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Summary

Receiver operating characteristic (ROC) analysis is widely used to evaluate the performance of 

diagnostic tests with continuous or ordinal responses. A popular study design for assessing the 

accuracy of diagnostic tests involves multiple readers interpreting multiple diagnostic test results, 

called the multi-reader, multi-test design. Although several different approaches to analyzing data 

from this design exist, few methods have discussed the sample size and power issues. In this 

article, we develop a power formula to compare the correlated areas under the ROC curves (AUC) 

in a multi-reader, multi-test design. We present a nonparametric approach to estimate and compare 

the correlated AUCs by extending DeLong et al.’s (1988) approach. A power formula is derived 

based on the asymptotic distribution of the nonparametric AUCs. Simulation studies are conducted 

to demonstrate the performance of the proposed power formula and an example is provided to 

illustrate the proposed procedure.
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1. Introduction

The receiver operating characteristic (ROC) curve is a standard tool used to evaluate the 

performance of a diagnostic test when test results are continuous or ordinal (Metz, 1978; 

Hanly and McNeil, 1982; Swets and Pickett, 1982). In an ROC curve, the true positive rate 

is plotted as a function of the false positive rate across all possible cut-points. The area under 

the ROC curve (AUC) is a commonly used summary measure of diagnostic accuracy. 

Values of AUC close to 1.0 indicate that the test result has high diagnostic accuracy, and 

relative accuracies of diagnostic tests can be compared through their corresponding AUCs.
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One important objective in many diagnostic studies is to examine whether new diagnostic 

tests provide performance that is superior to that of conventional tests for a certain condition 

or disease. The comparison of diagnostic accuracies often depends on the subjective 

interpretation of readers in diagnostic evaluation, so studies of such diagnostic tests usually 

involve multiple readers. The multi-reader, multi-test design is most likely to be employed 

in such settings in which multiple readers interpret all test results from a sample of patients 

who undergo multiple diagnostic tests. This design is efficient for comparing tests because it 

requires the smallest patient population; hence, it needs fewer interpretations per reader 

versus other study designs (Zhou et al., 2002). Sample size and power calculations are 

crucial to develop a multi-reader, multi-test ROC study. Although several statistical 

procedures to analyze data from this design have been developed, few methods have 

discussed the power considerations.

Most of the existing literature for analyzing multi-reader, multi-test studies has applied 

mixed-effects analysis of variance (ANOVA) models (e.g., Dorfman et al., 1992; 

Obuchowski et al., 1995; Beiden et al., 2000; Obuchowski et al., 2004). In particular, the 

methods proposed by Dorfman et al. (1992) and Obuchowski and Rockette (1995) are 

widely used, often referred to as the Dorfman-Berbaum-Metz (DBM) and Obuchowski-

Rockette (OR) methods, respectively. The DBM method uses a mixed-effects ANOVA 

model on the jackknife pseudo-values of the summary measures of the ROC curve. It 

assumes that readers and patients are random factors and tests are a fixed factor and that the 

random effects and error term in the model follow independent normal distributions. The 

DBM approach carries some concerns (Zhou et al., 2002; Hillis et al., 2005; Song and Zhou, 

2005). One weakness of this approach is that the ANOVA model for pseudo-values does not 

have a straightforward interpretation as the jackknife pseudo-values in this model are treated 

as observed data. Second, the DBM method does not generally satisfy the regular 

assumptions for standard mixed-effects ANOVA models because the variance of the 

response variable may vary across tests and subjects and thus might lead to erroneous 

inferences. Furthermore, it is substantially conservative and not based on a satisfactory 

conceptual or theoretical model. Recently, solutions to various drawbacks of the original 

DBM method have been discussed in the literature (Hillis et al., 2005; Hillis, 2007; Hillis et 

al., 2008).

On the other hand, the OR method applies a mixed-effects ANOVA model to the estimated 

summary measures of the ROC curve for each combination of readers and tests, where tests 

are considered fixed and readers are considered random. For hypothesis testing, an adjusted 

ANOVA F-test is used to correct for the correlations between and within readers. The OR 

approach also makes strong assumptions as follows. First, the validity of the method 

depends on the assumptions about the underlying distributions of the random variables. 

