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Animal groups in nature often display an enhanced collective information-

processing capacity. It has been speculated that natural selection will tune

this response to be optimal, ensuring that the group is reactive while also

being robust to noise. Here, we show that this is unlikely to be the case.

By using a simple model of decision-making in a dynamic environment,

we find that when individuals behave rationally and are subject to selection

based on their accuracy, optimality of collective decision-making is not

attained. Instead, individuals overly rely on social information and evolve

to be too readily influenced by their neighbours. This is due to a classic evol-

utionary conflict between individual and collective interest. The result is a

sub-optimal system that is poised on the cusp of total unresponsiveness.

Individuals in the evolved group exhibit delayed reactions to changes in

the environment, before responding with rapid, socially reinforced tran-

sitions, reminiscent of familiar human and animal social systems (markets,

stampedes, fashions, etc.). Our results demonstrate that behaviour of this

type may not be pathological, but instead could represent an evolutionary

attractor for such collective systems.
1. Introduction
Social influence is a powerful force in nature and society. In many contexts,

individuals gain an advantage by observing and then copying the actions of

others [1–3]. The result of this behaviour can be beneficial for all group mem-

bers; studies of collective behaviour in humans and animals have shown that

the use of social information can dampen individual errors and lead to greater

decision accuracy [4–7], and may also result in an emergent collective intelli-

gence [8,9]. While there are benefits to social information use, there can also

be downsides [10–13]. Although interaction can lead to enhanced information

processing [14] and the spreading of novel technologies [15], it may also lead to

a lack of responsiveness to changing environments [16] and an over-reliance

on the behaviour of others. When individuals devalue their own personal infor-

mation in favour of imitating the actions, or opinions, of others, this is termed

an information cascade [10]. For example, a lack of individual autonomy has

been blamed for disasters such as the Challenger shuttle accident [17] and

the 2008 financial collapse [18], while in a more commonplace setting Faria

et al. [19] showed that the use of social information led to increased risk

taking in road-crossing pedestrians. In the natural world, experiments have

shown animals are also susceptible to information cascades [20,21], causing

individuals to undervalue their personal information [22]. Further, simulations

suggest that social behaviour may lead to hysteresis, which means that collec-

tive movements, such as migration, are hard to recover once they are lost [23].

Given the substantial costs and benefits associated with the use of social

information, an important question is whether natural selection will tune indi-

vidual behaviour to optimize information processing at the collective level. To

investigate this question, we employ an individual-based model of information

use in the presence of an external, dynamic information source. We assume that
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the fitness of individuals is determined by the accuracy of

their response to this environmental cue.

This deliberately abstract model could represent animals

selecting a heading based on environmental cues as in [23],

or humans responding to an alarm signal as in [24]. Histori-

cally, models of this type have been termed ‘binary choice

with externalities’ [25] and have been applied to socially

influenced decisions to wear safety equipment in sports [25]

or to adopt a particular currency [26]. For animal groups,

this form of model may be applied to decisions, for example,

relating to movement in response to predators, or larger scale

movements associated with migrations. In the latter case,

there is substantial evidence to suggest that both the decision

of whether to migrate or not [27] and the accuracy of

migration [28,29] are affected by social interaction.

Individuals are able to detect the external (global) infor-

mation source, which we denote G(t); however, detection is

not perfect, thus the actions of others may be used as an

additional source of information. Individuals respond to the

environment with a binary response variable Ui [ {�1, 1}

and we define individual i to be correct if

Ui(t) ¼ sign[G(t)]: (1:1)

Decisions are made based on a personal estimate gi(t) and

the observed opinions of individuals in a local neighbour-

hood, N i. To model the imperfect environmental detection,

the evolution of the personal estimate, gi(t), follows an

Ornstein–Uhlenbeck process of the form

dgi(t) ¼ �vg[gi(t)� G(t)]dtþ sdW(t), (1:2)

so that individuals make an estimate of the true signal

and the quality of this estimate is improved by increasing

vg and deteriorates as the level of noise, s, increases. We

note that this reduces all environmental information to

a single dimension, and individuals have no scope for

specialization. Functional diversity within groups, as in

[30], is therefore precluded.

