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An alternative pseudolikelihood method
for multivariate random-effects
meta-analysis
Yong Chen,a*† Chuan Honga and Richard D. Rileyb

Recently, multivariate random-effects meta-analysis models have received a great deal of attention, despite its
greater complexity compared to univariate meta-analyses. One of its advantages is its ability to account for the
within-study and between-study correlations. However, the standard inference procedures, such as the maximum
likelihood or maximum restricted likelihood inference, require the within-study correlations, which are usually
unavailable. In addition, the standard inference procedures suffer from the problem of singular estimated covari-
ance matrix. In this paper, we propose a pseudolikelihood method to overcome the aforementioned problems.
The pseudolikelihood method does not require within-study correlations and is not prone to singular covariance
matrix problem. In addition, it can properly estimate the covariance between pooled estimates for different out-
comes, which enables valid inference on functions of pooled estimates, and can be applied to meta-analysis where
some studies have outcomes missing completely at random. Simulation studies show that the pseudolikelihood
method provides unbiased estimates for functions of pooled estimates, well-estimated standard errors, and confi-
dence intervals with good coverage probability. Furthermore, the pseudolikelihood method is found to maintain
high relative efficiency compared to that of the standard inferences with known within-study correlations. We
illustrate the proposed method through three meta-analyses for comparison of prostate cancer treatment, for the
association between paraoxonase 1 activities and coronary heart disease, and for the association between homo-
cysteine level and coronary heart disease. © 2014 The Authors. Statistics in Medicine Published by John Wiley &
Sons Ltd.

Keywords: composite likelihood; correlation; multivariate meta-analysis; singular estimated covariance matrix
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1. Introduction

The rapid growth of evidence-based medicine has led to dramatically increasing attention to meta-
analysis, which combines statistical evidence from multiple studies. In many randomized clinical trials
or observational studies, multiple and possibly correlated outcomes of interest need to be meta-analyzed.
Conventionally, univariate methods are used to investigate one outcome at a time, such as pooling the
summary measures from all studies through fixed or random effects model [1]. These methods gain their
popularity because of their usefulness and simplicity. However, if the objective of inference is to compare
the overall effects between types of outcomes, such as comparing the risks of a certain disease between
two groups, calculating the weighted sums of the estimated sensitivity and specificity in diagnostic tests,
or comparing the effect sizes with respect to two endpoints, univariate methods are not sufficient because
they cannot account for the possible correlations between multiple outcomes [2–4].

Recently, multivariate meta-analysis (MMA) has received a great deal of attention [5]. MMA jointly
analyzes multiple and possibly correlated outcomes, which can account for two types of correlations:
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the within-study correlation and the between-study correlation. The within-study correlation 𝜌Wi exists
because the effects are sometimes measured using the same set of subjects, such as the overall and disease-
free survival of cancer patients. The between-study correlation 𝜌B allows the underlying effects to be
correlated. In MMA, a ‘two-stage’ approach for inference is often adopted. At the first stage, analyses of
each study are performed, and estimates of effects, referred to as summary measures, are obtained. These
estimates are then combined at the second stage by a random effects model. The overall effect sizes or
their comparative measures can be inferred using maximum likelihood (ML) or restricted ML (REML)
inference based on the marginal distribution of summary measures. For an excellent review of MMA, see
Van Houwelingen et al. (2002) [2] and Jackson et al. (2011) [5].

Although conceptually straightforward, conducting MMA faces at least two practical challenges, even
when only two outcomes are considered. The first challenge is the lack of knowledge on the within-study
correlations 𝜌Wi, which are generally required in standard inference procedures for MMA. However, in
practice, the within-study correlations are often not reported and are difficult to obtain even on request
[6, 7]. In addition, calculation of the within-study correlation may not be easy and sometimes requires
more computationally intensive methods [8]. Such challenge is acknowledged by the excellent review
paper of Jackson et al. [5], ‘perhaps the greatest difficulty applying the MMA model in practice is that the
within-study correlations are required by the model and are typically unknown.’ In such situations, sensi-
tivity analysis with imputed within-study correlations and Bayesian methods have been proposed [9,10].
Wei and Higgins [11] recently proposed a practical method for MMA when the within-study correla-
tions are missing. Specifically, they used the information on possible correlations between the underlying
outcomes to impute any missing within-study covariances, and then conducted the inference by REML
estimation. The second challenge is the (restricted) ML estimate of the between-study correlation 𝜌B is
often at or very close to the boundary of its parameter space, that is, ±1. In that case, the estimated covari-
ance matrix is singular. The singular estimated covariance matrix can lead to biased estimates of standard
errors and is most severe when the number of studies is small or the within-study variation is relatively
large [5, 12]. As a consequence, the confidence intervals may be too wide or too narrow.

To overcome the aforementioned challenges, Riley et al. [13] proposed a method for bivariate meta-
analysis (BMA). Specifically, Riley et al. [13] postulated a synthesis correlation parameter to describe
the overall marginal correlation between outcomes. This method is attractive because it does not require
within-study correlations and can alleviate the singular estimated covariance matrix problem. However,
the prevalence of singular estimated covariance matrix problem can still be substantial in some situa-
tions, and the extension from BMA to MMA is not straightforward in order to deal with more than two
outcomes. In this paper, we propose an alternative method along the line of the work by Riley et al. [13].
The idea is to construct a pseudolikelihood function for overall effect sizes using a working independence
assumption. An immediate advantage of the proposed method is the within-study correlations are not
required in the construction of pseudolikelihood. The singular estimated covariance matrix problem is
resolved because there is no correlation parameter involved in the pseudolikelihood. In fact, the proposed
pseudolikelihood belongs to the family of composite likelihoods [14–16]. Hence, the pseudolikelihood
enjoys the established properties of composite likelihood [14,16–18]. In particular, when a working inde-
pendence assumption is adopted, the pseudolikelihood is called independence likelihood [19], where the
covariance between estimates of overall effect sizes can be consistently estimated by the Huber–White
standard error estimates, also known as ‘sandwich’ variance estimator [20,21]. Another advantage of the
pseudolikelihood method is the simplicity of the extension to MMA where more than two outcomes are
analyzed, and to missing data situations where some of the multiple outcomes are missing completely
at random (MCAR). In this paper, we present the proposed method in the meta-analysis of bivariate
outcomes and describe the extension to three or more outcomes that is provided in Section 2.4.