Second, the complicated correlation structure arising from having the same patient sample 

evaluated by several readers in a set of tests is overly simplified by the three different 

correlations. Furthermore, it is not clear how well the adjusted F statistic follows an F 

distribution, especially in small samples.

Hillis et al. (2005) demonstrated that the DBM and OR approaches yield the identical test 

statistic when the same accuracy measure and covariance estimation methods are used, but 

Kim et al. Page 2

Biometrics. Author manuscript; available in PMC 2015 January 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



inferences depend on the denominator degrees of freedom (ddf) method, DBM, or OR used. 

Hillis (2007) later pointed out problems with the OR and DBM ddf methods: The original 

OR method is very conservative with significance levels considerably below the nominal 

level while the DBM method can result in extremely wide confidence intervals because the 

ddf can be close to zero; he proposed using a new ddf estimator that overcomes these 

problems and described how the new ddf can be used with either the DBM or the OR 

procedure.

While the OR and DBM methods make use of the mixed-effects ANOVA model, several 

nonparametric approaches to the multi-reader ROC analysis have been developed (e.g., 

DeLong et al., 1988; Song, 1997; Gallas, 2006). Above all, DeLong et al. (1988) proposed a 

nonparametric approach to compare the correlated ROC areas using the theory of the U-

statistics. Their method, however, applies only to cases in which each patient is interpreted 

using multiple tests or repeatedly examined using a single test; thus, it is not appropriate for 

the data from a multi-reader, multi-test study design. Song (1997) generalized DeLong et 

al.’s method for analysis of multi-reader, multi-test ROC data and proposed the jackknife 

method to estimate the variance of the U-statistics. Song’s variance estimation using the 

jackknife methods can be computationally demanding and the paper does not present how it 

performs with an unequal number of normal and diseased cases. It should be noted that 

when DBM and OR methods are used by treating readers as fixed effects and by applying 

Delong et al.’s variance estimation methods, their test statistics are equivalent to those by 

Delong at al. and Song’s 2-sample jackknife approaches. More recently, Li and Zhou (2008) 

proposed a nonparametric approach to compare ROC curves for a paired design with 

repeated or clustered data. They treated nonparametric ROC curves as stochastic processes 

and derived their asymptotic distribution theory. A Monte Carlo resampling method was 

used to approximate the empirical ROC processes and compare correlated AUCs. Although 

their method was not specifically developed for multi-reader diagnostic accuracy studies, it 

can be applied to such studies when repeated marker measurements from each subject stem 

from interpretation by multiple readers.

With regard to the power calculation for multi-reader diagnostic accuracy studies, a formula 

based on the OR method is among the most widely used approaches (Obuchowski, 1995a, 

1995b, 1998; Zhou et al., 2002). Obuchowski (1995a) used the adjusted ANOVA F statistic 

of the OR method to determine the power to test the equality of the diagnostic accuracies of 

multiple tests. Possible ranges for the parameter estimates of the variance components and 

correlations required for the sample size calculation were introduced in Obuchowski 

(1995b). The author’s nonparametric power calculation was also described in Obuchowski 

(1998), but this paper discussed several other methods for determining the same sizes that 

differ by study designs (other than multi-reader ROC studies) and diagnostic accuracy 

measures. Recently, Hillis et al. (2011) described the procedure for estimating power that 

can be analyzed using either the DBM or OR method by applying the Hillis (2007)’s 

recommended ddf for the F-statistic. In this approach, the ROC summary measure is 

estimated in advance and this estimate is used as a response in the second step of fitting a 

mixed-effects ANOVA model. This two-stage approach can be misleading because it may 

depend on the estimated values of the response accounted for in the ANOVA model and is 

sensitive to the normality assumptions about the underlying distributions of the random 
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variables. Additionally, the method assumes that the complex correlation structure arising 

from having the same patient sample evaluated by several readers in a set of tests can be 

described by only three correlations; correlation of error terms in diagnostic accuracies of 

the same reader in different tests, the correlation of error terms in diagnostic accuracies of 

different readers in the same test, and the correlation of error terms in diagnostic accuracies 

of different readers in different tests.

