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ABSTRACT: I present a summary of the results and discussions held within the working group on gene-based tests at Genetic
Analysis Workshop 18 (GAW18). The main focus of interest in our working group was modeling the action of combinations
or “groups” of genetic variants, with a group of variants most often defined as a set of single-nucleotide polymorphisms lying
within a known gene. Some contributions investigated the performance of previously proposed methods (particularly rare
variant collapsing or burden-type methods) for addressing this question, applied to the GAW18 data, and other contributions
developed novel approaches and addressed novel questions. Most approaches were successful in detecting significant effects
at MAP4 in the simulated data. No other genetic effects were consistently detected across different analyses. Low power was
noted, particularly for those methods that restricted analysis to purely the subset of unrelated individuals.
Genet Epidemiol 38:S44–S48, 2014. Published 2014 Wiley Periodicals, Inc.∗
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Introduction

The Genetic Analysis Workshops are research meetings held
every 2 years; they are devoted to the evaluation and com-
parison of statistical methods for mapping, identifying, and
characterizing genetic factors involved in complex diseases.
Genetic Analysis Workshop 18 (GAW18) was held October
13–17, 2012, in Stevenson, Washington. The workshop con-
sisted of a day of group discussions (among researchers who
had submitted, before the workshop, short papers summa-
rizing their findings on a particular topic), followed by 2 days
of group presentations made by each group to the wider set of
GAW18 participants. Group membership was assigned the-
matically. Here, I summarize the results and discussion held
by members of the working group on gene-based tests. Partic-
ipants in this group included biologists, geneticists, computer
scientists, mathematicians, and statisticians, all of whom con-
tributed to a lively discussion of issues arising from analysis
of the GAW18 data.

Our working group produced 13 papers, 11 of which were
subsequently submitted and accepted for publication in the
GAW18 proceedings. Table 1 lists the 13 contributions and
provides summary-level information, including the data used
(real or simulated, which phenotypes and simulation repli-
cates) and the analysis approaches used. The common theme
of the contributions to our working group was the desire to
perform analysis (linkage or association testing) of groups of
single-nucleotide polymorphisms (SNPs) simultaneously, as
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opposed to performing single-SNP analysis (as is most often
done in genome-wide association studies). This theme was
also addressed by a number of researchers in the working
group on collapsing methods [Sung et al., 2014] and was
also pertinent to the working group on pathway-based ap-
proaches for whole genome sequence data [Aslibekyan et al.,
2014], many of whose submissions involved the initial con-
struction of a gene-based test, followed by some procedure
that grouped together sets of genes known to lie within the
same biological pathway, in order to conduct a final test re-
lating to the pathway as a whole.

The members of our working group most often defined
a “group” of SNPs as the set of SNPs lying within a known
gene (i.e., between the minimum transcription start position
and the maximum transcription end position, as specified,
e.g., in the UCSC genome browser), but they also considered
other groupings based on location (genomic region), includ-
ing sliding windows and intergenic regions. Group members
also discussed how best to define a gene (e.g., on the basis
of transcription start and end points, whether to allow some
distance around these start and end points) and whether
grouping by gene was too limiting a strategy, given that the
ENCODE Project has shown that 80.4% of the genome has
relevant biochemical function, the vast majority of which
does not, in fact, lie within genes [ENCODE Project Consor-
tium et al., 2012]. No firm conclusion was reached on these
questions, but they were highlighted as important issues for
further consideration.

With respect to the actual construction of the gene-based
(or other grouping) test, many investigators compared the
results from several different analysis approaches, the most
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popular being the sequence-based kernel association test,
SKAT [Wu et al., 2011], or one of its successors, such as
SKAT-O [Lee et al., 2012] or famSKAT [Chen et al., 2013].
During the workshop, group members carried out com-
parisons of the same method across different contributions
and comparisons of different methods. Several contribu-
tors developed new methods or proposed improvements to
existing methods, often comparing the resulting methods
with existing methods, such as SKAT or SKAT-O. In ad-
dition to methodological commonalities between different
contributions (described in more detail later), other com-
mon issues included whether or how to account for family
relationships between individuals, whether or how to ac-
count for population stratification or population structure,
whether or how to choose weights for up-weighting partic-
ular variants (e.g., on the basis of known or hypothesized
biological function or minor allele frequency), and how to
choose thresholds (if required) for defining a variant as being
rare.

Methods

Methodological Commonalities

The methods used in the 13 contributions to our work-
ing group were surprisingly diverse. Liu et al. [2014] and
Mukhopadhyay [unpublished data] considered methods
that involved constructing multivariate phenotype similarity
measures and relating these measures to genotype similarity
measures. The advantage of this approach is that it allows the
consideration of phenotypes measured longitudinally at all
time points, as opposed to just considering a single time point
(e.g., SBP1, systolic blood pressure measured at time point
1) or simply taking the mean phenotype over available time
points [as was done by Ayers and Cordell 2014]. Mukhopad-
hyay [unpublished data] also included the two blood pres-
sure phenotypes, SBP and diastolic blood pressure (DBP),
simultaneously, allowing for their estimated covariance. Dif-
ferences between the two contributions involved the precise
choices of genotypic and phenotypic “similarity” used and
whether any up-weighting of rare variants was performed.

