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Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet”
molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information
downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through
paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific
function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste
receptors are able to cooperatively bindmultiple substances andmediate signaling by other receptors. Based on increasing evidence
about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic
(glucose) regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling
in modulating cognitive functioning.

1. Introduction

Taste receptors are integral plasma membrane proteins that
recognize sapid substances, code information received from
these substances, and transmit the information into intracel-
lular acceptors. Taste receptors are divided into two types:
type 1 receptor recognizes sweet molecules (see examples
below); type 2 recognizes bitter molecules such as toxins,
acids, and alkaloids. Both receptor types were only recently
characterized [1, 2] and are increasingly studied in recent
time. Type 1 receptor is further subdivided into three subtypes
(T1R1, T1R2, and T1R3). For type 2 receptor, at least 25
subtypes are known to exist in humans [1, 3, 4].

This paper deals only with the signaling network of the
sweet taste receptors, precisely the role of their signaling net-
work in cognitive functioning. Sweet taste receptor signaling
network is a complex communication pattern involving the
regulated signaling of sweet molecules activating down-
stream target of taste cells and resulting in the perception of
taste as well as modulation of related signaling pathways.The
network involves the activating substrate, sweet taste recep-
tor, intracellular molecules and cooperatively associated

receptors, secretory peptides, molecules, and ions. It is sug-
gested that through these components, sweet taste receptors
modulate paracrine signaling pathways and can significantly
affect neighboring cells by changes in ion (calcium)waves and
activity-dependent signaling.

The activating ligands of sweet taste receptor are diverse
and include both artificial (acesulfame potassium, aspartame,
neotame, sucralose saccharin, or glycyrrhizin) and natural
(glucose, lactose, fructose, galactose, maltose, and sucrose;
amino acids including glycine, alanine, threonine, D-tryp-
tophan, andD-histidine; the dipeptide L-aspartyl-L-phenyla-
lanine and sweet proteins such as monellin, thaumatin, and
brazzein) sweet substances [5–7]. Functional forms of the
sweet taste receptor subtypes are known to exist in dimers.
For instance, T1R2 forms a dimer with T1R3 (T1R2+T1R3
heterodimer). Formation of dimers and complexes allows the
sweet taste receptors to detect various types of taste [4].

Sweet taste receptors have multisystem localization. The
existence of sweet taste receptors was initially proposed by
Newson et al. (1982) and later discovered in the gastroin-
testinal tract [8, 9] and then in the pancreas [7, 10–15]. They
are also present in macrophages [16] and respiratory track,
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where it is believed to play significant role in themaintenance
of the mucosal and ciliary functioning, in part, by ensuring
adequate and supportive role for the sensing of tasty sub-
stances, as well as the clearance of glucose through GLUT 1
and GLUT 10 receptor types present in the respiratory track
[17]. The supportive role of sweet taste receptors to glucose
absorption and metabolism is proposed to play a part in the
gastrointestinal tract [18], and this role probably is medi-
ated through paracrine signaling or cross-talks [19]. These
receptors are known to play a vital role in the initiation and
progression of pathological process in the respiratory track
(inflammation, asthma, etc.), gastrointestinal tract, and pan-
creas (metabolic disease such as diabetes) [7, 14, 15].

Interestingly, sweet taste receptors have been discovered
in the visual, auditory, and olfactory systems, where they are
known to modulate taste through visual, auditory, and olfac-
tory perception, respectively [20–23].

Researchers have shown that sweet taste receptors are
also located in the central nervous system (CNS), precisely
in the hypothalamus. Ren and colleagues [24] showed that
sweet taste receptor T1R2+T1R3 heterodimer is responsible
for sensing glucose in the hypothalamus. This discovery
could have implication for a better understanding of brain
functioning and could provide information onmechanism of
CNS disorders in which dysregulation of metabolism (glu-
cose) is observed [25, 26].

