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Abstract

Deterioration of the white matter (WM) is viewed as the neural substrate of age differences in 

speed of information processing (reaction time, RT). However, the relationship between WM and 

RT components is rarely examined in healthy aging. We assessed the relationship between RT 

components derived from the Ratcliff diffusion model and micro-structural properties of normal-

appearing WM (NAWM) in 90 healthy adults (age 18 to 82 years). We replicated all major extant 

findings pertaining to age differences in RT components and WM: lower drift rate, greater 

response conservativeness, longer non-decision time, lower fractional anisotropy (FA),greater 

mean (MD), axial (AD) and radial (RD) diffusivity were associated with advanced age. Age 

differences in anterior regions of the cerebral WM exceeded those in posterior regions. However, 

the only relationship between RT components and WM was the positive association between DR 

in the body of the corpus callosum and non-decision time. Thus, in healthy adults, age differences 

in NAWM diffusion properties are not a major contributor to age differences in RT. Longitudinal 

studies with more precise and specific estimates of regional myelin content and evaluation of the 

contribution of age-related vascular risk factors are necessary to understand cerebral substrates of 

age-related cognitive slowing.
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1. Introduction

Advanced age is reliably associated with reduced speed of processing (Cerella, 1985; 

Salthouse, 1991), but the neural underpinnings of that association remain unclear. Drawing 

on the findings that link response slowing to diffuse axonal injury (e.g., Felmingham, 
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Baguley, & Green, 2004), many studies attempted to demonstrate the association between 

age-related differences in integrity of the cerebral white matter and age-related slowing (see 

Gunning-Dixon & Raz, 2000; Madden, Bennett, & Song, 2009a for reviews). To date, the 

overwhelming majority of studies that examined relationships between speed of processing 

and diffusion properties of white matter have used mean or median reaction time (RT) on a 

variety of cognitive and perceptual tasks as the main indicator of speed of processing. 

However, most do not take into account heterogeneity of RT that usually shows markedly 

non-Gaussian distribution, and has been long conceptualized as complex phenomena 

comprised of multiple components (Salthouse, 1981) In addition, procedures based on 

indices of central tendency, such as Donders’ subtractive method (Donders, 1969) and 

Sternberg’s additive-factor method (Sternberg, 1969) do not take into account RT 

distribution and assume no temporal overlap between stages - an assumption that is virtually 

impossible to sustain.

Many approaches have been proposed to address the heterogeneous nature of RT and 

quantify its components. Although ex-Gaussian function fits RT data well, its parameters do 

not reflect clearly interpretable mental process (Matzke & Wagenmakers, 2009). Notably, 

all traditional methods do not take into account speed-accuracy trade-offs, which is 

especially important in study of age-related differences because older adults tend to 

emphasize accuracy more than younger adults do (Salthouse, 1979). The mathematical 

model proposed by Ratcliff (1978) was designed to overcome these limitations. Ratcliff’s 

diffusion model successfully accounts for all aspects of RT data and decomposes them into 

meaningful mental processes: rate of information acquisition, response conservativeness and 

time spent on non-decision processes (Ratcliff & McKoon, 2008).

At the time of this writing, there is only one study of the associations between white matter 

properties and two of three RT components derived from the diffusion model: drift rate and 

non-decision time (Madden, Spaniol, et al., 2009b). That study has several limitations. First, 

the diffusion parameters were estimated with a simplified version of the diffusion model 

(EZ), which was designed only for exploratory purposes and did not provide precise 

parameter estimates (Ratcliff, 2008a). Second, only two relatively small extreme-age groups 

were compared, and age-related differences were not investigated across the adult life span. 

Third, that study evaluated only two RT components, drift rate and non-decision time, while 

the neuroanatomical substrates of response conservativeness remained unexamined. Finally, 

in assessing the associations of RT components with the white matter indices, the study did 

not separate white matter hyperintensities (WMH) from the normally appearing white matter 

and thus confounded the influence of these breaches on the diffusion parameters of white 

matter. Because WMH burden increases with age, is associated with age-related slowing 

(Gunning-Dixon & Raz, 2000), has substantially altered diffusion properties (Maillard et al., 

2013) and may account for a significant share of age-related differences in diffusion indices 

(Davis, Kragel, Madden, & Cabeza, 2012, Vernooij et al., 2008), controlling for the effects 

of WMH is essential for understanding the relationship between diffusion parameters of 

white matter and speed of processing.