Ayers and Cordell [2014] and Johnston and Carvalho
[2014] developed methods that allowed effects at multiple
genes or SNPs to be modeled simultaneously by means of
either penalized regression or Bayesian hierarchical model-
ing. An attractive feature of these approaches is that they
in principle allow borrowing of information across rare and
common SNPs and allow the up-weighting of certain features
(e.g., up-weighting SNPs according to membership within a
gene or giving higher weights to rarer variants).

Feng and Zhu [2014] and Zhang and Lin [2014] consid-
ered TDT-type (transmission disequilibrium test) methods
[Spielman et al., 1993] that focused on transmission of vari-
ants from heterozygous parents to affected (and in some
cases unaffected) offspring. Whereas Feng and Zhu inves-
tigated the inflation in the false-positive rate, which they
attributed to linkage disequilibrium created by population
admixture (and possibly resulting from other factors, such as

genotyping errors), Zhang and Lin tested for imprinting or a
parent-of-origin bias in transmission.

Accounting for Population Stratification

Most contributors did not explicitly address the issue of
correcting or accounting for population stratification in their
analyses, although a few [e.g., Peralta et al. 2014; Wang and
Wei 2014; Zhang et al. 2014] incorporated into their analyses
the top five or 10 principal component scores from a principal
components analysis (based generally on the genome-wide
association data from unrelated individuals, with loadings
projected if necessary onto the full set of individuals) as co-
variates. Ayers and Cordell [2014] used a genomic control
correction approach [Devlin and Roeder, 1999] to adjust their
significance levels (which were, as expected, inflated because
of either unmodeled relatedness or population substructure).
Family-based approaches, such as the TDT-like approaches
implemented by Feng and Zhu [2014] and Zhang and Lin
[2014] or the variance-components linkage-like approach
implemented by Peralta et al. [2014], should not, in princi-
ple, be affected by population stratification. However, Feng
and Zhu did attribute the inflation in positive (most likely
false-positive) signals seen in their method to linkage dise-
quilibrium between rare variants caused by population ad-
mixture, specifically admixture with populations of African
ancestry, because the two genes that showed an excess of rare
variants on transmitted compared to nontransmitted hap-
lotypes contained a large number of variants present only
in African samples (according to the 1000 Genomes Project
database).

Accounting for Family Relationships

Members of our working group took various approaches
to account for the family relationships between individuals
in the GAW18 data set (which consisted of 464 sequenced
individuals taken from 16 large pedigrees, or 959 genotyped
individuals taken from 20 large pedigrees, 849 of whom had
accompanying phenotype measurements available). One ap-
proach (taken, e.g., by Liu et al. [2014]) was to use all the
individuals but to treat them as though they were unrelated,
acknowledging that this approach would most likely produce
results with an inflated false-positive rate; nevertheless, these
results could still be used to compare true- and false-positive
rates (when applied to the simulated data where the answers
are “known”). An alternative approach, taken by Ayers and
Cordell [2014], was to use all the individuals without correc-
tion and adjust (deflate) the resulting inflated test statistics
by using genomic control [Devlin and Roeder, 1999].

Several contributors used methods that were specifically
designed to account for family structure. Peralta et al. [2014]
developed a variance-components linkage approach in which
relatedness was accounted for through a kinship matrix based
on known (theoretical) kinships, with an empirically esti-
mated local (gene-specific) kinship matrix (calculated on
the basis of SNP data from within the gene region) used
to construct a regional test of linkage within a variance-
components framework. Zhang et al. [2014] also used a

S46 Genetic Epidemiology, Vol. 38, No. S1, S44–S48, 2014



variance-components and linear mixed-model framework;
they accounted for relatedness using a kinship matrix based
on known kinships and constructed an SNP-based test of
association. The P-values from the test were subsequently
incorporated into various noncollapsing procedures for con-
verting rare variant (SNP-based) P-values into gene-based
P-values. Zhang et al. [2014] also performed a separate anal-
ysis using famSKAT [Chen et al., 2013], an extended version of
SKAT specifically designed for analysis of family data, whereas
Mathew et al. [2014] used several alternative sequence-based
association methods specifically designed for family data.

Feng and Zhu [2014] and Zhang and Lin [2014] considered
TDT-type methods [Spielman et al., 1993] that focused on
transmission of variants from parents to offspring. Although
these methods could in some sense be considered to be specif-
ically designed for family data, the fact that the GAW18 data
are not nuclear family data (but rather derived from 16 or
20 large pedigrees) raises the issue of whether any correction
needs to be made to account for the trios (two parents and
a child) selected from a large pedigree not being themselves
independent. Feng and Zhu addressed this issue by select-
ing a single trio from each pedigree, resulting in 15 trios
for their final analysis (because one sequenced pedigree did
not have any trios with sequencing data available). Although
this strategy avoids having to deal with the nonindependence
between trios, it results in an extremely small final data set.
Zhang and Lin used all trios with complete data within each
pedigree, accounting for the correlated information in the es-
timated variance when they computed their test statistic, and
they used computer simulations (based on the true pedigree
structure) to show that their resulting type I error rate was
well controlled.