This paper is organized as follows. In Section 2, we describe the standard likelihood inferences for
MMA, the method proposed by Riley et al. [13] and the proposed pseudolikelihood method. In Section 3,
we extend the proposed method to the missing data situation where only a proportion of studies have all
outcomes reported, and so remaining studies have at least one outcome missing. In Section 4, we con-
duct simulation studies to compare the pseudolikelihood method with the current methods and investigate
the prevalence of singular covariance matrix problems, bias, coverage probability (CP), and relative effi-
ciency (RE). We apply the proposed method to three meta-analyses in Section 5. Finally, we provide a
brief discussion in Section 6.
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2. Statistical methodology

2.1. Bivariate random-effects meta-analysis model

We consider a meta-analysis with m studies where two outcomes in each study are of interest. For the ith
study, denote Yij and sij the summary measure for the jth outcome of interest and associated standard error,
respectively, both assumed known, i = 1,… ,m, and j = 1, 2. Each summary measure Yij is an estimate
of the true effect size 𝜃ij. To account for heterogeneity in effect size across studies, we assume 𝜃ij to be
independently drawn from a common distribution with overall effect size 𝛽j and between study variance
𝜏2

j , j = 1, 2. Under normal distribution assumption for Yij and 𝜃ij, the general bivariate random-effects
meta-analysis model can be written as [2](

Yi1
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)
∼ N

((
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𝜃i2

)
,𝚫i

)
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(
s2
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, (1)

where 𝚫i and 𝛀 are the respective within-study and between-study covariance matrices, and 𝜌Wi and 𝜌B
are the respective within-study and between-study correlations. When the within-study correlations 𝜌Wi
are known, inference on the overall effect sizes 𝛽1 and 𝛽2, or their comparative measures (e.g. 𝛽1 − 𝛽2),
can be based on the marginal distribution of (Yi1, Yi2)(
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.

We note that the variance of Yij is partitioned into two parts s2
ij and 𝜏2

j as in analysis of variance for
univariate random effects model, and the covariance, cov(Yi1,Yi2) = si1si2𝜌wi +𝜏1𝜏2𝜌B, is also partitioned
into two parts as the sum of within and between study covariances.

2.2. Restricted maximum likelihood method

For simplicity of notation, denote 𝐘𝐢 = (Yi1, Yi2)T , 𝜷 = (𝛽1, 𝛽2)T , 𝜼1 =
(
𝛽1, 𝜏

2
1

)T
, and 𝜼2 =

(
𝛽2, 𝜏

2
2

)T
.

The restricted likelihood of
(
𝜼1, 𝜼2, 𝜌B

)
can be written as

log L(𝜼1, 𝜼2, 𝜌B)

= −1
2

[
log

(||| m∑
i=1

𝐕−1
𝐢

|||
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+
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{
log |𝐕𝐢| + (𝐘𝐢 − 𝜷)T𝐕−1

𝐢 (𝐘𝐢 − 𝜷)
}]

.

The parameters (𝜼1, 𝜼2, 𝜌B) can be estimated by the REML approach as described in Van Houwelingen
et al. [2]. The between-study variances (𝜏2

1 , 𝜏
2
2 ) are usually modeled in their log-scale, so that they are

forced to be non-negative. REML can be implemented using Newton–Raphson or quasi-Newton methods,
as in ‘mvmeta’ package in STATA [22] or R [23]. Such methods of implementing REML rarely suffer
convergence issues. However, two practical challenges in the standard likelihood inference have been
reported [5, 13]. The first is the lack of knowledge on 𝜌Wi. The standard likelihood inference based on
the bivariate random-effects meta-analysis requires within-study correlation estimates 𝜌Wi, but these are
rarely available. The second is the singular estimated covariance matrix problem [13,24]. Specifically, a
singular covariance matrix is sometimes obtained (i.e., the estimate of the between-study correlation 𝜌B
is close to ±1). Consequently, estimates of standard errors are often biased and can lead to confidence
intervals that are too conservative or too liberal. As will be illustrated in Section 4, the singular estimated
covariance matrix problem can be substantial (e.g., greater than 25% of 1000 samples for meta-analysis
with 10 studies) when REML approach is applied. Such a problem is more severe when the ML approach
is taken.

2.3. Riley method

To account for the aforementioned practical issues of REML method, Riley et al. [13] proposed a new
method, which we refer as Riley method hereafter. Specifically, instead of partition, the overall covariance
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into within and between study covariances, Riley et al. (2008) [13] proposed a synthesis correlation
parameter 𝜌S to account for the marginal correlation between Yi1 and Yi2. Following the notations in Riley
et al. [13], the new marginal model for (Yi1,Yi2) is(

Yi1
Yi2

)
∼ N

((
𝛽1
𝛽2

)
,𝚽𝐢

)
,

𝚽𝐢 =
⎛⎜⎜⎝
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⎞⎟⎟⎠ , (2)

where 𝜓2
j ’s account for the additional variation beyond the within-study variances s2

ij, j = 1, 2, and 𝜌S
accounts for the marginal correlation between Yi1 and Yi2. Note that 𝜓2

j is not equivalent to the between-
study variation 𝜏2

j because the model (2) does not have a fully hierarchical structure. Riley et al. [13]
proposed to base the inference on the restricted log-likelihood defined as

log LRiley(𝜼1, 𝜼2, 𝜌S)

= −1
2

[
log

(||| m∑
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𝚽−1
i

|||
)

+
m∑
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{
log |𝚽i| + (𝐘𝐢 − 𝜷)T𝚽−1

𝐢 (𝐘𝐢 − 𝜷)
}]

.