Social information is contained in a binary vector of the

states of individuals within the interaction neighbourhood,

U j[N i
. It should be noted that this vector consists of the

observed responses of neighbours, who themselves may be

using social information. This is in contrast to the classic

‘wisdom of crowds’ model in which independent individual

estimates are aggregated [31,32].

By employing optimal decision theory [33,34], we next

determine the appropriate response of individual i to the total

information received, {gi(t), U j[N i
}, subject to a single evolva-

ble parameter vs, which may be interpreted as the level of

confidence an individual has that its neighbours are correct.
2. Optimal individual decision-making
Following the approach of Nitzan & Paroush [33], Pérez-

Escudero & de Polavieja [34] and Perreault et al. [35], we

determine a weighting of social and personal information

by noting that, for each individual i, an optimal strategy is

one for which,

Ui(t) ¼

þ1, if P(G(t) � 0jgi(t), U j[N i
)

. P(G(t) , 0jgi(t), U j[N i
)

�1, if P(G(t) � 0jgi(t), U j[N i
)

, P(G(t) , 0jgi(t), U j[N i
):

8>><
>>: (2:1)
In words this means that individual i should set Ui ¼ þ1 if,

given all available information, it is most likely that the

true state of the environment is greater than zero. (As the

state G(t) ¼ 0 has Lebesgue measure zero, we arbitrarily

assign the optimal response to this state as Ui ¼ 1.)

By applying Bayes’ theorem (and for clarity omitting the

explicit time dependence), we find

P(G � 0jgi, U j[N i
) ¼ . . .

P(U j[N i
jG � 0, gi)P(G � 0jgi)P(gi)

P(gi, U j[N i
)

: (2:2)

Therefore, by using equation (2.2) and the equivalent

expression for P(G , 0jgi, U j[N i
), equation (2.1) may

be rearranged so that the state G � 0 is the most probable

state if

P(U j[N i
jG � 0, gi)

P(U j[N i
jG , 0, gi)

 !
P(G � 0jgi)

P(G , 0jgi)

� �
. 1: (2:3)

This expression is essentially a rewriting of equation (2.1),

with the role of social and personal information appearing

separately. The likelihood that the environment is in the

state G � 0, given the personal information gi may be calcu-

lated from the properties of the Ornstein–Uhlenbeck

process, as

P(gijG ¼ z) ¼
ffiffiffiffiffiffiffiffiffi
vg

ps2

r
e�vg (gi�z)2 =s2

: (2:4)

This represents the stationary solution of the process, hence

is valid when G(t) varies slowly with respect to the response

time defined by vg. (While this assumption does not hold

when the environment is rapidly alternating, simulations

shown in the electronic supplementary material, figure S3,

demonstrate qualitatively equivalent results.) Again, employing

Bayes’ theorem, we attain

P(G ¼ zjgi) ¼
P(gijG ¼ z)P(G ¼ z)

P(gi)
: (2:5)

As G [ [�1, 1], we have

P(G � 0jgi) ¼
ð1

0

P(gijG ¼ z)P(G ¼ z)

P(gi)
dz, (2:6)

and, similarly,

P(G , 0jgi) ¼
ð0

�1

P(gijG ¼ z)P(G ¼ z)

P(gi)
dz: (2:7)

Combining equations (2.4), (2.6) and (2.7) and cancelling

constants provides

P(G � 0jgi)

P(G , 0jgi)
¼
Ð 1

0 e�vg (gi�z)2 =s2
P(G ¼ z)dzÐ 0

�1 e�vg (gi�z)2 =s2 P(G ¼ z)dz
: (2:8)

We next consider the problem of weighting the social

information. As the accuracy of neighbours depends on

their own strategies, the question of how to weight this infor-

mation is analytically intractable. However, we are able

to reduce the problem to a single parameter, denoted vs,

that represents the assumed probability an individual has

that a randomly selected neighbour is correct. If vs ¼ 0.5,

neighbours are believed to have an even chance of being cor-

rect, and thus provide no additional information, while if
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vs ¼ 1, neighbours will always be followed and the social

information is assumed to be infallible.