The continuous search for different treatment options of
cognitive disorders or the prevention of such conditions pro-
vides a substantial argument for constantly rising prevalence
of CNS disorders in the world. Over the past decades, there
has been constant increase in the prevalence of CNS disor-
ders. It has been estimated that the number of people suffer-
ing fromCNS disorders will get a whooping increase by 2020.
Millions of people are mentally disabled, with the highest
proportion occurring in ages 10–29 years [25]. Only between
1990 and 2010, the burden of disorders associated with CNS
increased by 37.6%. In 2011, it was reported that neuropsychi-
atric disorders (accounting for 45%) were the leading cause
of disability for people aged 10–24 years [25, 27]. These data
suggest that, indeed, there is increasing necessity to search
for new frontiers in bothmetabolic and cognitive functioning
of the CNS. This is based on increasing evidences suggesting
that metabolic disorders precede cognitive dysfunction [28].
Cerebral metabolic regulation is key to normal cognitive
functioning and might in fact be a key predictor of cognitive
functioning and diseases related to brain functioning. In fact,
in an analysis, it was observed that cerebral glucose regulation
parameter for the identification of cognitive dysfunction was
more effective and efficient than the neuropsychological tests
that are used for the diagnosis of cognitive impairment [28].
For instance, researchers have shown that the initial stage
of Alzheimer’s disease involves decrease in brain glucose
metabolism by 45%, whereas blood flow decrease by only ∼
18% [29]. Assuming conservatively that the prevalence of the
disease remains constant, it is estimated that for Alzheimer’s
disease alone, compared with the prevalence as at 2010, the
number of cases will double, hitting 65.7 million by 2030 and
115.4 by 2050 [30]. It is estimated that the sharpest increases in
the disease are expected to hit low and middle income

countries [31]. A huge amount of economic, societal, and psy-
chosocial costs accrue from cognitive impairments [32–34].
In 2010, the total worldwide cost of cognitive impairment was
estimated at US$604 billion [31]. In the US alone, an esti-
mated cost of caregiving in 2012 was at $216 billion [35],
suggesting a sharp increase in the economic cost due to the
increase in the prevalence of the disease. A total of $536
billion and $1.75 trillion are minimum estimates of the long-
term losses to the US economy in 1991 caused by Alzheimer’s
disease [36]. Without doubt, it is obvious that understanding
how the sweet taste receptors could affect metabolic and
cognitive functions of both neurons and astrocytes could
provide plausible information on treatment option of some
CNS disorders that have recorded tremendous increase in
rent times. Of paramount importance is how efficient hypo-
thalamic metabolic regulation relates to the regulation of
metabolism in other parts of the brain (such as the hippocam-
pus and cortex).

Based on data that suggest possible role of the sweet taste
receptors in controlling sugar absorption and metabolism
and recent reports that metabolic disorders precede cognitive
impairment, it is suggested in this work that the activity of
this sweet taste receptor-signaling network could have impli-
cation for the regulation of some aspects of cognitive func-
tioning. In this paper, recent studies that suggest a possible
role of the sweet taste receptor in the neural control of meta-
bolism and cognition are reviewed.The possible mechanisms
linking the cognitive and metabolic functions of the sweet
taste receptors are also proposed.

2. General Model of Signaling of
Sweet Taste Receptors

It is at least 3 decades since the initial hypothesis about taste
receptors was made in early 1980s by Newson and colleagues
[37]. However, experimental results on the presence of these
receptors showed up in the literature only after a decade
following the proposal of Newson and colleagues [8, 9]. Lit-
erature data point to the extensive development of sweet taste
receptor signaling in the last half-decade. This development
involved not only the unraveling of some of the mechanisms
of sweet taste receptor signaling but also the diversity in the
localization. The discovery of sweet taste receptors in the
brain is a key to better understanding of certain aspect of
brain functioning. Ren et al. [24] reported the localization of
sweet taste receptors in the brain and suggested that these
receptors serve as glucosensor in the hypothalamus. Signaling
mechanisms of sweet taste receptors in the identified tissues
and cells bear some similarities. In this next section, a general
model of sweet taste receptor signaling will be outlined;
thereafter, the role and mechanisms of these receptors in
metabolic and cognitive functions shall be discussed. The
general concept of sweet taste receptor signaling is shown in
Figure 1.