The method based on the model (2) has the attractive features of not requiring knowledge on within-
study correlations 𝜌Wi and being able to account for the correlation between Yi1 and Yi2. In addition, Riley
method was found to be less prone to the estimation problem compared to standard likelihood inferences
based on REML [13]. However, as acknowledged by Riley et al. [13], the problem of unstable estimates
when estimate of 𝜌S is close to 1 or −1 is still an issue especially when the between-study heterogeneity is
small relative to the within-study variation. In addition, the extension from BMA to MMA with more than
two outcomes is not straightforward because multiple synthesis correlation parameters may be required
to describe the pairwise marginal correlations between pairs of outcomes. In fact, the ‘mvmeta’ package
in STATA by Ian White has recently extended Riley method to multivariate data with more than two
outcomes [22]. However, it is expected that increasing the number of outcomes is likely to increase the
chance of not well-defined correlation estimates because of the need of estimating increased number of
correlation parameters.

2.4. Pseudo-restricted maximum likelihood method

Now we propose an alternative method to overcome the aforementioned challenges, which we refer as
Pseudo-REML method hereafter. Our strategy is to base the inference of (𝜼1, 𝜼2) on a pseudolikelihood
function constructed as follows. Under the working independence assumption (i.e., setting 𝜌Wi = 𝜌B = 0
in the joint distribution of Yi1 and Yi2), we obtain the following pseudolikelihood

log Lp(𝜼1, 𝜼2) = log L1(𝜼1) + log L2(𝜼2), (3)

where

log Lj(𝜼j) = −1
2

m∑
i=1

{
log

(
s2

ij + 𝜏2
j

)
+

(Yij − 𝛽j)2

s2
ij + 𝜏2

j

}
for j = 1, 2. (4)

We note that log Lj(𝜼j) is simply the log likelihood for 𝜼j when a univariate random effects model for meta-
analysis is assumed. Therefore, the Pseudo-REML method indeed provides the same point and variance
estimates as that from the univariate method as far as only 𝛽1 (or 𝛽2) is concerned. The main difference
between the Pseudo-REML method and the univariate method is that the model-based standard error of
the difference between 𝛽1 and 𝛽2 (or any functions of 𝛽1 and 𝛽2) can be correctly estimated by the Pseudo-
REML method, but not by two separate univariate meta-analyses due to the ignored covariance between
the estimated 𝛽1 and 𝛽2. In other words, the Pseudo-REML method can be considered as an inferential
strategy for REML or Riley method using working independence assumption.
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Note that the score equation for 𝜼j, 𝜕 log Lp(𝜼1, 𝜼2)∕𝜕𝜼j = 0 can be calculated as 𝜕 log Lj(𝜼j)∕𝜕𝜼j = 0,
hence is unbiased. The maximum pseudolikelihood estimator (�̃�1,�̃�2), defined as a solution of the score
equation, can be shown to be consistent and asymptotically normal with covariance matrix

Σ =
( 𝐈−1

11 𝐈−1
11 𝐈12𝐈−1

22(
𝐈−1

11 𝐈12𝐈−1
22

)T 𝐈−1
22

)
,

where

𝐈jj = E

{
−
𝜕2 log Lj(𝜼j)

𝜕𝜼2
j

}
and 𝐈12 = E

[{
𝜕 log L1(𝜼1)

𝜕𝜼1

}{
𝜕 log L2(𝜼2)

𝜕𝜼2

}T
]

for j = 1, 2.

The general asymptotic results of composite likelihood have been provided by Kent [17], Lindsay [14],
and Molenberghs and Verbeke [18]. For the interest of readers, an outline of derivation for the covari-
ance is provided in the Appendix. We note that the pseudolikelihood log Lp(𝜼1, 𝜼2) is generally not a
true likelihood function unless all correlations are truly zero (i.e., setting 𝜌Wi = 𝜌B = 0 in the joint dis-
tribution of Yi1 and Yi2). Consequently, the conventional covariance matrix estimator p(�̃�1,�̃�2), where
p(𝜼1, 𝜼2) = −𝜕2 log Lp(𝜼1, 𝜼2)∕𝜕(𝜼1, 𝜼2)2, is no longer valid because E{p(𝜼1, 𝜼2)} is not the covariance
of 𝜕Lp(𝜼1, 𝜼2)∕𝜕(𝜼1, 𝜼2) in the presence of correlations.

The information matrices 𝐈11, 𝐈22, and 𝐈12 can be empirically estimated as
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s2
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j
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⎞⎟⎟⎟⎠
T

, for j = 1, 2 and i = 1,… ,m.

The Pseudo-REML method is simple to implement in practice. Computationally, the point estimate of
overall effect size �̃�j is the same as that from univariate meta-analysis of (Yij, s

2
ij) using a random effects

model based on REML [1]. The covariance matrix of
(
�̃�1,�̃�2

)
can be easily calculated using the afore-

mentioned closed-form formulas. For example, if one was interested in the function 𝛽1 − 𝛽2, then one
would take the difference in the univariate pooled estimates for outcomes 1 and 2, and the variance of
𝛽1 − 𝛽2 can then be calculated by aT Σ̂a where a = (1, 0,−1, 0)T . Σ̂ is a 4 × 4 matrix here, generally with
dimensions 2K × 2K and K as the number of outcomes. We implement the Pseudo-REML method in R.
We use the ‘mvmeta’ function in the R (R Development Core Team, Version 2.14.1) package ‘mvmeta’
to obtain the REML estimates [23]. R codes are attached in the Supplemental Materials. We note that
the matrix �̂�−1

jj ∕m, j = 1, 2 is the same as the covariance estimated from the univariate meta-analysis

of (Yij, s
2
ij), j = 1, 2, whereas the matrix �̂�−1

11 �̂�12�̂�−1
22 ∕m accounts for the covariance between the estimated

overall effect sizes�̃�1 and�̃�2. Properly accounting such covariance is not available if investigators conduct

separate univariate meta-analyses on
(

Yij, s
2
ij

)
.