We stress that vs does not represent the true probability an

individual is correct but rather a belief about that probability

that can be translated into a decision rule. Further, while this

analysis represents a formal interpretation of the social confi-

dence level, in terms of a probability, this parameter is free

to evolve and may give too much, or too little, weight to

observed opinions. The only restriction placed on individuals

is that the motivations of neighbours are unknown, meaning

a scenario where two neighbours share an opinion based on

their independent personal information is indistinguishable

from a scenario where one neighbour has copied the other.

Effectively, this assumption restricts the domain of our

model to systems in which honest communication of personal

information, or confidence levels, does not occur.

Formally, individual i assumes

P(Uj ¼ 1jG � 0) ¼ vs 8 j [ N i (2:9)

and

P(Uj ¼ �1jG , 0) ¼ vs 8 j [ N i: (2:10)

The estimated probability (assuming independence) of

observing the vector of responses of neighbours, U j[N i
, if

the global information G � 0 is then

P(U j[N i
jG � 0) ¼

Y
{jjUj¼1}

vs

Y
{jjUj¼�1}

(1� vs), (2:11)

while if G , 0 then this is

P(U j[N i
jG , 0) ¼

Y
{jjUj¼1}

(1� vs)
Y

{jjUj¼�1}

vs: (2:12)

Combining these two equations, we get

P(U j[N i
jG � 0, gi)

P(U j[N i
jG , 0, gi)

¼ vs

1� vs

� �Nþ�N�

, (2:13)

where N þ and N2 are the number of neighbours for which

Uj ¼ 1 and Uj ¼21, respectively. Finally, we may substitute

equations (2.8) and (2.13) into equation (2.3) to attain the opti-

mal individual decision-making strategy, given a social

confidence level vs, as

Ui ¼ sign[�1þ . . .Ð 1
0 e�vg (gi�z)2 =s2

P(G ¼ z)dzÐ 0
�1 e�vg (gi�z)2 =s2 P(G ¼ z)dz

 !
vs

1� vs

� �Nþ�N�
#
:

(2:14)
3. Numerical simulations
We next simulate an individual-based model that incorpor-

ates the decision rule previously described. For these

simulations, we first need to define the functional form of

G(t) and prescribe an interaction network over which social

observations are made. As a first approximation, we use a

mean-field model for the interaction network. This assumes

that the population is well mixed and observations are

drawn at random at each time step. The advantage of this

approach is that the social network is simplified to a single

parameter k, that defines the size of the interaction neigh-

bourhood, such that k ¼ jN ij 8 i. However, we note that

our results are not dependent on this assumption, and
simulations incorporating various structured interaction net-

works are shown in the electronic supplementary material,

figures S5–S7.

To model the environmental information, we employ an

alternating, periodic function for G(t). By using a determinis-

tic function, we are able to control both the nature of

transitions between environmental states and the length of

the time interval between transitions. While this simplifies

our analytical calculations, similar results are attained in the

case of more realistic, stochastic environments (see the elec-

tronic supplementary material, figure S4, for details). For

G(t), we use both a periodic triangle wave and a square

wave input. Mathematically, these are defined as

G(t) ¼ 2

p
arcsin sin

2pt
TE

� �
, (3:1)

for the triangle wave, and

G(t) ¼ 2�Q
TE

2
� t mod TE

� �
� 1, (3:2)

for the square wave, where Q is the Heaviside step function,

and TE determines the time scale of the environmental vari-

ation in both cases. The shape of these functions may be

viewed in the time series shown in figure 1a,b (dashed lines).

These two expressions for G(t) provide two optimal rules

for equation (2.14) by determining the form of P(G ¼ z). If the

triangle wave is used then

P(G ¼ z) ¼ 0:5, z [ [�1, 1]
0 otherwise,

�
(3:3)

whereas for the square wave,

P(G ¼ z) ¼ 1

2
[d(z� 1)þ d(zþ 1)], (3:4)

where d is the Dirac delta function. By substituting these

functions into equation (2.14), an optimal decision rule

can be obtained that is a function only of gi(t) (personal

information) and U j[N i
(social information). In figure 1,

results from simulations of the model are shown. The

beneficial aspects of social information can be clearly

observed as vs increases. However, over-reliance on this

information, represented by larger values of vs, results in

steep declines in performance as the group becomes rapidly

less responsive.

