Nonhuman Primate Model of Joint Infection

Virulence of the isogenic M59 GAS strains (wild-type and
H201R) was also assessed using a new nonhuman primate joint
infection model. Cynomolgus macaques (Macaca fasicularis;
Charles River BRF) were inoculated in the intra-articular space
with 1 x 10® CFUs of the wild-type strain in the right elbow and
the isogenic H201R strain in the left elbow (n = 3). By using
this strategy, each animal serves as its own control. The animals
were observed continuously for 7 days. On days 1, 2, 4, and 7
(one animal was examined on day 8 rather than day 7 to
accommodate vivarium scheduling) after inoculation, each
animal was sedated, a thorough physical examination was
conducted, blood and synovial fluid were collected, and
radiological examination was performed using magnetic reso-
nance (MR) imaging. For quantitative culture, synovial fluid
aspirated from each elbow was serially diluted, inoculated in
duplicate on trypticase soy agar, and grown as described above.
CFUs recovered per volume (mL) synovial fluid were calcu-
lated, with P < 0.05 considered statistically significant using
repeated-measures analysis of variance (XLSTAT; Addinsoft,
New York, NY). Blood cultures performed on each sampling
day confirmed that the animals were not bacteremic. For
radiological examination, each arm was immobilized using
a soft cast, placed in a human wrist coil, and imaged using a
3.0-T MR imaging instrument (Ingenia; Philips Healthcare,

The American Journal of Pathology m ajp.amjpathol.org

Amsterdam, the Netherlands). To compare virulence of the
isogenic wild-type (right elbow) and H201R (left elbow)
strains, the volume fraction of inflamed tissue of each limb at
each time point was calculated from a series of five coronal
images centered on the elbow joint. The T2 maps were scaled to
make optimal use of the available dynamic range, normalized
and pseudocolored. The scaling factor was extracted from the
image headers. A lower threshold (threshold 1) of 20 was
established to capture all pixels across the entire limb. An upper
threshold (threshold 2) of 104 was established to capture all
inflammation above the baseline condition. Then, the volume
fraction of inflamed tissue was calculated as the sum total of
pixels greater than threshold 2/the sum total of pixels greater
than threshold 1. This formula yielded a volume fraction of
inflamed tissue <0.05 for all joints at the baseline MR imaging
studies acquired before GAS inoculation. A disease model for
each strain was then calculated using nonlinear least squares
regression (R Foundation for Statistical Computing, Vienna,
Austria). All parameters in the disease progression model were
significantly different from O (P < 0.001), indicating that this
model effectively captures the progress of inflammation. The
study protocol was approved by the Houston Methodist
Research Institute Animal Care and Use Committee.

Results

The Mga H201R Amino Acid Replacement Significantly
Increases Expression of mga and Mga-Regulated Genes

One possible mechanism to markedly alter strain virulence with
a single amino acid replacement is to target a major transcrip-
tional regulator and, thus, alter the expression of all genes under
its control.” In other GAS serotype strains, Mga has been
implicated in the regulation of 10% to 20% of the tran-
scriptome.”®”** To begin testing the hypothesis that the Mga
H201R amino acid replacement significantly alters the M59
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Figure 2

The Mga H201R amino acid replacement significantly increases strain virulence in vitro and in a mouse model of skin and soft tissue infection. A: The

isogenic Mga-deficient (Amga), wild-type, and H201R strains were incubated with human epithelial keratinocytes (HaCaT cells), and adhesion was calculated by
quantitative culture. B: The H201R amino acid replacement significantly increases lesion size in a mouse model of skin and soft tissue infection. C: Microscopic ex-
amination of skin lesions collected at day 7 after inoculation. The abscesses caused by strains wild-type and Amga have confined borders (inward-facing arrowheads). In
comparison, the abscess caused by strain H201R destroys more tissue and extends beyond the lateral and deep margins of the microscopic field (outward-facing
arrowheads). Hematoxylin and eosin staining was used. **P < 0.01, ***P < 0.001 versus wild-type using the Mann-Whitney test (A); ***P < 0.001 versus wild-type

using two-way analysis of variance (B). Original magnification, x4 (C).