It is easy to see that the Pseudo-REML method resolves the two practical issues in standard inference
of REML method. Specifically, the within-study correlations 𝜌Wi are not required in the construction
of pseudolikelihood. And the singular estimated covariance matrix problem is resolved because there
is no correlation parameter (i.e., 𝜌B or 𝜌S) involved in the pseudolikelihood. Furthermore, the Pseudo-
REML method can be easily extended to MMA where more than two outcomes are analyzed. Specif-
ically, for MMA with K outcomes, the corresponding pseudolikelihood becomes log Lp(𝜼1,… , 𝜼K) =∑K

k=1 log Lk(𝜼k) where log Lk(𝜼k) is defined in equation (4). The corresponding covariance matrix can be
derived similarly. However, one potential drawback of the Pseudo-REML method when assuming the
data are complete or MCAR is that because the point estimates of overall effect sizes are the same as
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that from separate univariate meta-analyses, there is potential efficiency loss compared to the methods
accounting for the correlations between dependent outcomes. We investigate this potential drawback in
Section 4.

3. Extension to missing data where only a subset of outcomes is reported

In Section 2, we assumed that all outcomes of each study are observed. In practice, however, it is common
that only a proportion of studies have all outcomes reported, and the remaining studies have some of out-
comes missing. In this section, we discuss extension of the Riley method and Pseudo-REML method for
missing data situations. In this paper, we only consider the situation that the outcomes are MCAR, which
has been considered in [13]. Although such assumption often does not hold in practice, it is instructive to
consider MCAR setting as a step toward missing at random (MAR) and missing not at random (MNAR)
situation. Extension of the Pseudo-REML method to MAR and MNAR is beyond the scope of this paper
and is discussed in Section 6.

For simplicity of notations, we assume that two endpoints are of interest. Consider a meta-analysis of m
studies where the first m1 studies reported both endpoints, the next m2 studies reported the first endpoint
only, and the remaining m3 studies reported the second endpoint only. The restricted log-likelihood for
the model proposed by Riley et al. [13] in the missing data situation can be written as

log Lmis
Riley(𝜼1, 𝜼2, 𝜌S)

= −1
2

[
log

(||| m1∑
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}]

− 1
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(
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1 + s2

i1

)
+

m1+m2∑
i=m1+1

{
log

(
𝜓2

1 + s2
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.

The pseudolikelihood in the missing data situation can be defined as

log Lmis
p (𝜼1, 𝜼2) = log Lmis

1 (𝜼1) + log Lmis
2 (𝜼2), (5)

where
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We note that when the full data are available, the parameter estimators reduce to those in Section 2.4.
The score equation for log Lmis

Riley(𝜼1, 𝜼2, 𝜌S) and log Lmis
p (𝜼1, 𝜼2) is unbiased if the data are MCAR [25].

Assume the cumulative proportions m1∕m → r1 > 0, (m1 + m2)∕m → r2 > 0, (m1 + m3)∕m → r3 > 0
when m → ∞, the maximum pseudolikelihood estimator

(
�̃�1,�̃�2

)
, can be shown to be consistent and

asymptotically normal with covariance matrix

Σmis =

(
r−1

2 𝐈mis
11

−1
r−1

1 𝐈mis
11

−1𝐈mis
12 𝐈mis

22
−1

r−1
3 𝐈mis

22
−1

)
,

where

𝐈mis
jj = E

{
−
𝜕2 log Lmis

j (𝜼j)

𝜕𝜼2
j

}
and 𝐈mis

12 = E
⎡⎢⎢⎣
{

𝜕 log Lmis
1 (𝜼1)

𝜕𝜼1

}{
𝜕 log Lmis

2 (𝜼2)
𝜕𝜼2

}T⎤⎥⎥⎦ for j = 1, 2.
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An outline of derivation for the asymptotic covariance is provided in the Appendix. The covariance matrix
Σmis can be empirically estimated as detailed in Appendix.

4. Simulation study

4.1. Methods under comparison

In this section, we evaluate the finite sample performance of the Pseudo-REML method and compare
it to that of REML and Riley methods. The data are generated from a two-stage procedure as speci-
fied by equation (1). To cover a wide spectrum of scenarios, we vary the values for four factors that
are considered important in practice. Specifically, the number of studies is set to 10 or 25 to represent
meta-analysis of a moderate number or large number of studies, respectively. We consider both the com-
plete data and missing data scenarios. For missing data scenario, we assume 40% of studies have one of
two outcome MCAR. To reflect the heterogeneity in standard error of summary measure across studies,
we sample s2

ij from the square of N(0.25, 0.50) distribution, which leads to a median value of 0.25 for
s2

ij. The size of the within-study variation relative to the between-study variation may have a substantial
impact on the performance of the methods. To this end, we let the ratio of the within-study variation
relative to the between study variation to be relatively small, comparable, and large, corresponding to
𝜏2

1 = 𝜏2
2 =0.5, 0.25, or 0.1, respectively. For within-study correlations, we consider two different settings:

one is 𝜌Wi being constant with value −0.5, 0, or 0.5, the other is 𝜌Wi varying across studies and being
randomly sampled from Uniform (−0.8, 0.8), Uniform (−0.8, 0) and Uniform (0, 0.8) to reflect arbitrary,
negative, and positive within-study correlations, respectively. The between-study correlation 𝜌B is set to
−0.5, 0, or 0.5. We set the overall effect sizes to be 𝛽1 = 𝛽2 = 0 and denote the difference in effect size
between two outcomes by 𝛿 = 𝛽1 − 𝛽2. For each simulation setting, we generate 5000 samples. The sam-
ples are simulated in R using the ‘mvrnorm’ function. Each of the simulated data is analyzed by three
methods, namely, REML, Riley method, and the Pseudo-REML method. We note that REML method,
although not applicable in practice due to the unknown within-study correlations, can serve as a gold stan-
dard for comparison. The results from REML method are obtained from the ‘mvmeta’ function in the R
package ‘mvmeta’.