The model (Figure 1) shows the mechanism of signaling
initiated by sweet substances in sweet taste cell and possible
effect on neighboring nonsweet taste cell (through paracrine
or gap junction communication). One aspect of research into
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Figure 1: A general model of sweet taste signaling network. Sweet taste receptors possess multiple binding sites and mode of interaction for
sweet molecules and they belong to class C of heterotrimeric guanine nucleotide-binding protein, G-protein [143–145]. Sweet molecules
activate the G-protein by downstream signaling leading to the dissociation of the 𝛼-subunit gustducin from the 𝛽𝛾 subunits [146, 147].
Dissociated 𝛽𝛾 subunits of the G-protein activate phospholipase C𝛽 (PLC𝛽), leading to the formation of 1,4,5-inositol trisphosphate (IP3). IP3
is responsible for the release of Ca2+ from intracellular stores through its binding to IP3-receptor in these stores. Increase in intracellular Ca2+
activates calcium dependent kinase, monovalent selective cation channel, TRPM5 (transient receptor potential cation channel, subfamily
M, member 5) [15, 44, 146], and other receptors [44, 148]. To establish the role of TRPM5 or PLC𝛽 (type 2), Zhang et al. [4] showed that
knockout of the receptor or the enzyme abolishes the sensation of taste in cells. TRPM5may also play a role in capacitance mediated calcium
entry into taste cells [147]. Modulation of purinergic signaling by taste receptor also plays useful role in taste sensation. For the initiation of
purinergic release, it was recently demonstrated by Taruno et al. [148] that the voltage-gated ion channel, calcium homeostasis modulator 1
(CALHM1), is indispensable for taste-stimuli-evokedATP release from sweet, bitter, andumami taste cells. Importantly, CALHM1 is expressed
not only in sweet but also in bitter and umami taste sensing type 2 cells. Taruno et al. [148] proposed that CALHM1 is a voltage-gated ATP-
release channel. Dissociated 𝛼 subunit referred to as G𝛼-gustducin activates a phosphodiesterase (PDE) thereby decreasing intracellular
cAMP levels [146, 149]. G𝛼-gustducin is also reported to activate adenylate cyclase (AC) to increase cAMP level [150]. According to earlier
report, Clapp et al. [151] demonstrated that, compared to wild type mice, knockout of 𝛼-gustducin in the taste buds of mice resulted in high
basal (unstimulated) cAMP level. The results of these authors [151] indicated that 𝛼-gustducin is necessary to maintain low level of cAMP
level. Low level of cAMP is necessary to maintain the adequate signaling of Ca2+ by disinhibition of cyclic nucleotide-inhibited channels
to elevate intracellular Ca2+ [38]. Changes in cAMP levels also affect other ion channels, including K+ channels. The events resulting in
activation/modulation of ion channels lead to membrane depolarization and formation of action potentials. Potential-dependent release of
mediators (ATP, serotonin, etc.) and peptides and calcium dependent release of peptides/biomolecules are some of the results of sweet taste
receptor signaling [152]. A hallmark of sweet taste receptor signaling is the activation of transcription factors and gene expression, whichmight
be dependent on calcium and activity dependent activation calcium dependent kinases, including the calmodulin-dependent protein kinase
(CAMK). Activation of protein kinases may be achieved through other signaling pathways. It appears that sweet taste receptor signaling
involves multiple activating substrates and different types and subtypes of both 𝛼-gustducin and 𝛽𝛾 subunits of the G-protein. Although,
different subtypes of sweet taste G-protein receptor subunits have been known for over a decade, their specific roles in sensing taste are not
exactly clear [38, 149, 153]. For instance, Huangu et al. [149] reported the presence of 𝛽1 and 𝛾13. The sweet taste receptor is also known to
have 𝛽3 subtype subunit. For 𝛼-gustducin, G𝛼i-2, G𝛼i-3, 𝐺𝛼14, 𝐺𝛼15, G𝛼q, G𝛼s, 𝛼-transducin have been identified [38].
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Figure 2: Sweet taste signaling network of the neuroastroglial system. The brain is a complex network of cells, largely populated by neurons
and astrocytes.There are ∼100 billion neurons, with glial cells outnumbering neurons by about 10-fold. Astrocytes form the largest population
of glial cells. The metabolic role of astrocytes in brain has been reviewed in our previous work [60]. Mechanisms of how glucose enters into
the astrocytes and neurons are well documented [61]. From the scheme (Figure 2), the presynaptic neuron senses glucose mediated by the
T1R2+T1R3 and GLUT2. While the mechanisms, by which the neuron senses glucose through GLUT2, have increasingly been defined, the
glucosensing mechanisms of the sweet taste receptor are yet to be understood. It is quite possible that sweet taste receptor can modulate
the plasma membrane GLUT2 glucosensor. Functioning cooperatively with GLUT2 to sense the metabolic rate of the intracellular milieu
is the G-protein coupled receptor, the inwardly rectifying ATP-dependent potassium channel (KATP channel) [62, 63]. Transport activity of
GLUT2 may be affected through multiple signaling pathways, such as those involving the regulation of GLUT2 and KATP channel activity.
While in Ren et al. [24] study, the signaling activity of GLUT2 was not assessed, their results showed that the inhibition of sweet taste
receptor resulted in increase in taste receptor gene expression, suggesting that sweet taste receptors persistently code information about the
extracellular glucose level to intracellular milieu, and this might, probably, involve intracellular metabolic sensors, mediating neural activity,
gene expression, and membrane receptor trafficking. Although, the mechanisms of the T1R2+T1R3/GLUT2-cooperativity/associativity (or
intracellular metabolic sensors) interaction are not known, it can be proposed that T1R2+T1R3 could modulate GLUT2 transport activity
through mechanisms as yet unknown. Mechanism of downstream signaling of the neuronal T1R2+T1R3 receptor is similar to that in other
cells (Figure 1). The downstream signaling of these receptors can result in changes in extracellular calcium concentration as well as changes
in peptide secretions. These biomolecules are sensed by their corresponding receptors in the adjacent neurons/astrocytes, which couple the
received information into intracellular signal and cellular activity.Thewaves of calcium ions, peptide-dependent signaling, can affect collateral
neurons and astrocytes by activity dependent signaling and changes in ion waves and regulate gene expression and protein synthesis. Several
transcription factors andmemory relation genes are activated/deactivated. Intercellular signaling through connexons and pannexons in these
cells can modulate their activity.
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sweet taste receptor signaling that is yet to be reported is how
different concentrations of sweet substances affect signaling.