GAS virulence phenotype, genome-wide transcript studies
were performed using a reference and Mga H201R strain. GAS
strains were grown to late-logarithmic phase of growth, the
point in the GAS growth curve when mga is maximally
expressed (Figure 1, A and B). Analysis of RNA sequence data
revealed a highly similar genome-wide expression profile that is
compatible with the clonal background of epidemic M59 GAS
(Figure 1C). Compared to the reference strain, 55 transcripts
demonstrated significantly altered expression in the H201R
strain, including 48 genes with increased expression and 7
genes with decreased expression (Supplemental Table S1).
Transcripts with significantly increased expression by the
H201R strain include mga, which is known to autoregulate its
expression, and seven proven virulence factors that are
also regulated by Mga in other GAS serotype strains
(Figure 1D).”**® These gene expression data are consistent
with the idea that the Mga H201R amino acid replacement may
increase M59 GAS virulence by increasing the expression of
mga and Mga-regulated virulence factors.

The Mga H201R Amino Acid Replacement Significantly
Increases GAS Adherence to Human Epithelial Cells

Adhesion to human tissues is a key virulence activity under-
lying pathogen transmission, colonization, and invasion. Our
genome-wide transcript studies identified several genes with
significantly increased expression by the Mga H201R strain,
including emm, mrp, and enn, which have been implicated in
GAS adhesion to host cells.”> > To test the hypothesis that
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the Mga H201R amino acid replacement alters GAS adhesion
to human tissues, GAS—epithelial cell adhesion assays were
performed using isogenic Mga-deficient (Amga), wild-type,
and H20IR strains. Consistent with our hypothesis, signifi-
cantly more of the isogenic Mga H201R GAS organisms
adhered to the human cells in vitro (Figure 2A). Results also
demonstrated that deletion of Mga significantly decreases
GAS adhesion compared to either comparator strain
(Figure 2A). Taken together, these data are consistent with the
hypothesis that the Mga H201R amino acid replacement
results in increased adhesion to human tissues and, thus, may
increase the virulence of M59 GAS.

The Mga H201R Amino Acid Replacement Significantly
Increases GAS Virulence in a Mouse Model of Invasive
Skin and Soft Tissue Infection

Animal infection models are important for testing hypotheses
that bear on genetic alterations and strain virulence. To test the
hypothesis that the Mga H201R amino acid replacement
increases M59 GAS virulence, the isogenic Mga-deficient
(Amga), wild-type, and H201R strains were compared using a
mouse model of invasive skin and soft tissue infection. Results
demonstrated that all strains caused necrotic lesions centered at
the inoculation site (Figure 2, B and C). Consistent with our
hypothesis, the isogenic Mga H201R strain caused lesions that
were significantly larger than either comparator strain
(Figure 2B). We next hypothesized that the increased viru-
lence of the Mga H201R strain would manifest as significantly

ajp.amjpathol.org m The American Journal of Pathology
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Figure 3  The Mga H201R amino acid replace-
ment significantly increases strain virulence in a
nonhuman primate model of joint infection. Cyn-
omolgus macaques were inoculated in the right
and left elbow with the isogenic wild-type and
H201R strains, respectively, and observed for 7
days. A—D: Magnetic resonance imaging was used
for noninvasive serial measurement of inflamma-
tion and edema. Representative T2 pseudocolored
coronal maps collected on days 1 and 7 after
inoculation are shown. E: The volume fraction of
inflammation (VF) caused by each strain was
calculated using thresholds 1 and 2, and disease
was modeled using nonlinear least squares.
F: Synovial fluid [colony-forming unit (CFU)/mL]
was quantified. *P < 0.05 compared to wild-type
using repeated-measures analysis of variance;
***P < 0.001 versus wild-type using analysis of
variance.
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altered histopathological characteristics of the resulting ab-
scesses. Consistent with this hypothesis, microscopic exami-
nation of the skin lesions collected on day 7 after inoculation
(the time point when differences in lesion character were most
evident by visual examination) revealed that the isogenic Mga
H201R strain caused more tissue destruction and dissemina-
tion than the comparator strains (Figure 2C). The wild-type
strain had a virulence phenotype intermediate of the Mga-
deficient and H201R strain (Figure 2, B and C).

The Mga H201R Amino Acid Replacement Significantly
Increases GAS Virulence in a Monkey Model of Joint
Infection

GAS is a host-specific pathogen with exquisite specificity for
human molecules. Several proven and putative GAS virulence
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1 1
3 4

Time after Inoculation (days)

factors have modest to no activity against homologous
targets in mice.>*%’ Therefore, mouse and other lower
vertebrate animal models, although widely used in
molecular pathogenesis research, may provide an incom-
plete understanding of the complex host-pathogen
interactions that underlie human-GAS disease. To this
end, the cynomolgus macaque has proved to be an
excellent phenocopy of GAS pharyngitis, pneumonia, and
necrotizing fasciitis in humans, and it has been success-
fully used in numerous GAS molecular pathogenesis
research studies.'™'®?*7%7%Y That is, the cynomolgus
macaque is the most human relevant model possible to
study GAS virulence.