In this article, we propose a new power formula to compare the correlated AUCs in a multi-

reader, multi-test design. Specifically, we present a nonparametric approach to estimate and 

compare the correlated AUCs in a multi-reader, multi-test design by extending DeLong et al. 

(1988)’s approach. A power formula is derived based on the asymptotic normality of the 

nonparametric AUCs. This article is organized as follows: Inference procedures for 

correlated AUCs are described in Section 2 and a formula for power calculation is presented 

in Section 3. In Section 4, we describe simulation studies to compare the powers of our 

proposed tests. We apply our proposed method to the example from the American College 

of Radiology Imaging Network (ACRIN) Digital Mammographic Imaging Screening Trial 

(DMIST) in Section 5 and a discussion is followed in Section 6.

2. Inference for Correlated AUCs

Suppose h tests are performed on a sample of N patients (m diseased, n non-diseased, N = m 

+ n) where r readers independently examine the test results from all patients. Let  be the 

test result for diseased subject i from test l by reader k (i = 1, ⋯, m; k = 1, ⋯, r; l = 1, ⋯, h). 

Similarly, let  be the test result for non-diseased subject j from test l by reader k (j = 1, ⋯, 

n; k = 1, ⋯, r; l = 1, ⋯, h). The test results  and  can be either continuous or ordinal. 

Without loss of generality, we assume that higher values of test results are more indicative 

of disease. Our primary goal is to estimate and compare the correlated AUCs of h diagnostic 

tests.

Let  denote the AUC of diagnostic test l by reader k. We assume that the ratings from 

diseased and non-diseased subjects are independent and have the same distribution in 

diseased or non-diseased subjects for a fixed reader and a test. A nonparametric AUC of 

is then calculated by the Mann-Whitney U statistic

(1)

with
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To evaluate the diagnostic accuracy of test l, we use the average AUC across r readers from 

a fixed test l. Thus, the AUC for diagnostic test l is defined as  and is 

estimated by

(2)

In our nonparametric approach, readers are considered fixed effects as indicated in Equation 

(2).

Let  vector of U-statistics in which each element 

represents the nonparametric AUC of a diagnostic test examined by a specific reader. We 

use the notation (k, l) to denote the value corresponding to the lth diagnostic test interpreted 

by the kth reader. Asymptotic normality and variance expression for  can be derived using 

the theory of generalized U-statistics. Define

(3)

The covariance of the (k, l)th and (k′, l′)th statistic can be written as

(4)

We extend DeLong et al. (1988)’s nonparametric approach to analyze multi-reader, multitest 

ROC data. Specifically, we use a method of structural components to provide consistent 

estimates of the elements of the variance-covariance matrix of  proposed by Sen (1960). 

For the (k, l)th statistics, , the X-components and Y-components are defined, respectively, 

as

and

Additionally, we define the (rh × rh) matrix S10 such that ((k, l), (k′, l′))th element is
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and define (rh × rh) matrix S01 such that ((k, l), (k′, l′))th element is

The covariance matrix for is then estimated by

(5)

 and  are asymptotically unbiased estimates of  and 

, respectively and the last term in Equation (4) is negligible so that it is not 

considered in the covariance estimation (Serfling, 1980, Chapter 5).

Theorem 1

Let  and . If limN→∞m/N = λ and limN→∞n/N 

=1 − λ with 0 < λ < 1, then under model (1),  is asymptotically normal with zero 

mean vector and covariance matrix Σ = (σ((k,l),(k′,l′))) where

The proof of Theorem 1 uses the central limit theorem for generalized two-sample U-

statistics (Lee and Dehling, 2005). More details can be found in the appendix. The 

covariance matrix Σ in Theorem 1 can be estimated using its empirical counterpart in (5).