4.2. Simulation results

Table I summarizes empirical bias (Bias), empirical standard error (ESE), model-based standard error
estimates, and the CP of the confidence intervals for 𝛿 when the within-study/between-study variation
ratio is close to 1 (i.e., median of s2

ij is 0.25 and 𝜏2
1 = 𝜏2

2 = 0.25) for complete and missing data set-
tings. The ESE is calculated as the standard deviation of point estimates, and model-based standard error
estimate is calculated as the average of model-based standard errors. As shown in the upper panel of
Table I, for the complete data settings, all three methods provide unbiased estimates of 𝛿. When the
number of studies is moderate (m = 10), Riley method tends to underestimate the standard error, lead-
ing to confidence intervals with coverage probabilities that are less than the nominal level (range of CP:
89.1 ∼ 92.0%). The possible reason is that Riley method performs well only when estimated �̂�s is rel-
atively small. In contrast, the standard error of estimate for 𝛿 using the Pseudo-REML method is well
estimated, and the coverage probabilities of confidence intervals are close to the nominal level (range of
CP: 94.9 ∼ 95.8%). To assess the singular covariance matrix problem, we display the percentage of the
singular covariance matrix (SP) under different settings when m = 10 in Figure S2 of the Supplemental
Materials. We find that the REML method suffers greatly from the singular estimated covariance matrix
problem (SP> 25% under all settings). Riley method alleviates this problem to some extent but still has
a sizable proportion of singular estimated covariance matrix in some settings (range of SP: 0 ∼ 20%).
In contrast, there is no singular estimated covariance matrix problem for the Pseudo-REML method. We
further examine the performance of estimates under three different methods when the estimated covari-
ance matrix using REML method is singular. When REML method has singular estimated covariance
matrix problem, the point estimates from three methods are similar, but their standard error estimates
are quite different due to the singularity of estimated covariance matrix, in that the standard errors are
larger in the REML method. This was also noted by Riley et al. (2007) [12]. The details can be found in
Figure S3 of the Supplemental Materials. When the number of studies is relatively large (m = 25), both
Riley method and the Pseudo-REML method perform well in that estimates are unbiased and confidence
intervals have coverage probabilities close to the nominal level.
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Table II summarizes the similar results as in Table I when the within-study/between-study variation
ratio is close to 2.5 (i.e., median of s2

ij is 0.25 and 𝜏2
1 = 𝜏2

2 = 0.1). For the complete data settings when
the number of studies is moderate (m = 10), the ranges of CPs are 86.4 ∼ 88.7% for REML method,
88.4 ∼ 91.6% for Riley method, and 95.5 ∼ 96.6% for the Pseudo-REML method, respectively. When
the number of studies is relatively large (m = 25), both Riley method and the Pseudo-REML method
perform well. We find that when the between-study heterogeneity is relatively small (i.e., the within-
study/between-study variation ratio is relatively large), there is a substantial increase in the percentage
of singular estimated covariance matrix problem in both REML and Riley methods.

For missing data settings, there is more advantage in avoiding the singular estimated covariance matrix
problem for the Pseudo-REML method when the number of studies is moderate. For example, as shown
in the lower panel of Table I when m = 10, the ranges of CPs are 85.1 ∼ 87.9% for REML method,
86.2 ∼ 89.3% for Riley method, and 95.7 ∼ 96.6% for the Pseudo-REML method, respectively.

We also consider the settings when the number of studies is relatively small (m = 5) and settings
when the within-study/between-study variation ratio is close to 0.5 (i.e., median of s2

ij is 0.25 and 𝜏2
1 =

𝜏2
2 = 0.5). The findings are similar to the setting with moderate sample size (m = 10) and hence are not

presented here for limited space (see Table S1 in Supplemental Material). In summary, for meta-analysis
with moderate number of studies, REML method suffers greatly from the singular estimated covariance
matrix problem, even when within-study correlations are known. Riley method alleviates such problem
to some extent but still has a sizable proportion of singular estimated covariance matrix. The Pseudo-
REML method does not suffer from the singular estimated covariance matrix problem and can produce
confidence intervals with coverage probabilities close to the nominal level under all settings considered.

One interesting phenomenon shown in Tables I and II is that the ESE from REML method is very
close to that from the Pseudo-REML method for the complete data settings when number of studies is
moderate or large. This suggests that the efficiency gain in the individual pooled estimates through the
joint analysis of Yi1 and Yi2 may not be large for complete data, even when the within-study correlations
𝜌Wi are available. Such finding is consistent with the literature; for example, see [26], [24], and [27]. To
compare the efficiency in the estimation of 𝛿, we consider the RE defined by the square of the ESE of the
estimates from REML method, divided by that of Riley method or the Pseudo-REML method. We plot
the RE against the between-study correlation 𝜌B in Figure 1 (for within-study/between-study variation
ratio close to 1). To cover a wide range of between-study correlations and to include the rare situations of
extreme between-study correlations, we let 𝜌B vary from−0.99 to 0.99. As shown in Figure 1, in complete
data settings when m = 10, the relative efficiencies of the both Riley method and Pseudo-REML method
compared to REML method are close to 100% except the extreme situation where 𝜌B is greater than 0.8.