The signaling events (Figure 1) lead to the modulation
of cellular activities, propagation of action potential, and the
paracrine signaling [38–40], including the release of peptides
(glucagon-like peptide-1, GLP-1) and several biomolecules
[41].The functions of GLP-1 are well documented in the brain
and gastrointestinal system [42].

Increasing evidences suggest that sweet taste signaling
mechanisms in the gastrointestinal tract are similar to those
in the pancreas and respiratory tract [19]. Nakagawa et al.
[43] showed that sweet taste receptors of the pancreatic 𝛽-cell
(by the addition of sucralose) activate the calcium and cAMP
signaling systems to stimulate insulin secretion.They demon-
strated that the secretory activity of the second pool of insulin
vesicles blocked by the dihydropyridine L-type calcium chan-
nel blocker, 3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-
1,4-dihydropyridine-3,5-dicarboxylate (nifedipine). In addi-
tion, the IP3-receptor inhibitor, 2-aminoethoxydiphenyl
borate, effectively blocked Ca2+ waves caused by both the
first and the second pool of insulin secretion. More so, the
peptide, gurmarin, an inhibitor of the sweet taste receptor,
blocked calcium response to the artificial sweetener, sucralose
[43]. Gurmarin can inhibit sweet taste responses 30–80% to
multiple sweet molecules, including glucose, sucrose, saccha-
rin, and SC45647; however, it has no inhibitory effect on
salty, sour, or bitter compounds. Another known inhibitor of
sweet taste receptor includes the proteolytic enzyme pronase
[44]. These results are in agreement with the reports of [45]
and data reported elsewhere [46] for other tissues and cells.
The heterodimer sweet taste receptor, T1R2/T1R3, in the
presence of amiloride (3mM) loses its response to sweet taste
molecules such as sucrose, artificial sweetener, and sweet
protein. Another sweet taste inhibitor, lactisole, is known to
inhibit this response but maybe these inhibitors may possess
different binding sites on the sweet taste receptor dimers [45].

The presence of multiple sweet taste signaling pathways is
based on experiments suggesting that gurmarin inhibits some
but not all sweet taste responses of the chorda tympani nerve
to sweetmolecules in experimental animal [44]. Investigators
showed that gurmarin inhibition of sweet taste receptors was
dependent on many factors, including temperature, suggest-
ing that multiple factors, including peptides, environmental
factors, and higher brain functions (such as emotion) may
play a role in modulating taste perception. Yoshida et al.
[47] recently demonstrated that the anorexigenic mediator
and adipocyte hormone, leptin selectively suppresses sweet
taste sensitivity via the adiposity receptor, Ob-Rb, in sweet
taste cells.Whereas orexigenicmediators, endocannabinoids,
notably, anandamide [N-arachidonoylethanolamine], and 2-
arachidonoyl glycerol, selectively enhance sweet taste via
cannabinoid receptor type 1 in sweet taste cells. These medi-
ators act centrally in the hypothalamus and limbic forebrain
[47]. While this present work did not find any study investi-
gating the effect of insulin on sweet taste receptors, it could
be expected that increase in insulin secretion signaling will
lead to suppression of sweet taste, while glucagon will
enhance sweet taste perception in sweet taste cells.

3. The Sweet Taste Receptor Heterodimer,
T1R2+T1R3, as a Model Sensor of Glucose
in the Neuroastroglial System: Window of
Interaction with Cognitive Control Systems

Generally, sensors of glucose could be divided into plasma
membrane glucosensors and intracellular glucosensors. The
functions of these different types of glucosensors will be
discussed inmore details in another paper under preparation.
In this section, only the plasma membrane glucosensor,
T1R2+T1R3, is discussed, precisely, as a hypothalamic glu-
cosensor serving to modulate metabolic and cognitive func-
tions in the neuroastroglial system. However, it is important
to note that there are numerous interactions between the
plasma membrane and intracellular glucosensors, which will
be briefly outlined in course of our discussion. At present, in
the world literature, known plasma membrane receptors that
serve as glucosensors are the second member of the glucose
transporter (GLUT2) and the third member of sodium/
glucose cotransporter, SGLT3.The heterodimer, T1R2+T1R3,
is a fairly newmember of the plasmamembrane glucosensors.