Next, we make an inference for the accuracy of each diagnostic test. The following theorem 

implies that  is a consistent estimator for θl and follows an asymptotically normal 

distribution.

Corollary 1

Under the above assumptions of Theorem 1,  converges in distribution to a 

normal distribution with mean zero and variance

See Web Appendix for the proof.
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Let g be a real-valued function that is continuously differentiable with Jacobian matrix G ≡ 

∂g(θ)/∂θT that has full rank. If limN→∞ m/N = λ is bounded and nonzero, 

is asymptotically normal with zero mean vector and covariance matrix GΣGT. When g is a 

linear function and C is a (1 × rh) row vector of coefficients, for any contrast Cθ, the test 

statistic

(6)

is asymptotically standard normal. For example, in order to evaluate the differences in the 

AUCs of the two tests l = 1 and l′ = 2, we can conduct a Z-test by setting 

 and Cθ = 0 to the test statistic (6). To compare the AUCs 

of two or more diagnostic tests, we define C is a (c × rh) matrix of coefficients with full rank 

c ≤ rh. Then, the Wald statistic

(7)

can be used which has approximately a chi-squared distribution with c degrees of freedom. 

A confidence interval or region for  can be easily calculated by using (6) or (7).

3. Power Calculations

In this section, we propose a formula for the power calculation of a multi-reader, multi-test 

study design. Specifically, we aim to determine the power to detect the difference in AUC 

between two diagnostic tests given a specific number of readers and subjects.

In order to test the AUC difference between any two diagnostic tests, we state the null and 

alternative hypotheses as

According to (6), the test statistic possesses 

approximately a standard normal distribution. Define

(8)

,  and  (k; k′ = 1, ⋯, r; l, l′ = 1, ⋯, h) represent the 

correlations between ϕ’s when the test results from the two test modalities are obtained, 

respectively, from the same diseased and different non-diseased subjects, from different 

diseased and the same non-diseased subjects, and from the same diseased and non-diseased 
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subjects. We derive the explicit expression for the variance of the difference between two 

nonparametric AUCs in the following theorem that depicts all correlation structures that 

arise from having the same readers or the same tests specified in (8).

Theorem 2

The variance of difference between two correlated nonparametric AUCs  is

where . (See Web Appendix for details.)

For power determination, the followings are assumed:

a.
 is simplified as 

assuming that the variance  is same across readers and modalities. Here  denotes 

average of two comparing AUCs and  is assumed to be zero.

b. The correlations specified in (8) are the same either across readers or across tests or 

both. Thus, the correlations are simplified as the following 11 representative 

correlations.

(9)

where, k ≠ k′ and l ≠ l′. ρ11 and ρ21 are the correlations between ϕ’s when the test results are 

evaluated by the same reader using the same test; ρ12, ρ22, and ρ32 are the correlations 

between ϕ’s when the test results are evaluated by different readers using the same test; ρ13, 

ρ23, and ρ33 are the correlations between ϕ’s when the test results are evaluated by the same 

reader using different tests; and ρ14, ρ24, and ρ34 are the correlations between ϕ’s when the 

test results are evaluated by different readers using different tests. Note that 

 represents the correlation between ϕ’s 

when the test results are obtained from the same diseased and non-diseased subjects, read by 

the same reader from the same test. Therefore, ρ31 = ρ3((k, l),(k, l)) is always 1 so is not 
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considered in the estimation. Under the above assumptions (a) and (b), the variance in 

Theorem 2 is simplified as

(10)

with ,  of the two comparing AUCs. We suggest determining V and 11 

different types of correlations from a pilot study or a similar study. In a multi-reader, multi-

test design,  for a fixed s (s = 1, ⋯ 4), and  for a fixed t (t 

= 1, 2, 3). The proposed power at the significance level α is then

(11)

Details are shown in Web Appendix.

4. Simulation Studies

We considered the situation where r readers examine the test results of N (m diseased, n 

non-diseased) subjects who undergo two test modalities (h = 2). We varied the total sample 

size N from 100 to 200 and set the number of readers to r=4, 8, 12. We calculated the 

theoretical power based on the power formula in (11) under different scenarios for the 

number of readers and subjects.