The results of the simulations, shown in figure 1, demon-

strate the advantages, and disadvantages, of using social

information. By following the behaviour of others, individ-

uals increase their accuracy. This increase in accuracy goes

beyond the classic ‘wisdom of crowds’ concept, whereby

the variance in the fraction of correct individuals observed

over independent trials converges to zero, an effect most

clearly expounded by Condorcet’s jury theorem [31]. To

enable a comparison to this effect, accuracy is calculated as

if independent estimates were aggregated and shown in

figure 1c. For these results, neighbours convey their own per-

sonal estimate of the cue (gi(t)). Equivalently, this may be

considered as the scenario where a single individual makes

k independent observations of the cue and then takes the

average of those observations.

In the full simulations (solid lines of figure 1), obser-

vations of neighbours do not equate to independent

estimates, as neighbours are also making use of social infor-

mation. This can result in a far superior performance, as
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Figure 1. Numerical simulations. (a) Time series of average response to the environment kU(t)l (solid lines) and G(t) (dashed line) for triangle wave. Parameter values
are k ¼ 4, N ¼ 200, vg ¼ 0.2, s ¼ 1 and TE ¼ 100. Values used for vs are shown as triangles with corresponding colour in (c). Panel (b) as (a) for square wave
and parameter values k ¼ 8, N ¼ 100, vg ¼ 0.1, s ¼ 1 and TE ¼ 500. (c) Accuracy as a function of social information weighting for parameters as in (a) (triangle
points, grey line) and (b) (square points, black line). Accuracy is defined as the time averaged fraction of individuals for which U ¼ sign(G(t)). The dashed lines illustrate
the performance when k independent observations are made directly by individuals (i.e. the performance according to the ‘wisdom of crowds’ hypothesis).
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individuals are effectively accessing a greater number of esti-

mates via the information flow through the social network.

However, as the weighting given to social information

increases, the benefit is rapidly lost due to high levels of

correlation [36,37]. The lack of independence in indivi-

dual behaviour leads to a sharp decrease in performance,

until the system becomes locked into a single response and

accuracy is 0.5 (equal to a random chance of being correct).
4. Evolved strategies and collective
unresponsiveness

In order to determine where, in parameter space, we should

expect to find natural collective systems, we introduce an

evolutionary component into our simulations by allowing

the parameter vs to evolve. A selection algorithm [38] is

used that ensures an individual’s expected number of off-

spring is proportional to the accuracy of its response to the

environment. Offspring inherit the characteristics of the

parent individual (vs) with a small Gaussian mutation. As

social interactions occur at random within the population,

our simulations preclude the evolution of any altruistic
traits that may benefit neighbouring individuals while incur-

ring a personal fitness cost. Hence, our model is focused

purely on selection at the individual level.

In figure 2, results from the evolutionary simulations are

shown. We clearly observe a substantial distinction between

the evolved weighting of social information and the value

that gives optimal collective performance. We find natural

selection drives the trait beyond the optimal level and

moves the collective system towards an unresponsive state.

In these simulations we employ homogeneous populations

as the initial condition with vs ¼ 0.5 for all individuals (no

social information is used). Results are robust to these

assumptions as shown in the electronic supplementary

material, figures S8 and S9.