Figure 1. Relative efficiency of estimator of 𝛿 = 𝛽1 − 𝛽2 based on Riley method and Pseudo-restricted maximum
likelihood (REML) method comparing to the estimator based on REML model, with the within-study/between-
study variation ratio close to 1 for different between-study correlation 𝜌B and within-study correlations 𝜌Wi. The

number of studies m = 10 and number of simulations is 5000.
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Table III. Type I error (in %) for restricted maximum likelihood
(REML), Riley method, and Pseudo-REML considered at 5%
significance level when the within-study/between-study variation
ratio is close to 1.

m 𝜌Wi 𝜌B REML Riley method Pseudo-REML

10 −0.5 −0.5 12.5 10.1 4.8
0.0 13.5 9.0 4.8
0.5 12.4 8.0 4.2

0.0 −0.5 11.5 10.0 5.0
0.0 12.5 9.1 5.0
0.5 11.8 8.4 4.3

0.5 −0.5 11.1 10.9 5.1
0.0 11.6 9.3 4.7
0.5 12.5 9.3 4.6

25 −0.5 −0.5 7.9 7.1 5.0
0.0 8.6 6.0 4.8
0.5 10.7 5.9 4.5

0.0 −0.5 7.7 7.4 5.0
0.0 8.2 6.6 5.0
0.5 9.9 6.0 4.2

0.5 −0.5 7.3 7.8 5.2
0.0 7.7 7.4 5.4
0.5 8.6 6.3 4.3

Figure 2. The power curves of restricted maximum likelihood (REML) method, Riley method, and Pseudo-REML
method, with the within-study/between-study variation ratio close to 1, for different number of studies m and

within-study correlations 𝜌Wi. The between-study correlation 𝜌B is 0.5. The number of simulations is 5000.

© 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 361–380

373



Y. CHEN, C. HONG AND R. D. RILEY

We evaluated the Type I error and power of REML, Riley method, and Pseudo-REML method for the
complete data settings. Table III summarizes the Type I error at 5% significance level when the within-
study/between-study variation ratio is close to 1. We can see that Pseudo-REML method controls the
Type I errors well at all settings considered, whereas the REML and Riley methods have inflated type I
errors. It is worth mentioning that if only assessing on results with no singularity problem, the results from
the REML method improve substantially in that the type I errors are close to the nominal level. Figure 2
displays the corresponding powers of these three methods when between study correlation 𝜌B = 0.5. The
critical region that is used to calculate the power is adjusted so that the corresponding Type I error is 5%.
The powers of three methods are similar with Pseudo-REML method being slightly more powerful than
the other two.

In summary, our simulation studies suggest that both Riley method and the Pseudo-REML method
perform well when the number of studies is large and the Pseudo-REML method does not suffer from the
singular estimated covariance matrix problem, and maintains good CP of confidence intervals and high
RE when number of studies is relatively small or moderate. Pseudo-REML method has well-controlled
Type I error and competitive power compared to Riley method.

5. Applications

We illustrate the Pseudo-REML method by three meta-analyses. For these three meta-analyses, the
within-study correlations are unavailable, which is common in practice. As a result, REML method cannot
be applied. Alternatively, Riley method and the Pseudo-REML method can be used. In the first example,
we consider a meta-analysis of small number of studies where both outcomes are reported, while in the
second and third examples, we consider meta-analyses of large number of studies where some studies
only have one of two outcomes reported.

5.1. Comparison between overall survival and disease-free survival for prostate cancer

Prostate cancer is a malignant tumor that develops in the prostate and is the sixth leading cause of cancer-
related deaths in men [28]. Radiotherapy is considered as the most commonly used treatment for locally
advanced prostate cancer because of its high survival rate and low morbidity. Androgen deprivation ther-
apy, also called hormone therapy, is a strategy adjuvant to radiotherapy. Recent randomized trials show
that androgen deprivation therapy has inhibitory effect on the growth and proliferation of prostate can-
cer cell. Goserelin acetate, an injectable gonadotropin releasing hormone superagonist, is often used to
suppress the production of the sex hormones in the treatment of prostate cancer. Sasse et al. [29] com-
pared the hormone therapy using Goserelin acetate combined with radiotherapy (referred to as ‘combined
therapy’ hereafter) versus radiotherapy alone in overall survival and disease-free survival. Five random-
ized clinical trials published between 1988 and 2011 have reported log-hazard ratio estimates comparing
combined therapy using Goserelin acetate with radiotherapy with respect to both overall survival and that
with respect to disease-free survival, denoted by Yi1 and Yi2, respectively. It is of clinically importance
to evaluate the difference between the log-hazard ratio with respect to overall survival and disease-free
survival [30]. Denote this difference by 𝛿, we conduct a meta-analysis of the five trials by applying both
Riley method and the Pseudo-REML method. As shown in the upper left panel of Table IV, the differ-
ence 𝛿 is estimated as 0.320 (95% CI: (0.054, 0.585); p-value: 0.018) using the Pseudo-REML method
and 0.312 (95% CI: (0.104, 0.519); p-value: 0.003) using Riley method. The estimated overall marginal
correlation �̂�s = 0.45 using Riley method. The results from both methods suggest that the log hazard
ratio of overall-survival is significantly higher than that of the disease-free survival. The discrepancies
between two methods in significance level and in width of confidence interval are consistent with what
we observed in the simulation studies where Riley method tends to underestimate the standard error of
the difference in pooled estimates in small sample size settings. For illustration purpose, we also calcu-
late the estimated difference using separate univariate meta-analyses ignoring the correlation between the
overall log hazard ratio with respect to overall survival and that with respect to disease-free survival. Com-
pared to the results using Pseudo-REML method, the estimated difference 𝛿 using univariate analyses
has the same point estimate but wider confidence interval. Specifically, the confidence interval is 95% CI:
(0.032, 0.607) and p-value is 0.030. We note that the inference using univariate meta-analyses is poten-
tially misleading because the effect with respect to overall survival and that with respect to disease-free
survival are likely to be positively correlated. Ignorance of such correlation can lead to the overestimated
standard error and inflated p-value.
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5.2. Treatment comparison for paraoxonase 1 activities on reducing coronary heart disease risk