To address these limitations, we investigated the relationship between age related 

differences in diffusion properties of the cerebral white matter and three RT components 
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derived from the Ratcliff diffusion model: the rate of information accumulation (drift rate), 

response conservativeness (boundary separation), and non-decision time by taking the 

following approach. First, we applied the full diffusion model to decompose RT into three 

components as specified in the full Ratcliff model. Second, we studied healthy adults 

spanning a wide age range. Third, we used the indices of white matter diffusion derived 

from diffusion tensor imaging (DTI) data restricted to normal appearing white matter after 

removing the WMH. Fourth, we used tract-based spatial statistics (TBSS, Smith et al., 

2006), to identify multiple white matter pathways: the superior longitudinal fasciculus, the 

uncinate fasciculus, the cingulum adjacent to cingulate gyrus portion, the genu, body, and 

splenium of the corpus callosum, and the anterior, and posterior limb of the internal capsule. 

Our selection of pathways was based on the extant literature. White matter integrity in 

anterior and superior regions contributed to perceptual speed (Bucur et al., 2008; Kennedy & 

Raz, 2009; Turken et al., 2008). DTI parameters of uncinate fasciculus were associated with 

performance on tasks assessing executive functioning in older adults (Davis et al., 2009), 

suggesting this tract might be involved in response conservativeness. Frontal-striatum 

network was implicated in cognitive control (Liston et al., 2006), and the latter had been 

shown to play a role in response conservativeness (Dutilh et al., 2012; Saunders & Jentzsch, 

2012). DTI parameters in the cingulum were associated with information processing speed 

(Sasson, Doniger, Pasternak, Tarrasch, & Assaf, 2012). FA in the posterior region was 

associated with sensory-motor responses (Sullivan et al., 2001). We also took care in 

selecting the skeleton locations that would be the least sensitive to multiple threats to 

validity of the TBSS analytic approach used in this study. Specifically, we avoided 

potentially relevant regions, such as fornix, because of its particular sensitivity to 

misregistration and noise (Smith et al., 2006; Bach et al, 2014). We modeled the 

relationships between RT parameters and white matter diffusion features in a structural 

equations modelling (SEM) path analysis framework, a multivariate approach that takes into 

consideration the mutual influence among the predictors and assessing the unique 

contribution of predictors to criteria. The extant studies indicate that anterior white matter 

regions and tracts evidence greater age-elated differences in comparison to posterior regions 

(the anterior-posterior gradient of aging hypothesis) (Head et al., 2004; Madden et al., 

2009a, and the connections between high-order association cortices are more relevant to 

speed of information processing than to motor speed (Kennedy & Raz, 2009; Kerchner et 

al., 2012; Madden et al., 2009a). We therefore expected that age-related differences in two 

decision components of RT (drift rate and response conservativeness) would correlate with 

diffusion properties of anterior rather than posterior white matter, and would be related to 

the indices of white matter organization in the association and commissural rather than 

projection fibers. In contrast, we hypothesized age-related differences in non-decision time 

to show stronger associations with white matter diffusion properties in posterior rather than 

anterior regions, and in projection rather than association or commissural fibers.

2. Method

2.1. Participants

Participants were healthy community volunteers from the Metro Detroit area who were 

enrolled in a longitudinal study of healthy aging. They were recruited through 
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advertisements in the local media and screened via a telephone interview and an extensive 

health questionnaire. Participants were ineligible if they reported history of cardiovascular 

disease, neurological or psychiatric conditions, head trauma with loss of consciousness for 

more than 5 min, treatment for drug and alcohol problems, or a habit of taking more than 

three alcoholic drinks per day. Persons with diagnosis of diabetes or thyroid dysfunction 

were also excluded from the study, as were those taking any anxiolytics, antidepressants or 

anti-seizure medication. None of the participants resided in a nursing home or an assisted-

living facility.

All participants had corrected visual acuity of 20/50 or better (Optec 2000 apparatus; Stereo 

Optical, Chicago, IL) (ICO, 1984) without color blindness, and hearing of 40 dB or better 

for frequencies of 500–4,000 Hz (MA27 audiometer; Maico, Eden Prairie, MN) (WHO, 

1991); all were native English speakers, with a minimum of a high school education (or a 

GED diploma), and were consistently right-handed as determined by Edinburgh Handedness 

Questionnaire (Oldfield, 1971) score of 75% and above. To screen for dementia and 

depression, we used the Mini-Mental State Examination (MMSE: Folstein, Folstein, & 

McHugh, 1975), with a cut-off of 26 (O’Connor et al., 1989) and depression questionnaire 

(CES-D; Radloff, 1977), with a cut-off of 15 (Burns, Lawlor, & Craig, 2002). The 

participants provided written informed consent in accord with the guidelines of Wayne State 

University Institutional Review Board. In addition, for this study, the participants were 

screened for history of hypertension and were excluded if they were taking anti-

hypertension medication. Participants who had no MRI data due to either being 

claustrophobic or having metallic implants were not included in this study.