In order to understand the mechanisms underlying the

simulation results, we investigate the dynamics of our

model within an evolutionary invasion framework [39]. To

do so, we must first make some simplifying assumptions

regarding model properties. Namely, we assume that the

population is large, the number of social observations each

individual makes is also large, and that the environmental

cue is defined by the step function of equation (3.2). Given

these restrictions, we attain an equation that governs the
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Figure 2. Evolutionary simulations. (a) Evolution of accuracy for triangle wave (red) and square wave (blue). Parameter values are, triangle wave: k ¼ 8, N ¼ 50,
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performance for a homogeneous population, while points show the actual ESS value to which the system evolves.
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dynamics of the population when the external cue is in the

state G(t) ¼ 1 as

dX
dt
¼ 1

2
þ1

2
erf

ffiffiffiffiffiffi
vg
p þ 1

2
ffiffiffiffiffiffi
vg
p (X�0:5)k ln

vs

1�vs

� �" #
�X, (4:1)

where X is the fraction of individuals that are respond-

ing correctly to the environment and, for simplicity, we

have rescaled the personal information parameter, vg, by a

factor of s2 to reduce the number of parameters. (For

a detailed derivation of this equation, see the electronic

supplementary material.)

As the environment alternates between different states on a

characteristic time scale, the expected accuracy may be calcu-

lated from the performance over a single, representative, time

interval. Further, if we expect there to be low accuracy immedi-

ately following a transition, we may approximate this initial

state as X¼ 0, i.e. there is zero accuracy within the group at

time t¼ 0. The time-averaged accuracy may then be written as

A ¼ 1

TE

ðTE

0

X(t)dt, (4:2)

where X(t) is defined as the solution to equation (4.1) with
initial condition X(0)¼ 0. In the limiting case of large popu-

lations, and many social observations of the population, a

single individual with social weighting of v0s has a probability

of being correct that is dependent on the fraction of individuals

in the population that are correct, according to

PC(X, v0s) ¼
1

2
(1þ . . .

erf
ffiffiffiffiffiffi
vg
p þ 1

2
ffiffiffiffiffiffi
vg
p (X � 0:5)k ln

v0s
1� v0s

� �" #!
:

(4:3)

The expected accuracy, A(v0s, vs), of this mutant strategy over

time is then

A(v0s,vs)¼
1

2
þ ...

1

2TE

ðTE

0

erf
ffiffiffiffiffiffi
vg
p þ 1

2
ffiffiffiffiffiffi
vg
p (X(t)�0:5)k ln

v0s
1�v0s

� �" #
dt:

(4:4)

The evolutionarily stable strategy is found by locating the

value of the resident population vs around which small
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based simulation with a fixed weighting of social information (vs). The red line indicates evolved accuracy from simulation. The black line shows the performance
calculated from equation (4.2), and the blue point represents the analytical ESS calculated from equation (4.5).
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mutations will have a lower accuracy [40,41],

@A(v0s, vs)

@v0s
jv0s¼vs

¼ 0: (4:5)

Solutions to equations (4.2) and (4.5) may be found numeri-

cally and these are shown in figure 3 alongside the

corresponding full simulation. To verify that the singular

strategy is both evolutionarily and convergence stable,

second derivatives are taken with respect to the mutant strat-

egy (evolutionary stability) and the resident strategy

(convergence stability). These derivatives are numerically

evaluated at the location of the singular strategy and it is

found that the value of vs that satisfies equation (4.5) is

both evolutionarily stable (no branching occurs) and conver-

gence stable. (See the electronic supplementary material for

further details.)

While this analysis confirms the results of the individual-

based simulations, it provides little insight into the under-

lying mechanisms. To gain a more heuristic understanding

of the evolutionary process, we coarse-grain the full

dynamics of equation (4.1) and consider a two-stage process
that describes the population response to a change in

the environment.

The first stage consists of the period of time immediately

following an environmental transition, before the population

has responded. This corresponds to the situation when most

individuals are incorrect as X(t) , 0.5 and G(t) ¼ 1. The

length of this phase is the response time, TR, of the collective

system and may be calculated as

TR ¼
ð0:5

0

_X
�1

dX: (4:6)

The second stage consists of the rapid transition to the

steady-state solution of equation (4.1) and lasts for a period

of time TE2TR, i.e. until the next environmental switch. We

may then approximate the full ordinary differential equation

as a process in which the population switches from a low pro-

portion of individuals in the correct state 0 , X(t) , 0.5,

which we denote XL and approximate as XL ¼ 0.25, to the

high-accuracy state X1, which is the steady-state solution of

equation (4.1). The switch occurs after time TR, and we use

the full dynamics to calculate the length of this period.
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As shown in equation (4.3), an individual with social

weighting v0s has a probability of being correct that is depen-

dent on the accuracy of other individuals in the population.