As earlier noted, numerous sweet molecules can activate
the T1R2+T1R3; however, because our discussion in this
section is directed to the neuroastroglial system,we shall limit
the ligand of sweet taste receptor to glucose molecule alone.
This is because glucose is the chief metabolic substrate for the
brain. The daily requirement of glucose for the brain of an
adult is about 120 g of the total amount of 160 g of glucose
needed daily for the whole organism [46, 48]. During brain
activation (as in mental activities), glucose uptake by brain
cells can be increased up to ∼90%. Our previous analysis also
showed that the contribution of blood glucose level necessary
to maintain the function of the brain is about 40% and may
increase to 90% or more during prolonged mental work [49–
51]. During hypoglycemia, brain function is greatly reduced,
but ketone bodies serve (especially during continuing and
prolonged fasting) to provide a significant part of the energy
needs of the brain [52, 53]. However, it should be noted that
ketone bodies are not able to maintain or restore the normal
function of the brain in the absence of glucose [46]. In our
previous analysis, decrease in glucose level was associated
with statistically significant decrease in brain functions [54].
The lowering of brain functions following decrease in blood
glucose level, accompanied by a corresponding decrease in
cerebral glucose level is reported byMcNay and Sherwin [55]
and reviewed by McNay and Cotero [56] and also docu-
mented elsewhere [57–59].

The mechanisms involved in the role of sweet taste sig-
naling [24, 60–63] in cognitive functions may largely involve
signaling through metabolic coupling; activity dependent
signaling; cross-signaling, initiated by downstream effectors;
and receptor cooperativity and associativity. These processes
may be mediated through paracrine signaling, activities of
extracellular ion sensors, and ion homeostasis, which in turn
may modulate the functions of the neuroastroglial system.

Ren et al. [24] found sweet taste receptors (T1R1,2,3 and
their heterodimers: T1R2/T1R3 and T1R1/T1R3) as well as
their corresponding G-protein genes in the neurons of the
nuclei paraventricularis and arcuatus of the hypothalamus,
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CA area and dentate gyrus of the hippocampus, habenula,
cortex, and intraventricular epithelial cells of the choroid
plexus. Interestingly, the highest level of taste-related G-
protein gene expression was found in the hypothalamus,
followed by cortex and hippocampus [24].The hypothalamus
has been long known to serve as a site of regulation of feeding,
central and peripheral metabolism, hormones secretion, and
functions [24]. Expression of these receptors is associated
with a physiological condition (fasting increases the amount
of T1R1 and T1R2 decrease as hypothalamic glucose leads to
an increase in the expression of T1R1, T1R2, which normalizes
when sweet molecules were administered). Moreover, these
brain areas identified to express taste receptor genes are
implicated in cognitive functioning [64–66]. It is possible
that receptor cooperativity or associativity with the sweet
taste receptor could as well affect signaling in other pathways
[67].

The chief signaling relationship between the activities of
plasma membrane glucose sensor (which is also linked to
intracellular energy sensors) and cognitive control systems
is made possible, majorly, through metabolic coupling in the
neuroastroglial system [61]. Importantly, metabolic coupling
could have profound effect on activity dependent signaling;
cross-signaling, initiated by downstream effectors; and recep-
tor cooperativity and associativity by majorly modulating
paracrine signaling, activities of extracellular ion sensors, and
ion homeostasis [18, 24, 67].

3.1. Signaling through Metabolic Coupling: AWindow of Inter-
action betweenCognition andMetabolic Functions. Theactiv-
ity of the neural plasma membrane glucosensor, T1R2+T1R3,
from the work of Ren et al. [24] is evident that the het-
erodimer largely contributes tomaintaining the activity of the
cell by controlling glucose transport.This is possibly achieved
by the associativity and/or cooperativity between the GLUT2
and T1R2+T1R3. How the T1R2+T1R3 receptor affects the
glucose transporters is not known, but it may be suggested
that the signaling mechanisms might involve downstream
effectors that subsequently modulate both the transport
activity and the expression of the GLUT2 sensor. In the gas-
trointestinal tract, for instance, T1R2+T1R3 receptor has been
shown to influence the activity and expression of GLUT2
and SGLT1, possibly through autoparacrine signaling [18].
Moreover, Margolskee et al. [18] reported that this receptor
heterodimer controls glucose absorption and metabolism.