Most invasive disease caused by M59 GAS manifests as
bacteremia, skin and soft tissue infection, and synovi-
tis.”*** To further test the hypothesis that the Mga H201R
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Figure 4  Model of group A Streptococcus (GAS) Mga. A: Individual
domains of Mga are color coded: N-terminal DNA-binding domain with the
helix-turn-helix motifs in green, PRD-1 in yellow, PRD-2 in blue, and
C-terminal oligomerization domain in orange. The N- and C-terminal ends
are labeled. The side chains of H201, H207, and H273 are shown as
spheres. B: Magnified view of amino acid H201 and its relative proximity to
the phosphorylatable H207 and H273 residues.

amino acid replacement increases GAS virulence, we
generated a new cynomolgus macaque model of joint
infection. For this experiment, each monkey served as its
own control, receiving the isogenic Mga wild-type strain in
one elbow and the H201R strain in the contralateral elbow.
Physical examination results revealed signs of joint
infection in all animals, including swollen and erythema-
tous joints bilaterally, altered posturing, and reluctance to
use the infected limbs. Noninvasive serial MR imaging
confirmed that the isogenic Mga wild-type and H201R
strains both caused marked intra-articular and peri-articular
inflammation and edema at 1 and 2 days after inoculation
(Figure 3, A and B). However, the synovial disease rapidly
dissipated in elbows infected with the Mga wild-type strain
(Figure 3C). In comparison, the isogenic H201R strain
caused inflammation and edema that persisted for 7 days
(Figure 3D). Consistent with our hypothesis, the Mga
H201R strain caused significantly more tissue damage,
inflammation, and edema overall (Figure 3E). Similarly,
significantly more CFUs were recovered from synovial
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fluid collected from joints infected with the isogenic Mga
H201R strain compared to those receiving the wild-type
strain (Figure 3F).

Discussion

Our laboratory has recently used whole-genome sequencing
to investigate the population genetic structure of GAS and
identify strain genotype—disease phenotype relation-
ships.'®**" An emerging theme is that GAS organisms
can dramatically alter their virulence phenotype via SNPs
in major regulatory genes. That is, a single-nucleotide
change in a transcriptional regulator can exert wide-
ranging effects by altering the expression of multiple
virulence factors under its control. For example, naturally
occurring polymorphisms in the gene-encoding regulator
of protease B (ropB) alter 10% to 25% of the GAS
transcriptome.””***? These ropB polymorphisms signifi-
cantly decrease expression of the potent secreted protease
virulence factor SpeB that is crucial for tissue destruction
and systemic dissemination, and decrease GAS virulence
in mice and invasive infections in humans.’****’ Simi-
larly, Olsen et al'’ demonstrated that a naturally occurring
SNP in the gene encoding the metal transporter of
Streptococcus regulator (mtsR) significantly decreases the
ability of GAS to cause necrotizing fasciitis in nonhuman
primates and humans. In comparison, naturally occurring
amino acid replacements in the control of virulence
regulator/sensor (covR/S), an extensively studied two-
component transcriptional regulator in GAS, are well
known to increase strain virulence.** Herein, we demon-
strated that the Mga H201R amino acid replacement also
significantly increases GAS virulence. These findings
have important implications to vaccine design. Many
virulence factors regulated by regulator of protease B
(ropB), metal transporter of Streptococcus regulator
(mtsR), control of virulence regulator/sensor, and Mga
have been proposed for inclusion in vaccines.”> "’ This
strategy needs to be carefully considered. If naturally
occurring mutations in transcription factors frequently
decrease the expression of some virulence factors in vivo,
then those molecules may not be ideal targets for inter-
vention. Rather, vaccines that include virulence factors
that are highly expressed in wild-type and mutant strains
may be more effective.

Our whole-genome sequencing studies demonstrated
mga to be the most highly polymorphic gene among
epidemic M59 GAS strains. In total, 48 different SNPs in
mga have been identified.””*’ Each is predicted to change
the encoded amino acid or result in premature termination,
suggesting selection for altered Mga sequences. Although
less common among the epidemic M59 GAS strains, SNPs
have also been identified in the covR, covS, ropB, and rofA
transcriptional regulators.”” Similar to the Mga H201R
amino acid substitution that arose independently at least
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five times, a single-nucleotide deletion that introduces a
premature stop codon in covS is also present in multiple
subclonal lineages.”” However, the biological effect of
these mutant alleles on strain virulence is unknown.