Although the initial sample consisted of 100 participants, four participants had low rate of 

usable RT data identified by exponentially weighted moving average (EWMA) method (less 

than 90%) and the RT data of six participants did not fit the RT model. Thus, the total 

sample with complete data consisted of 90 healthy normotensive adults (90% of the original 

sample), 18 to 82 years of age. The excluded participants did not differ from the remaining 

sample on age (t = −1.30, p = .22), education (t = −.54, p = .60), sex ratio (χ2 = −.05, p = .

83), and ethnic origin (χ2 = −.15, p = .70) and thus were considered missing at random. 

Sample demographic information is presented in Table 1.

2.2. Reaction Time Task and Analysis

2.2.1. Reaction time task—RT data were collected from a two-choice letter 

discrimination task (Thapar, Ratcliff, & McKoon, 2003). Participants were seated in front of 

a 19-inch liquid crystal display (LCD) computer monitor in a quiet room. They were asked 

to sit comfortably and lean back in the chair. The height of the monitor was adjusted so that 

the midpoint of the monitor was at the subject’s eye level. The distance from the middle of 

the screen to the outer corner of participants’ eye was 60 cm. Participants were required to 

maintain their positions after the distance had been established. The responses were entered 

via a custom-built seven-button response box. The experimenter was present in the room 

throughout the testing to ensure compliance with the instructions and note participant 

behaviors that might have affected data validity.
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The letter discrimination task was administered in two sessions, of about 36 minutes each. 

The sessions consisted of six blocks (108 trials per block) that were preceded by two 

practice blocks and lasted approximately 4 minutes each. The participants were required to 

take brief breaks between blocks. The total number of trials for two sessions was 1296; 216 

trials per stimulus duration. The same stimuli, letter pairs P/R, O/Q, I/J, F/E, C/G, and V/W, 

were used on all trials.

In the task, two letters were displayed, one on the left and the other on the right edge of the 

screen. The letters remained on the screen for the duration of the block. In the middle of the 

screen, a white cross (font: courier new bold, size: 40) appeared for 500 ms, after which the 

target letter was displayed for one of the six durations (13, 26, 39, 52, 66, and 80 ms), 

followed by a mask. The task of participants was to identify the target letter and decide 

whether it was the same as the letter on the left or the letter on the right edge of the screen. 

Participants received a feedback from the screen when they responded too quickly or too 

slowly. Because the order of the letter pairs differed between two sessions, the order of the 

sessions was counterbalanced across participants.

2.2.2. RT - Diffusion model analysis—The two-choice RT data were analyzed with 

Diffusion Model Analysis Toolbox (DMAT, Vandekerckhove & Tuerlinckx, 2008), which 

estimates parameters by minimizing a negative multinomial loglikelihood function. Before 

fitting the diffusion model, RT data extreme values were excluded using the lower cutoff of 

200 ms and the upper cutoff of 1799 ms. In addition, a combination of EWMA and mixture 

model methods was applied to deal with the remaining outliers. Starting point was fixed in 

the middle between the two response boundaries. To assess whether the parameters of the 

diffusion model reflects relevant experimental manipulation (i.e., variation of stimulus 

duration), two different models were fitted to each participant’s data. The models differed in 

one parameter setting: v, the drift rate. Because v reflects the quality of information obtained 

from the stimulus, and was expected to be affected by the experimental manipulation 

(variation of stimulus duration) (Thapar et al., 2003; Voss et al., 2004), it was allowed to 

vary in one model. In another model, v was restricted and drift rates for all conditions were 

set to be equal. All other parameters were set to be invariant across experimental conditions 

in both models. The goodness-of-fit indices for two models were computed for each 

participant and for all of them, the v free model gave the significant better fit to the data (p = 

0). The preference of the v free model over the v restricted model was also suggested by 

reduction in AIC and BIC values for the v free model, except in one case, in which one 

index, BIC, showed a minute increase of .002%. This suggested that the diffusion model 

was sensitive to the experimental manipulation of RT data. Because an exceedingly high 

accuracy rate in easier conditions with longer durations of presentation affected the fit of the 

diffusion model, only the data from the first three (more difficult) conditions were 

considered for drift rate analyses.

2.3. MRI Data Acquisition and Processing

2.3.1. MRI protocol—Imaging was performed on a 3T MRI system (Siemens 

MAGNETOM Verio™, Erlangen, Germany) with a 12-channel radio frequency (RF) coil. 

The acquisition session included several sequences, of which only the diffusion tensor 
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imaging (DTI) sequence was used for this study. The DTI data were acquired in the axial 

plane with a single shot echo-planar imaging sequence, with the following parameters: 

repetition time (TR) 12000 ms, echo time (TE) 124 ms, 20 diffusion directions, 2 averages, 

50 contiguous slices, field of view (FOV) = 256×256 mm2, voxel size = 1.3×1.3×2 mm3, b 

= 1000 s/mm2, GRAPPA acceleration factor 2. The sequence also included two images 

without a diffusion gradient (b = 0). Acquisition duration was 9:02 min. In addition, T2- and 

T1-weighted sequences were acquired and all MR scans were examined for signs of space-

occupying lesions and all participants were free of pathological findings.