Paraoxonase 1 (PON1) is an enzyme synthesized in the liver. PON1 has the ability to inhibit high-density
lipoprotein and is cardioprotective. Studies of the relationship between PON1 activity and coronary heart
disease (CHD) risk in humans have yielded inconsistent results [31]. To investigate the PON–CHD rela-
tionship, Zhao et al. [32] conducted a meta-analysis combining 55 studies, which involve 9481 CHD
patients and 11,148 controls. It is important to study the difference in the standard mean difference (SMD)
comparing cases and controls of paraoxonase activity of PON1, denoted by Yi1, and that comparing cases
and controls of arylesterase activity of PON1, denoted by Yi2 [33]. For illustration purpose, we consider
17 studies where both summary measures Yi1 and Yi2 are reported. As shown in the middle left panel of
Table IV, the overall difference 𝛿 is estimated as −0.075 (95% CI: (−0.377, 0.228); p-value: 0.627) using
the Pseudo-REML method, and −0.078 (95% CI: (−0.387, 0.232); p-value: 0.623) using Riley method.
The estimated overall marginal correlation �̂�s = 0.41 using Riley method. The results from both methods
suggest there is no statistically significant differences in SMD between the paraoxonase and arylesterase
activities. The results from both methods are very similar, which agree with the simulation studies with
relatively large number of studies.

We note that many of the studies have only one of two outcomes reported. Excluding these studies in
the analysis may lead to a substantial loss of efficiency. Under the MCAR assumption, both Riley method
and Pseudo-REML method can be applied to all 55 studies, and the results are summarized in the middle
right panel of Table IV. The overall difference 𝛿 is estimated as−0.300 (95%CI: (−0.928, 0.328); p-value:
0.349) using the Pseudo-REML method and −0.281 (95% CI: (−0.688, 0.126); p-value: 0.176) using
Riley method. Comparing with the estimates based on the 17 studies with both endpoints reported, the
estimates based on all studies have larger difference in SMD between the paraoxonase and arylesterase
activities of PON 1. But none of the estimates reaches statistically significant difference. However, as
suggested by the simulation studies, the confidence interval produced by Riley method tends to be too
narrow, which may be corrected by the Pseudo-REML method.

5.3. Methylene tetrahydrofolate reductase gene, homocysteine, and coronary heart disease

The observed effect of blood homocysteine on CHD suggested by many observational studies is ques-
tioned by researchers because of potential confounders (e.g., smoking and blood pressure) and reverse
causation (i.e., elevations in blood homocysteine may result from atherosclerosis and CHD) [34]. Hav-
ing a common polymorphism affecting the level of homocysteine in blood, methylene tetrahydrofolate
reductase gene can be employed as an instrumental variable to adjust for the bias due to confounding or
reverse causation [35]. Thompson et al. [36] conducted a meta-analysis involving 66 genetic studies to
estimate the unconfounded association of the homocysteine level and CHD. Comparing with the wild-
type CC, the mutant genotype TT of methylene tetrahydrofolate reductase gene is associated with both
risk increase of CHD and higher level of homocysteine. Let log ORTT vs. CC be the log odds ratio for the
association between genotype (TT vs. CC) and CHD, and let 𝛿P be the mean difference in homocysteine
level between genotype TT and CC. The objective is to estimate the ratio log ORTT vs CC∕𝛿P, which is
the effect of one unit change in homocysteine level on log ORTT vs CC. Out of the 66 studies, 18 studies
reported both log ORTT vs. CC and 𝛿P, while the remaining studies only reported one of the two outcomes.
The estimates of log ORTT vs CC∕𝛿P using the Riley method and Pseudo-REML method based on the 18
studies and the estimates based on the 66 studies are shown in the lower panels in Table IV. The Riley
method produces smaller pooled estimates based on 18 studies than that based on 66 studies (0.055 vs.
0.072), while the Pseudo-REML method produces similar pooled estimates (0.076 vs. 0.070) based on 18
or 66 studies. The estimated overall marginal correlation �̂�s = 0.46 using Riley method. The difference
between the pooled estimates from Riley method and those from the proposed Pseudo-REML method is
due to the change in individual pooled estimates through borrowing of strength across outcomes in the
Riley method, but the Pseudo-REML method does not allow this. The length of confidence interval pro-
duced by Riley method is similar to that produced by the Pseudo-REML method. The results based on
all 66 studies using both methods suggest that there is a statistically significant effect of homocysteine
level on CHD.

6. Discussion

In this paper, we propose a Pseudo-REML method for multivariate random-effects meta-analysis. The
idea is to base the inference on a working independence model [19]. Such an idea is motivated by the
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construction of the generalized estimating equation by Liang and Zeger [37] for the inference of marginal
models in longitudinal data and the construction of the pseudo-partial likelihood function by Lin [38]
for the analysis of multivariate survival data. This method is applicable when the within-study correla-
tions are unknown, is not suffering from problems related to singularity of estimated covariance matrix,
and can maintain a reasonably good inference performance in all the scenarios tested in the simulation
studies. In addition, the Pseudo-REML method can be extended to multivariate meta-regression models
where study-level covariates are available. More details of the regression extension can be found in the
Supplemental Materials.

In this paper, we compare the performance of the REML method, Riley method, and the proposed
Pseudo-REML method, and investigate their singular estimated covariance matrix problem. The REML
method is the standard approach when the within-study correlations are known. However, it may suffer
from the singular covariance matrix problem and can lead to poorly estimated between study correlations.
The Riley method or the proposed Pseudo-REML method can be a good alternative in this situation. When
within-study correlations are unknown, both Riley method and the proposed Pseudo-REML method are
applicable. Riley method performs well when the estimated synthesis correlation parameter 𝜌s is rel-
atively small. When the estimated synthesis correlation parameter 𝜌s is relatively large, the proposed
Pseudo-REML method will be the best choice.