First, the data is generated as follows. Let the test results for diseased subject i and non-

diseased subject j be  and 

, respectively. To generate Xi and Yj, we 

expressed their elements into the two components

where  and  account for variability due to reader k of modality l in the diseased and non-

diseased groups, respectively. We assumed that  and  for a fixed l. 

On the other hand,  and  account for variability due to subject i, j from modality l in the 

two groups, independently with  and . For diseased subject i, 

 is a  random variable with 

 and . For non-diseased subject j, 

 is a N(0, Σ0) random variable with 

. The diagonal elements of  (or ) are the variance 
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of  (or ), and their off-diagonal elements are the covariance between the test results 

when they are read by the different readers using the same modality. On the other hand, the 

diagonal and off-diagonal elements of  (or ) are the covariance between the 

(or ) when they are read by the same reader using the different modalities, and those 

when they are read by the different readers using the different modalities, respectively.

We assumed  and  for the reader variability and assumed , 

, , and  for diseased subject i; and 

, , , and  for non-

diseased subject j. The assumed values for  (or ) combined with Σ1 (or Σ0) imply that 

the correlations between the test results when they are evaluated, respectively, by the 

different readers using the same modality, by the same reader using the different tests, and 

by the different readers using the different tests are 0.3, 0.8, and 0.25 for diseased subjects 

and are 0.225, 0.6 and 0.1875 for non-diseased subjects. We set μd1=μd2=1.12 to obtain the 

true AUCs θ1=θ2=0.8; and μd1 = 1.37 and μd2 = 1.12 to obtain θ1=0.85 and θ2=0.8.

Tables 1 and 2 summarize the results based on 1,000 simulations. The difference of the two 

AUCs was estimated nonparametrically by Equation (2), and its variance was derived using 

the structural components in Equation (5). For testing the equality of the two AUCs, the Z-

statistic in Equation (6) was used.

In Table 1, we present the results of the theoretical powers and compare it with the empirical 

powers when the true AUC difference is 0.05 (θ1 = 0.85, θ2 = 0.8). The empirical AUC 

difference is very close to 0.05, and the asymptotic standard errors and the standard 

deviations are nearly identical. The last column in Table 1 presents the theoretical powers 

calculated using a power formula (11) in which it was assumed that  and the 11 

correlations are ρ11 = 0.31, ρ12 = 0.08, ρ13 = 0.24, ρ14 = 0.06, ρ21 = 0.22, ρ22 = 0.06, ρ23 = 

0.17, ρ24 = 0.05, ρ32 = 0.15, ρ33 = 0.55, ρ34 = 0.12. These correlations were estimated by the 

corresponding sample correlations from the simulated data illustrated at the beginning of 

this section. The theoretical powers are quite close to the empirical powers. Overall, we can 

see that the power increases with the increasing number of readers, and a balanced design 

when m = n has the most power when the total sample size N is fixed.

Next, we conducted simulation studies to examine the type I error rates of the proposed 

Wald test. The results when the difference in AUC is 0 (θ1 = θ2 = 0.8) are shown in Table 2. 

As expected, the Wald test showed negligible bias, and the standard errors calculated from 

the asymptotic theory closely mimic the empirical standard deviations. The empirical type I 

error rates are close to the 5% level for all scenarios.

5. Practical Implementation

We illustrate the proposed power formula using data from the ACRIN DMIST retrospective 

multi-reader study (Hendrick et al., 2008). The goal of this study was to compare the 
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accuracy of soft-copy digital mammography with that of screen-film mammography for 

breast cancer diagnosis. Three digital mammography manufacturers (Fischer, Fuji, and GE) 

participated in the study; each had 6 to 12 readers and 98 to 120 women screened. We 

selected the data from the digital mammography machine from Fuji. For the Fuji study, each 

of the 12 radiologists read 98 cases (27 cancer cases and 71 benign or negative cases) for 

both soft-copy digital and screen-film mammograms. Each radiologist identified suspicious 

findings and rate suspicion of breast cancer in identified lesions by using a 7-point scale 

(from 1 = definitely not malignant to 7 = definitely malignant).