Decrease in metabolic functions of the neurons results
in decrease in neuronal activity. Thus, collateral neuronal
and glial cell functions might also be affected. Shunts con-
trolled by metabolic coupling such as the GABA/glutamate-
glutamine cycle will also be affected since glucose serves as
precursor [68–72]. Several neurotransmitter systems impli-
cated in cognitive functioning are regulated by glucose or its
metabolites [73, 74]. Analysis of the literature indicates a sig-
nificant role of dopamine, glutamate, serotonin, cholinergic,
and noradrenergic systems in cognitive functioning [61, 75].
Glucose is required for the synthesis of neurotransmitters
such as serotonin, noradrenaline, and acetylcholine, which
can affect both local and distant neural and astroglial popu-
lation [61]. The neurotransmitters, ATP, d-serine, which may

be synthesized from glucose, affect long-term potentiation
(LTP), synaptic plasticity, information storage, and retrieval
[75, 76]. Substances released from the neuroastroglial system
can also initiate signaling in many pathways necessary for
memory/cognitive functions [75, 76].

The release of these molecules could modulate not only
cognitive functions but also different aspects of behavior,
including emotion [75–77]. The functional link between the
hypothalamus and brain areas of emotion is an indication
of the possible influence of hypothalamus on cognitive
functioning. Moreover, the hypothalamus itself is implicated
in cognitive functioning as disorders involving the hypothala-
mus evidently result in cognitive dysfunction [78–83] (briefly
discussed in the next section).

Downstream effects of T1R2+T1R3 might also involve
energy sensors. The discovery of the presence of functional
sweet taste receptors in the brain has thrownmore light to our
understanding of metabolic functioning involving glucose
regulation.Metabolic or energy sensors in the neuroastroglial
system include glucokinase, GLUT2 [84, 85], AMPK (AMP
activated protein kinase), CREB (cAMP related element
binding protein), mTOR (mammalian target of rapamycin),
sirtuins, and PASK (or PASKIN and PSK, a kinase protein)
[64, 86–90]. The study by Ren et al. [24] has shown that
the sweet taste receptor heterodimer T1R2+T1R3 might be
responsible for mediating the energy sensing activity of pre-
viously identified metabolic sensors. Although in Ren et al.
[24] study the activities of other metabolic sensors were not
put into consideration, knockout of sweet taste receptors may
have considerable impact on intracellular energy sensors in
the neuroastroglial network. However, it will be expected that
decrease in glucose entry into the cell caused by disorder in
sweet taste receptor signaling will actually mobilize intracel-
lular substrates to counterbalance the change. Notwithstand-
ing, this change will result in decrease in neural functions due
to lowering of glucose entry into the cell.

There could be a functional association between the iden-
tifiedmetabolic sensors and plasmamembrane glucosensors.
Recent study by Hurtado-Carneiro et al. [91] has shown
that PASK that functions as a nutrient and energy sensor in
hypothalamus is required for the normal functioning of other
metabolic sensors, including AMPK and mTOR/S6K1. This
functional relationship (or cross-talk) between metabolic
sensors is useful in maintaining not only metabolic functions
but also normal/adequate cognition. In this regard, previ-
ous data have consistently shown that AMPK, CREB, and
mTOR are involved in both glucosemetabolism andmemory
functions (reviewed in [61]) (both AMPK and CREB are
strongly involved in T1R2+T1R3 signaling). Recent work by
Hurtado-Carneiro et al. [92] indicates that the peptide GLP-
1 can attenuate the activity of AMPK and mTOR/S6 kinase
induced by fluctuations in glucose levels in hypothalamic
areas involved in feeding behaviour. The functional relation-
ship between some of these signaling pathways was analyzed
in a recent review [93]. Disorders involving the mTOR
significantly affect cognition and is associated with neuropsy-
chiatric symptoms, including intellectual disability, specific
neuropsychological deficits, autism, other behavioral disor-
ders, and epilepsy [94].
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Although, information is scanty, available data suggest
that other signaling pathways that link glucose metabolism
to cognitive functioning might include extracellular kinases
[95–97]. These identified pathways could activate LTP,
thereby enhancing memory formation or retrieval [98, 99]
and can also function through activity-dependent signaling
as well as activation of transcription factors [3, 11, 100].
Decrease in glucose is associated with deficits inmemory and
learning (possibly due to a decrease in LTP) [101, 102].