By far the most common strategy used by the members of
our working group was to select a subset of unrelated indi-
viduals for analysis. This allowed the use of analysis methods
(and software packages) that had been previously developed
for analysis of unrelated individuals, and it avoided the issue
of relatedness between individuals when developing any new
method. The resulting sample size varied between 96 and 142
individuals (see Table 1), depending on which phenotypes
were considered and what quality control procedures (result-
ing in various sample exclusions) were performed. The dis-
advantage of this strategy was the low power that one would
expect as a result of the small sample size. For genome-wide
association studies sample sizes in the thousands, if not tens
of thousands, are required to replicably identify genetic ef-
fects operating in complex diseases. In sequencing studies,
the hope is that the operating effect sizes may be larger, but
nevertheless Kiezun et al. [2012] suggested that, even for
sequencing studies, many thousands of individuals will be
required to achieve acceptable statistical power.

Up-Weighting of Specific Genetic Variants

Evolutionary arguments [Gorlov et al., 2011] suggest that
rare SNPs are more likely than common SNPs to be func-
tional and to have stronger effect sizes. This observation mo-
tivated several group members to up-weight rare variants,

for example, according to the inverse of the minor allele fre-
quency [Madsen and Browning, 2009] when constructing
gene-based tests. Several contributors explored the issue of
up-weighting certain variants; for example, Gagliano et al.
[unpublished data] up-weighted nonsynonymous SNPs and
those SNPs residing in DNase I hypersensitive sites, and Liu
and Beyene [2014] up-weighted rare variants, regardless of
their direction of effect. Most contributors used the default
weighting scheme for the method (e.g., SKAT) employed or
else imposed a weighting scheme that effectively up-weighted
rare variants. The threshold for defining a variant as rare
was thought to be an important but often somewhat arbi-
trarily chosen parameter, although data-driven approaches
for choosing the threshold have been proposed [Price et al.,
2010]. Group members thought that investigation of such
strategies and the development of alternative and optimal
weighting schemes were important areas for future investi-
gation.

Results and Discussion

Given the small sample size (96–142 unrelated individu-
als) used by most of the contributors to our working group,
it is perhaps not surprising that there was little concordance
across contributions with respect to the genes identified as be-
ing associated with phenotype, apart from MAP4, which was
consistently identified by those contributors who analyzed the
simulated data. The simulation model was constructed such
that MAP4 contained variants with the strongest combined
effects (accounting for 6.48% and 7.79% of the phenotypic
variance in SBP and DBP, respectively), and as such, MAP4
could be considered the easiest causal gene to find in the
simulated data. Indeed, Ayers and Cordell [2014] showed
that MAP4 was clearly implicated even when a standard
single-SNP analysis (rather than a gene-based approach) was
used. Most findings in the real data did not reach signifi-
cance thresholds that would withstand correction for multi-
ple testing (of the numbers of genes investigated) or achieve
compelling posterior probabilities of association. Therefore,
the feeling in our working group was that most of even the
top-ranking findings were most probably false positives or
that they would at least require careful replication and val-
idation in larger cohorts. Those contributors who analyzed
the simulated data were able to formally examine type I error
and power, either through examination of all 200 simulation
replicates or through counting the numbers of true and false
positives (i.e., estimating the proportion of truly or falsely
associated genes that were detected) within a single replicate.
Receiver operating curves generated by Liu et al. [2014] and
Zhang et al. [2014] suggest that in most cases the power barely
surpassed the type I error rate, a conclusion that was consis-
tent with results presented by Yang et al. [2014], who found
low power (3.8–14%) for achieving an uncorrected nominal
P-value of 0.05.

The method most commonly used across the contribu-
tions was SKAT [Wu et al., 2011] or in some cases its exten-
sions, SKAT-O [Lee et al., 2012] and famSKAT [Chen et al.,
2013]. The popularity of SKAT appears to be largely due to its
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theoretical appeal and computational convenience. No clear
advantage for SKAT in terms of power was seen from the
investigations performed by our working group, although it
is hard to make definitive statements in this regard, given
the overall low power seen for any method when applied to
the GAW18 data (particularly when analysis was restricted to
unrelated individuals). However, Yang et al. [2014] did find
SKAT to be sometimes superior to an alternative goodness-
of-fit test.

Conclusions

A variety of methods exist for constructing gene-based
tests. Most approaches were found to be successful in de-
tecting significant effects at MAP4 in the GAW18 simulated
data. No other genetic effects were consistently detected, most
likely because of low power, particularly when analysis was re-
stricted to a subset of unrelated individuals. This observation
emphasizes the importance of the use and further develop-
ment of analysis approaches that allow the inclusion of all
individuals, including related individuals.
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