We calculated nonparametric AUCs for each reader and modality combination separately. 

The values were then averaged across readers for each modality. Using the nonparametric 

method, the average AUCs were 0.756 (SE 0.054) for the screen-film mammography and 

0.715 (SE 0.065) for the soft-copy digital mammography. The estimated AUC difference 

between the two modalities was 0.041 (SE 0.032) with p-value=0.20, indicating no 

significant difference in the AUCs between Fuji soft-copy digital and screen-film 

mammography.

In order to compute the power, we suggest obtaining 11 correlations in (9) using related 

prior studies or literature. In the DMIST data example, the estimated correlations between 

the two tests were , , , , , , 

, , , , . In addition to the 11 correlation 

values, if we assume  and the difference between two AUCs under the alternative 

hypothesis δ1 is 0.05, the estimated power is 0.452 at α = 0.05 according to the power 

formula (11) for 27 diseased subjects, 71 non-diseased subjects and 12 readers.

Table 3 presents the power calculation for different numbers of diseased and non-diseased 

subjects with a varying number of readers. The total sample size was set to 100 or 200, 

letting the proportion of diseased subjects over non-diseased subjects be 1 or 0.5. The 

number of readers was set to 4, 6, 8, 10, or 12. The assumed AUCs for the two modalities 

(θ1, θ2) were either (0.75, 0.7) or (0.75, 0.69). Thus, the effect size δ1 is 0.05 or 0.06. We 

assumed that the correlation coefficients (ρ11, ρ12, ρ13, ρ14, ρ21, ρ22, ρ23, ρ24, ρ32, ρ33, ρ34) 

are (0.5, 0.25, 0.25, 0.25, 0.24, 0.1, 0.1, 0.1, 0.4, 0.4, 0.4) (Case I) or (0.5, 0.25, 0.25, 0.2, 

0.24, 0.1, 0.1, 0.1, 0.4, 0.4, 0.3) (Case II). As indicated, the power increases as the number 

of total sample sizes, effect sizes, or readers increase. When the total sample size is fixed, 

having equal numbers of diseased and non-diseased subjects is the most powerful. It is 

shown that when the correlations ρ14 and ρ34 decreased, the power decreased substantially. 

Here, ρ4 and ρ34 indicate the correlations between ϕ’s when the test results from the two test 

modalities are obtained from the same diseased and different non-diseased subjects and from 

the same diseased and non-diseased subjects, respectively, in which the test results are 

evaluated by different readers using different tests. Let’s assume we need to design a study 

with 100 or 200 participants and up to 12 readers. We want a minimum power of 80% 

assuming that the effect size is 0.05. In Case I with an equal number of diseased and non-

diseased subjects, we need 10 readers for N = 100 but only 6 readers for N = 200. If the ratio 

of the diseased to non-diseased is 1:2, then we need 12 readers for N = 100. However, In 

Case II, we need at least 200 participants (100 in each group) and 10 readers to achieve a 

power greater than 80%.
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6. Discussion

The multi-reader, multi-test design is commonly used in radiological studies to compare 

different diagnostic techniques because it requires the smallest number of subjects. We 

developed a novel power formula to detect the AUC difference for any two diagnostic tests 

in a multi-reader, multi-test design based on the theory of generalized two-sample U-

statistics. We showed the asymptotic normality of the nonparametric AUC differences and 

constructed the power formula using the Wald test.