We note that this paper focuses on the method for meta-analysis based on summary data rather than
on methods based on individual patient data (IPD). Naturally, meta-analyses based on summary data
suffer from limitations such as potentially inconsistent exclusion criterion for patients across studies,
and no quality assessment available based on the summary data alone [39–44]. The IPD meta-analysis
for pooling data from different studies should be preferred when the IPD are available; for example, see
Piedbois et al. [45] and Di Leo et al. [46]. In this case, the correlations between multiple outcomes would
become available.

Because both the REML method and Riley method are presented in the bivariate setting [2,13], we also
presented the Pseudo-REML method in the bivariate setting in this paper to keep the notation simple and
convey the main idea. The Pseudo-REML method can be easily applied to MMA where more than two
outcomes are analyzed. In contrast, although it is also conceptually straightforward that REML method
and Riley method can be extended to MMA with more than two outcomes, we expect that these two
methods will experience more severe singular estimated covariance matrix problem as the number of out-
comes increases (due to the increased number of between-study correlations that require estimation). The
performance of the Pseudo-REML method with more than two outcomes requires further investigation.

In this paper, we considered Pseudo-REML method when data are MCAR. One limitation of this
procedure is that the Pseudo-REML method may yield biased estimates if MCAR assumption is violated,
for example, in the settings of MAR or in the presence of outcome reporting bias [47] or publication bias.
The current version of our Pseudo-REML method is only suitable for MCAR situations. Extension of
our method to MAR and MNAR situations might be possible. For example, if publication bias is present,
statistical methods such as ‘Trim and Fill’ method may be used to impute the missing studies and then
incorporated into the proposed Pseudo-REML [48]. The development of the Pseudo-REML under MAR
and MNAR settings and the finite sample performance of regression extension of our method is currently
under investigation and will be reported elsewhere.

Appendix A

Derivation of the asymptotic covariance formula for the maximum pseudolikelihood estimator

Denote 𝜼 = (𝜼T
1 , 𝜼

T
2 )

T . By Taylor expansion of 𝜕Lp(𝜼)∕𝜕(𝜼) around 𝜼, we have

0 = 1√
m

𝜕 log Lp(𝜼)
𝜕𝜼

+ 1
m

𝜕2 log Lp(𝜼)
𝜕𝜼2

√
m(�̃� − 𝜼) + op(1). (A.1)

Therefore, we have

√
m(�̃� − 𝜼) ≈ Am

−1 1√
m

Bm, where Am = − 1
m

𝜕2 log Lp(𝜼)
𝜕𝜼2

and Bm =
𝜕 log Lp(𝜼)

𝜕𝜼
.
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It is easy to show that 1√
m

Bm → N(0,𝚺∗) where

𝚺∗ =
(

I11 I12
IT
12 I22

)
and Am →

(
I11 0
0 I22

)
,

as m → ∞. Note that the off-diagonal terms in 𝚺∗ account for the fact that the multivariate outcomes
may be dependent. Finally, the asymptotic distribution is immediately followed by Slutskys theorem and
recalling equation (A.2).

Derivation of the asymptotic variance formula for the maximum pseudolikelihood estimator under the
missing data scenario

Denote 𝜼 =
(
𝜼T

1 , 𝜼
T
2

)T
. By Taylor expansion of 𝜕Lmis

p (𝜼)∕𝜕(𝜼) around 𝜼, we have

0 = 1√
m

𝜕 log Lmis
p (𝜼)

𝜕𝜼
+ 1

m

𝜕2 log Lmis
p (𝜼)

𝜕𝜼2

√
m(�̃� − 𝜼) + op(1). (A.2)

Therefore, we have

√
m (�̃� − 𝜼) ≈ 𝐀mis

𝐦
−1 1√

m
𝐁mis
𝐦 , where 𝐀mis

𝐦 = − 1
m

𝜕2 log Lmis
p (𝜼)

𝜕𝜼2
and 𝐁mis

𝐦 =
𝜕 log Lmis

p (𝜼)
𝜕𝜼

.

It is easy to show that 1√
m
𝐁mis
𝐦 → N

(
0,𝚺mis∗

)
where

𝚺mis∗ =
(

r2Imis
11 r1Imis

12
r3Imis

22

)
and Amis

m →

(
r2Imis

11 0
0 r3Imis

22

)
,

where m1∕m → r1, (m1+m2)∕m → r2, and (m1+m3)∕m → r3. The asymptotic distribution is immediately
followed by Slutsky’s theorem and recalling equation (A.2).

Estimation of the covariance matrix under missing data scenario Σmis

The information matrices 𝐈mis
11 , 𝐈mis

22 , and 𝐈mis
12 can be empirically estimated as

�̂�mis
11 = 1

m1 + m2

m1+m2∑
i=1

𝐔mis
1i (�̃�1)𝐔mis

1i (�̃�1)T

�̂�mis
22 = 1

m1 + m3

{
m1∑
i=1

𝐔mis
2i (�̃�2)𝐔mis

2i (�̃�2)T +
m1+m2+m3∑
i=m1+m2

𝐔mis
2i (�̃�2)𝐔mis

2i (�̃�2)T
}

�̂�mis
12 = 1

m1

m1∑
i=1

𝐔mis
1i (�̃�1)𝐔mis

2i (�̃�2)T

where

𝐔mis
ji (�̃�j) =

(
Yij − 𝛽j

s2
ij + 𝜏2

j

,− 1

2(s2
ij + 𝜏2

j )
+

(Yij − 𝛽j)2

2(s2
ij + 𝜏2

j )2

)T

.
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