In the gastrointestinal tract, for instance, endocannabi-
noid receptors are reported to be associated with the fatty
acid receptor necessary for sweet taste perception [67]. In the
nervous system, the literature search in this present study did
not produce such result; it can, however, be proposed that
such associativity is possible. In this vein, it is demonstrated
that the effects of cannabinoids are associated with dys-
functions of rapamycin pathway and extracellular signal-
regulated kinases, suggesting a relationship between the sig-
naling pathways, and possibly receptor cooperativity or asso-
ciativity [103]. In Wang and Zhuo’s paper [104], it was noted
that stimulation of group I metabotropic glutamate receptors
initiated a wide variety of signaling pathways that regulate
gene expression at both the translational and transcriptional
levels and induce translation or transcription-dependent
synaptic plastic changes in neurons.Thiswide range of signal-
ing by metabotropic glutamate receptors can activate other
receptors and thus initiating the activity of numerous tran-
scription factors and gene expression.

Of important note is the downstream effect of neuroas-
troglial glucose metabolic disorder resulting in changes in
calcium ion concentration. The result of this is a disorder in
synapse-to-nucleus communication involving several kinases
(including the mitogen-activating protein kinase, MAPK;
CAMK), gene expression, and synaptic plasticity [105, 106].
These protein kinases are responsible for regulating the
activities of transcription factors including CREB, CCAAT
(cytosine-cytosine-adenosine-adenosine-thymidine)/enhan-
cer-binding protein (C/EBP), Early growth response protein
(Egr) also known as zinc finger protein 225 (Zif268) or
nerve growth factor-induced protein A (NGFI-A), activator
protein-1 (AP-1), nuclear factor 𝜅B (NF-𝜅B), c-Fos, and Elk-1,
c-Jun. These proteins (transcription factors and kinases)
are well implicated in metabolism and cognition [104–110].
LTP is dependent on the activities of protein kinases. Also,
nitric oxide, which is thought to be associated with glucose
metabolism [111, 112], also contributes to LTP by downstream
targets, stimulating guanylyl cyclase and cGMP-dependent
protein kinase, which acts in parallel with PKA to increase
phosphorylation of the transcription factor CREB [106].
Most notably, activity-dependent signaling of calcium is also
shown to play a pivotal role in neural and synaptic plasticity
and regulation of gene expression [106].

It has been proven again and again that memory for-
mation and retrieval involve short-term signaling associated
with activation of transcription factors controlling immediate
early genes (early response genes) and long-term signaling
to the nucleus for the formation of long-term memory [113–
117]. However, the fact that microtubules of cells might play a
pivotal role inmemory has only been explored recently. In the

work of Craddock et al. [118], a possible encoding of memory
in the microtubule lattices mediated by the phosphorylation
of type II CaMK was reported. Whether extended research
into mechanisms of memory coding in the microtubule
lattices will help scientists find the long-time searched neural
code for memory is yet unknown. In the work of Eric Kandel,
who shared the 2000 Nobel Prize in Physiology or Medicine
with Arvid Carlsson and Paul Greengard, best known for
his research on the physiological basis of memory storage in
neurons, documented in his Nobel Lecture, published in the
2001 issue of the “Bioscience Reports,” there are compelling
evidences for the role CAMK inmemory [113]. In page 597 of
Eric Kandel’s account of the mechanisms of memory storage,
CAMK was noted to play a role in LTP [113]. In Craddock
et al. report [118], activity dependent flux of postsynaptic cal-
cium activated the dodecameric holoenzyme containing two
hexagonal sets of 6 kinase domains, hexagonal CaMK type II.
One bit of information encoded equals one protein kinase
domain. Information conveyed through activity dependent
calcium waves are encoded by the phosphorylation as arrays
of binary “bits.” Six phosphorylated bits are equal to bytes.
Thus, thousands of bytes of information can be encoded in
one microtubule [118]. A number of studies have implicated
the role of microtubules [119–121] and CaMK signaling in
both normal cognitive functioning and diseases [122, 123].

Recent work suggests themechanism for the involvement
of microtubule network in the formation of memory [124].
Wang and Zhuo [104] recently showed that microtubule pro-
tein is regulated by activity dependent processes.Themecha-
nism of its regulation indicate that synaptic changes are asso-
ciated with activation of the corresponding gene (more pre-
cisely called immediate early gene) and gene expression. The
early responsegene c-fos is also involved in activity depen-
dent signaling and it is dependent on CREB activity [104].
Also, microtubule network is previously known to interact
with nuclear materials necessary for the formation of mem-
ory [125]. The turnover rate of microtubule also correlates
well with time needed for short-term and long-termmemory
formation. It is obvious that there are millions of microtubule
proteins to which protein kinase (e.g., CAMK) can interact
with; however, the approximate number is not known pre-
cisely as there are numerous disagreements in the literature
as to the number of microtubule proteins present in a given
neuron [126, 127].