DeLong et al. (1988)’s approach is the special case of the presented nonparametric approach 

because the former can be applied to situations where multiple readers interpret a single test, 

or multiple tests are read by a single reader. Our estimation method and hypothesis testing 

retain the spirit of Song (1997)’s approach, in that the the AUC estimates are the same as the 

U-statistics in which readers are treated as fixed effects, and both methods use the Wald-test 

for comparing correlated AUCs. However, the proposed method differs from Song’s in the 

variance estimation for the nonparametric AUCs. In contrast to Song’s jackknife method, we 

applied Sen (1960)’s method of structural components similar to Delong’s method. We 

derived the explicit expression of the variance of nonparametric AUCs accounting for the 

correlated data structure from the multi-reader, multi-test design and next introduced 11 

representative correlations to simplify the complicated variance structure for the power 

calculation. In addition, we are not aware of any nonparametric methods that deal with the 

sample size and power issues including Song’s method.

In practice, a power formula based on the OR method is one of the most widely used 

approaches for multi-reader diagnostic accuracy studies. Obuchowski et al. (1995) pointed 

out that the type I error rate based on the OR method is at the correct level for eight or more 

readers. This is likely due to the incorrect F-statistic approximation used in the mixed effects 

ANOVA model design. Note that the number of pseudo-observations used as the response in 

the mixed model is equal to the number of readers times the number of tests, which is very 

small in usual applications. In this case, the asymptotic distribution approximation may not 

be ideal. Instead, in our approach, the asymptotic approximation is based on the total 

number of subjects so that the asymptotic results are more reliable. Our simulation results 

also demonstrated that the proposed method performs well even with a small number of 

readers. The major strength of the proposed power formula is that it is easy to implement as 

a useful alternative to the OR method, especially when a study is expected to have a 

relatively small number of readers.

A major difference between the proposed and OR (or DBM) methods is that our method 

treats the reader as a fixed effect whereas the latter treats it as a random factor. As 

Obuchowski et al. (2004) explained in detail, in phase II studies in which readers are 

selected from a specific institution, the selected sample of readers is often not generalizable 

to a broad population of readers. In this case, the conclusion of the study should pertain to 

the particular readers only and treating readers as fixed effects makes sense. Our method is 

thus suitable for use in this setup. However, in phase III studies, the readers should present a 

general population of radiologists, and it is reasonable to assume that random readers can 

account for variability across readers. The proposed approach of assuming fixed readers in 
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this situation is still applicable but may result in power loss when reader effects are actually 

random.

Several papers have discussed the comparison of nonparametric partial AUCs (pAUCs) by 

extending DeLong et al.’s (1988) approach (e.g., Zhang et al., 2002; Dodd and Pepe, 2003; 

He and Escobar, 2008). Although we focused on using the entire AUC as a measure of 

accuracy, which is most widely used in multi-reader, multi-test studies, the proposed method 

can be easily extended to compare pAUCs. The only change to our test statistic is that the 

AUC of a diagnostic test by a specific reader in Equation (1) is replaced with the pAUC. Its 

variance can be estimated using Sen’s (1960) method, as previously used, and the inference 

will be based on the asymptotic normality using trimmed U-statistics theory, as presented by 

He and Escobar (2008). The corresponding power calculation will be also based on the 

correlations of the pAUC estimators.

As a final remark, we would like to note that our power calculation for analyzing the 

multireader, multi-test ROC data is based on a complete (reader by test) factorial study 

design. In many applications, however, test result data might be missing. As our statistic is 

based on pooling AUC estimators across all readers, our method can allow different readers 

to examine a different number of diseased or non-diseased cases. We can make a simple 

correction for the variance estimation using the available data by taking an approach similar 

to that of Zhou and Gatsonis (1996). The power calculation will be modified to reflect 

different missing proportions from each reader.
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Appendix

Proof of Theorem 1

We use the Wald’s device so consider any linear combination of , say , where qkl 

is any constant. The latter can be expressed as

This is one generalized U-statistics considered in Lee and Dehling (2005), where the kernel 

function is given by
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Therefore, the asymptotical normality holds following the result in Lee and Dehling (2005). 

Particularly, we conclude that for some ,  converges in distribution to a 

multivariate normal with zero mean vector and covariance matrix Σ = (σ((k, l),(k′, l′))) as given 

in Theorem 1. Clearly, the asymptotic limit  is given by

where .
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