In this reduced framework, the expected long-term accuracy

of an individual with social weighting v0s within a population

of individuals with social weighting vs is

A(v0s, vs) ¼
TR(vs)

TE
PC(XL, v0s)þ . . .

TE � TR(vs)

TE
PC(X1(vs), v

0
s):

(4:7)

The usefulness of this expression lies in the division of the

impact of individual and collective properties on accuracy.

The steady-state group accuracy, X1, and the length of the

response time are controlled by the resident population

parameter vs, whereas the rare strategy v0s governs the

individual-level accuracy in each phase.

Again the evolutionarily stable strategy is found by

solving the equation

@A(v0s, vs)

@v0s
jv0s¼vs

¼ 0: (4:8)

Introducing the notation,

P0C(X) ¼ @PC(X, v0s)

@v0s
jv0s¼vs

, (4:9)

it can be shown that the evolutionarily stable strategy (ESS) is

reached when

TR(vs)

TE
¼ P0C(X1)

P0C(X1)� P0C(XL)
: (4:10)

This expression may be interpreted as a balancing of the gain in

accuracy attained by increasing sociality when X is high, with

the loss in accuracy when X is low, weighted according to

the respective length of time of each phase. The equation is

written in this form so that the time spent prior to a collective

response to the environment (LHS) may be related to the ratio

of accuracy changes at the individual level (RHS).

Next, we follow a similar approach to find the optimal

value of the resident population. To find this collectively

optimal accuracy, it is necessary to solve

@A(vs, vs)

@vs
¼ 0, (4:11)

i.e. find the value of vs that maximizes accuracy considering its

impact on both individual-level decisions and the aggregate

properties of the system. Neglecting the effect of the resident

population strategy on the value of X1, and only including

the dominant effect on the lack of responsiveness, equation

(4.11) may be rearranged to give

TR(vs)

TE
¼ P0C(X1)

P0C(X1)� P0C(XL)
. . .

� 1

TE

dTR(vs)

dvs

PC(X1, vs)� PC(XL, vs)

P0C(X1)� P0C(XL)

� �
:

(4:12)

By comparing equations (4.10) and (4.12), we observe the key

difference between the optimal and evolved solutions; to

achieve the optimal level of information processing, the

increase in the collective inertia of the system must be con-

sidered. This increase in response time with respect to the

social weighting manifests itself in the second term on the

RHS of equation (4.12). As this term is absent from the ESS,
the population will always evolve towards unresponsiveness,

moving beyond the optimal value of vs and stabilizing only

when the social information is sufficiently degraded.

To visualize the role of each term in equations (4.10) and

(4.12), their values have been plotted in figure 4. This geo-

metric view of the equations illustrates the influence of each

term and how they combine to create a sub-optimal collective

response. It is worth noting that the rapid increase in the

delay time as sociality increases leads to a precipitous drop

in responsiveness. This translates into high variation in accu-

racy across generations caused by fluctuations around the

ESS value of vs. As accuracy declines so steeply in the vicinity

of the ESS value, when mutations are high, the system fre-

quently becomes completely unresponsive, as demonstrated

by the repeated low accuracy states shown in figure 3a.
5. Discussion
Over-reliance on social information is a common and fre-

quently observed behaviour in many species. In humans,

this is manifested in many well-studied phenomena such as

rapid technology adoption and lock-in [42], or the boom-

and-bust cycles of financial markets [11,43]. Non-human ani-

mals may also devalue their personal information in favour

of copying others [44], resulting in sub-optimal collective be-

haviour even when individuals are aware of more suitable

alternatives [45].

Several previous studies have investigated this effect in the

context of human decision-making, notably [10,46] (but also see

[47–49], and [50] for a review). These models assume that

decision-making is sequential, previous decisions are observed

and agents behave rationally given the information that is avail-

able. Under these assumptions, information cascades will occur

as the number of individuals increases. Fundamentally, this
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effect arises because individuals are unable to recognize the

decisions of others that are based on copying.