One possible explanation for the H201R amino acid
replacement leading to increased strain virulence is
disruption of the normal pathways that regulate tran-
scriptional activity by Mga. Results of the genome-wide
transcript studies (Figure 1) and animal infection models
(Figures 2 and 3) unambiguously demonstrated that
the Mga H201R amino acid replacement significantly
increases expression of mga and Mga-regulated genes
and GAS virulence. To determine the possible molecular
mechanism underlying the increased virulence phenotype
of strains carrying the Mga H201R sequence, molecular
modeling simulations were performed using the
I-TASSER structure prediction server (http://zhanglab.
ccmb.med.umich.edu/I-TASSER, last accessed October
3, 2014)."® The model, using the M-protein transacting
positive regulator HTH domain protein from Entero-
coccus faecalis as a template, is predicted to have a
reliable template modeling score of 0.65 (Figure 4). Mga
consists of four domains, including an amino-terminal
DNA-binding domain with helix-turn-helix motifs, a
central domain with two phosphotransferase system
regulatory domains (PRD-1 and PRD-2), and a C-ter-
minal oligomerization domain.*’ Hondorp et al*’ recently
demonstrated that phosphorylation of two histidines in
the PRD-1 of Mga, H207 and H273, serve as a regulatory
switch for decreasing transcription activation. That is,
transcription activation by Mga is greatest when amino
acids H207 and H273 are not phosphorylated. The model
structure predicts that amino acid 201 lies on the same o
helix as the phosphorylatable H207 residue and in close
proximity to the phosphorylatable H273 residue
(Figure 4). Because the solubility of Mga with a histidine
or arginine at codon 201 is similar (data not shown), it is
unlikely that the amino acid replacement causes any
structural defect. Rather, the replacement of arginine,
which has a longer and positively charged side chain
compared to histidine, may prevent phosphorylation of
one or both PRD-1 histidines. Alternatively, the H201R
replacement may block phosphorylation-dependent
signal transduction from the PRD-1 domain to the
amino-terminal DNA-binding domain. As a result, M59
GAS strains with the Mga H201R sequence are signifi-
cantly more virulent. Compared to wild-type M59 GAS
strains, Mga H201R strains have an increased ability to
adhere to host tissue, grow in situ, destroy tissue, and
cause inflammation and edema.

We generated a new nonhuman primate model of joint
infection to test hypotheses bearing on the virulence of a
human-specific pathogen. The use of nonhuman primates,
the most human-relevant animal model possible, com-
bined with MR imaging in a dedicated translational im-
aging suite was key to the success of this investigation.

The American Journal of Pathology m ajp.amjpathol.org

Although imaging technologies have been extensively
used to study cancer and inflammatory disorders, they
have yet to become widely applied to infectious disease
research.”’>* MR imaging is the modality of choice for
imaging soft tissue infection, particularly synovitis,
because it can depict inflammation and edema.” Still, the
current literature for MR imaging of invasive infections is
mostly limited to small animal models, selected case re-
ports, or case series with a few cases.”*7° Herein, we
used MR imaging to monitor disease progression and
compare the virulence of isogenic mutant strains, with
results directly bearing on the overarching hypothesis.
The ability to perform serial real-time imaging allowed
each animal to serve as its own control, thereby reducing
intrahost variation, increasing statistical power, and
decreasing costs. Performing the study on a clinical MR
human 3.0 T scanner housed in a dedicated translational
imaging facility also enables us to design custom MR
acquisition protocols that can be readily applied to
human imaging and facilitates the refinement of our
model for future investigations. Serial noninvasive im-
aging data make practical the interpretation with a
mathematical model of disease progression over time in
a given host. Translating our mathematical approach to
research and diagnostic applications in patients is
thereafter straightforward.

In summary, we used whole-genome sequencing,
genome-wide transcript analysis, and mouse and
nonhuman primate models of infection to demonstrate
that a naturally occurring single amino acid replacement
significantly increases the virulence of M59 GAS. This
discovery provides a genetic basis, in part, for under-
standing differences in virulence phenotypes among
closely related strains. The investigative strategy should
be used with other medically important microbial path-
ogens, such as Staphylococcus aureus and Klebsiella
pneumoniae. Taken together, these data will improve our
understanding of strain genotype—disease phenotype re-
lationships and can be used to generate new clinical
tools, such as diagnostics and vaccines.
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