3.2. The Relationship between Cognition and Hypothalamic
Metabolic Functions: The Search Continues. Cognition (from
Latin cognotio, to know, learn) is a higher brain function
and comprises attention, memory, judgement, reasoning,
problem solving, planning, decision-making, and language.
It is related to emotion and behavior. Cognition is a function
ofmultiple brain regions,majorly involving the cortical Brod-
mann areas, insula, anterior cingulate, thalamus, mediotem-
poral (including hippocampus), mediofrontal and prefrontal
cortices, basal ganglia, and cerebellum [64–66, 128–133]. The
hypothalamus plays a role in some aspect of cognition,mostly
emotion and behavior [134–136].Themammillary nuclei and
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medial nuclei of the posterior hypothalamus are involved in
some aspects of cognitive functioning. Medial part of the
tuberal hypothalamus (tuberal hypothalamus is at the level
of the tuber cinereum, which is usually divided into medial
and lateral parts) containing the arcuate nucleus is involved
in feeding and dopamine release. Dopamine can act locally
and at distant point away from the site of release to modulate
cognition [77].

How will disruption of sweet taste receptor signaling
affect cognitive functions? Hypothalamic dysfunction is
involved in epilepsy, a condition characterized by higher
brain function impairment, including cognitive dysfunction
[137]. In addition, the hormones and peptides secreted by
the hypothalamus are involved in cognition. The secretions
of the hypothalamus mediated by metabolic activities could
extend to other brain areas including the hippocampus and
cortex and are believed to modulate various behavioral
parameters: learning andmemory, aswell as neuroprotection,
reproduction, growth, and metabolism [138]. For instance,
investigation involving the growth hormone has been shown
to modulate synaptic plasticity, thereby altering cognition.
Growth hormone replacement therapy attenuates cognitive
impairment [139]. Apart from the growth hormone, other
hormones of the hypothalamus have been implicated in
cognitive functioning. Importantly these hormones of the
hypothalamopituitary axis are known to act on other brain
areas involved in cognitive functioning: hippocampus and
cerebral cortex [78–83]. Some of these hormones can mod-
ulate taste perception [140]. These hypothalamopituitary
hormones have been implicated in cognitive dysfunction,
including dementia. In progressive neurodegenerative dis-
eases involving cognitive impairment, as in Alzheimer’s
disease, recent evidences have pointed to the involvement of
metabolic disorders as the most reliable indicator in compar-
ison with the traditional neuropsychological tests [29, 141].
InAlzheimer’s disease, alterations in hypothalamic aminergic
cholinergic system is reported [141]. In Alzheimer’s disease,
dysfunction of the transport activity of glucose transporters
have been implicated in the pathogenesis of the disease, and
in metabolic disease, including diabetes (reviewed in Shah
et al. [142]). These data suggest that hypothalamic metabolic
alteration will affect cognitive functioning through multiple
mechanisms.

4. Conclusion

Based on the recent finding presented in this work, the
hypothalamic glucosensor, heterodimer sweet taste receptor,
could serve as a key controller of glucose absorption and
metabolism in the brain.This newly novel neural glucosensor
will provide further opportunities for translational research
aimed at identifying new therapeutic target agents to treat
certain related metabolic dysfunctions of central origin and
cognitive impairment, which almost in all cases coexist with
neuralmetabolic dysfunction. Research into the polymorphic
forms of the sweet taste receptors (T1R2 and T1R3), genetic
variations of 𝛼-gustducin and their relationship to sweet sen-
sitivity will provide useful information, including individual

differences in taste identification. Investigation of the cog-
nitive function implication of metabolic signaling functions
of key brain areas involved in metabolism and cognition
(hypothalamus, cortex, and hippocampus) and sweet taste
receptors signaling will likely provide further information
that might help in improved treatment options for cognitive
impairment or provide possible cues to prevention of such
conditions.

Future Direction

Since sweet taste receptor heterodimer, T1R2+T1R3, is a
novel glucosensor in the hypothalamus, further research in
unraveling the signaling mechanisms associated with this
receptor and other glucosensors in key brain areas is neces-
sary to further understanding the association between glu-
cosensors (including their relationship to metabolism) and
cognitive functioning. In line with our earlier model of
glucose memory facilitation [50, 61, 154], investigation into
themechanisms of neuroastroglialmetabolic cooperativity in
light of recent discoveries about sweet taste signaling is
without doubt necessary.
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