A similar mechanism underlies the results of our model,

however in our framework individuals are allowed to

employ any level of confidence in social information. As strat-

egies evolve based on their performance, there is the potential

for individuals to avoid over-dependence on social infor-

mation. Our results show that while high levels of accuracy

are initially attained, natural selection continually drives the

population beyond the optimal performance levels, due to

the conflict between individual and collective interest [51].

By employing optimal decision theory and evolutionary

invasion analysis, we have shown that over-reliance on

social information evolves in dynamic environments. As indi-

viduals in a well-functioning group provide an excellent

source of information, natural selection leads to over-reliance

on social cues, even to the point of unresponsiveness. When

mutations are large but infrequent, highly conformist indi-

viduals take over the population and lead to an almost

complete failure in information processing. Once this has

occurred, less social individuals are selected for, and higher

accuracy levels are re-established. However, in the limit of

vanishing mutation rates, analytical conditions show that

information processing will evolve to be sub-optimal, as the

disadvantages of over-confidence in social information are

felt at the collective level (groups become unable to escape

from dominant, widely held opinions).

The sharp deterioration in accuracy observed as social

weightings are increased is in agreement with other studies

of collective movement. For example, in a recent work,

Codling & Bode [52] showed that when groups use social

information, accuracy is improved, and surprisingly a large

amount of social weighting was observed to be optimal.

However, in agreement with the results presented here,

steep declines in performance occurred as social influence
increased. In this context, our findings predict that the

high-accuracy navigating groups of Codling & Bode [52]

will be unstable, and animal groups in nature are more

likely to be found with values of social weighting that place

them close to the collapse of accurate motion.

Investigating the ultimate drivers of social behaviour is

not feasible in most species; however quorum-sensing bac-

teria [53] present a promising avenue for future tests of our

theory. Bacteria respond to both social and environmental

information and may be evolved in a laboratory setting. For

bacteria responding to a dynamic environment, we predict

that over-reliance on social information and an increased

unresponsiveness will evolve over time.

The results we present illustrate that evolution may not

lead to effective information-processing groups, even in the

absence of any cost to acquiring personal information. This

has implications in a variety of contexts. Notably, our find-

ings challenge the notion that we should expect animal

groups to be ‘tuned’ to respond optimally to environmental

information. Instead, collective inertia should be considered

the default, and we predict that social species will display

less behavioural plasticity and respond more slowly to

changes in their environment. In the context of human inter-

action, our results suggest that when social information is

available, individuals will over use it [54] and this should

be considered when attempting to engineer effective groups

or organizations.
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38. Bäck T. 1996 Evolutionary algorithms in theory and
practice. Oxford, UK: Oxford university press.

39. Dercole F, Rinaldi S. 2008 Analysis of evolutionary
processes: the adaptive dynamics approach and its
applications. Princeton, NJ: Princeton University Press.

40. Eshel I. 1983 Evolutionary and continuous stability.
J. Theor. Biol. 103, 99 – 111. (doi:10.1016/0022-
5193(83)90201-1)

41. Hofbauer J, Sigmund K. 1990 Adaptive dynamics
and evolutionary stability. Appl. Math. Lett. 3,
75 – 79. (doi:10.1016/0893-9659(90)90051-C)

42. Arthur WB. 1989 Competing technologies,
increasing returns, and lock-in by historical events.
Econ. J. 99, 116. (doi:10.2307/2234208)

43. Pan W, Altshuler Y, Pentland AS. 2012 Decoding
social influence and the wisdom of the crowd in
financial trading network. In Privacy, security, risk
and trust (PASSAT), 2012 International Conference
on Social Computing (SocialCom), pp. 203 – 209.
Piscataway, NJ: IEEE.

44. Howell D. 1979 Flock foraging in nectar-feeding
bats: advantages to the bats and to the host plants.
Am. Nat. 114, 23 – 49. (doi:10.1086/283452)

45. Bates L, Chappell J. 2002 Inhibition of optimal
behavior by social transmission in the guppy
depends on shoaling. Behav. Ecol. 13, 827 – 831.
(doi:10.1093/beheco/13.6.827)

46. Bikhchandani S, Hirshleifer D, Welch I. 1992 A
theory of fads, fashion, custom, and cultural change
as informational cascades. J. Political Econ. 100,
992 – 1026. (doi:10.1086/261849)

47. Smith L, Sørensen P. 2000 Pathological outcomes of
observational learning. Econometrica 68, 371 – 398.
(doi:10.1111/1468-0262.00113)

48. Çelen B, Kariv S. 2004 Observational learning
under imperfect information. Games Econ.
Behav. 47, 72 – 86. (doi:10.1016/S0899-8256
(03)00179-9)

49. Ellison G, Fudenberg D. 1993 Rules of thumb for
social learning. J. Political Econ. 101, 612 – 643.
(doi:10.1086/261890)

50. Easley D, Kleinberg J. 2010 Networks, crowds, and
markets. Cambridge, UK: Cambridge University
Press.

51. Hardin G. 1968 The tragedy of the commons.
Science 162, 1243 – 1248. (doi:10.1126/science.162.
3859.1243)

52. Codling EA, Bode NW. 2014 Copycat dynamics in
leaderless animal group navigation. Mov. Ecol. 2,
11. (doi:10.1186/2051-3933-2-11)

53. Miller MB, Bassler BL. 2001 Annu. Rev.
Microbiol. 55, 165 – 199. (doi:10.1146/annurev.
micro.55.1.165)

54. Saavedra S, Hagerty K, Uzzi B. 2011 Synchronicity,
instant messaging, and performance among
financial traders. Proc. Natl Acad. Sci. USA 108,
5296 – 5301. (doi:10.1073/pnas.1018462108)

http://dx.doi.org/10.1093/beheco/arq141
http://dx.doi.org/10.1093/beheco/arq141
http://dx.doi.org/10.1093/beheco/9.5.493
http://dx.doi.org/10.1073/pnas.1304917110
http://dx.doi.org/10.1093/beheco/arp121
http://dx.doi.org/10.1073/pnas.1006874107
http://dx.doi.org/10.1103/PhysRevE.86.036105
http://dx.doi.org/10.1103/PhysRevE.86.036105
http://dx.doi.org/10.1177/002200277301700302
http://dx.doi.org/10.14430/arctic4311
http://dx.doi.org/10.1111/faf.12084
http://dx.doi.org/10.1073/pnas.0403723101
http://dx.doi.org/10.1038/075450a0
http://dx.doi.org/10.2307/2526438
http://dx.doi.org/10.1371/journal.pcbi.1002282
http://dx.doi.org/10.1016/j.evolhumbehav.2011.12.007
http://dx.doi.org/10.1016/j.evolhumbehav.2011.12.007
http://dx.doi.org/10.2307/2111584
http://dx.doi.org/10.1098/rspb.2013.3305
http://dx.doi.org/10.1098/rspb.2013.3305
http://dx.doi.org/10.1016/0022-5193(83)90201-1
http://dx.doi.org/10.1016/0022-5193(83)90201-1
http://dx.doi.org/10.1016/0893-9659(90)90051-C
http://dx.doi.org/10.2307/2234208
http://dx.doi.org/10.1086/283452
http://dx.doi.org/10.1093/beheco/13.6.827
http://dx.doi.org/10.1086/261849
http://dx.doi.org/10.1111/1468-0262.00113
http://dx.doi.org/10.1016/S0899-8256(03)00179-9
http://dx.doi.org/10.1016/S0899-8256(03)00179-9
http://dx.doi.org/10.1086/261890
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1186/2051-3933-2-11
http://dx.doi.org/10.1146/annurev.micro.55.1.165
http://dx.doi.org/10.1146/annurev.micro.55.1.165
http://dx.doi.org/10.1073/pnas.1018462108

	Social information use and the evolution of unresponsiveness in collective systems
	Introduction
	Optimal individual decision-making
	Numerical simulations
	Evolved strategies and collective unresponsiveness
	Discussion
	Funding statement
	References