2.3.2..Image processing—Diffusion weighted images were analyzed using FMRIB’s 

Diffusion Toolbox (FDT) from the FMRIB Software Library (FSL; http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Motion artifacts and eddy current distortions were corrected 

by Eddy Current Correction tool in FDT, which aligns each diffusion-weighted image to the 

b0 image. The gradient orientations were rotated accordingly as well. The eddy current-

corrected 4D volumes were then divided into separate acquisitions which were subsequently 

averaged to produce a single 4D volume containing one b = 0 image and 20 gradient 

directions. After this step we proceeded to control the influence of WMH and CSF spaces 

using a method that combines previously published approaches (Davis et al., 2012; Sasson, 

Doniger, Pasternak, & Assaf, 2010). The first averaged image that did not have gradient 

applied (i.e., b = 0) was used to generate a binary brain mask with the Brain Extraction Tool 

(BET; Smith, 2002). A WMH-free brain mask was created with the following steps. First, 

FMRIB’s automated segmentation tool (FAST; Zhang, Brady, & Smith, 2001) was used to 

segment b0 image into four separate classes based on voxel intensity: CSF, WMH, gray and 

white matter. At the next step, fslmaths command was used to create a WMH-free brain 

mask by combining segmented gray and white matter images and binarizing the combined 

image. DTIFIT was used to fit a diffusion tensor model at each voxel included in the brain 

mask and WMH-free brain mask to generate the diffusion maps for whole and normal-

appearing white matter (NAWM).

Skeletonized fractional anisotropy (FA) data were generated following the TBSS processing 

pipeline (after Smith et al. 2006). First, individual FA image was non-linearly aligned to the 

FMRIB58_FA template. Next, transformed FA images were averaged and thinned to create 

a skeletonized mean FA image. The mean FA skeleton was thresholded at 0.2 to exclude 

voxels containing gray matter or CSF. Finally, the aligned FA image of each participant was 

projected onto the skeleton by filling each skeleton voxel with FA values from the nearest 

relevant tract center, resulting in a skeletonized FA image. Skeletonized diffusivity maps for 

mean (MD), axial (AD) and radial (RD) diffusivity were generated using spatial 

transformation parameters obtained in the initial FA analysis. Following these steps, selected 

skeletonized maps of all four DTI indices in whole white matter and normal-appearing white 

matter were generated. All skeletonized maps were further thresholded such that voxels with 

FA less than .2 or larger than 1.0 were not included to reduce the noise of DTI data.

White matter tracts were labeled according to ICBM-DTI-81 white-matter labels atlas 

(Mori, Wakana, Nagae-Poetscher, & van Zijl, 2005), which was generated by mapping DTI 

data of 81 normal individuals to a template image. Because the skeletonized DTI maps and 

the atlas were both in the same standard space, no additional registration step was required. 
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Fslmaths was used to create masks for individual white matter tracts relevant in this study. 

DTI parameters of each white matter tract, with and without WMH, were extracted for all 

participants by applying fslstats procedure. Due to limited number of slices, there was 

incomplete coverage of the anterior temporal lobe for most participants. Therefore, DTI 

indices from the uncinate fasciculus were eliminated from all the analysis.

2.4. Data Conditioning

To minimize rounding errors and scaling artifacts, the diffusivity values were multiplied by 

a factor of 1000. Before statistical analyses, all RT and MRI data were checked for outliers 

and violations of normality. If deviations from normality or significant outliers were 

identified, the data were log-transformed. If the log-transformation failed to reduce the 

skew, the data were winsorized instead. Specifically, logarithmic transformation was 

performed on DA of the left posterior limb of the internal capsule in normal appearing white 

matter. Winsorization was carried out on FA of the left and right anterior limb of the internal 

capsule, right superior longitudinal fasciculus, and the splenium of the corpus callosum in 

normal appearing white matter; MD of the genu of the corpus callosum in both normal 

appearing and whole white matter, and the left and right anterior limb of the internal capsule 

in whole white matter; DA of the left and right superior longitudinal fasciculus in normal 

appearing white matter, the left superior longitudinal fasciculus and the left and right 

anterior limb of the internal capsule in whole white matter; and DR of the genu of the corpus 

callosum in normal appearing white matter, and the left and right anterior limb of the 

internal capsule in whole white matter. After the described data conditioning, all variables 

were either normally distributed or not significantly skewed. To avoid scaling discrepancy, 

all variables were standardized before SEM analyses. To reduce the number of variables in 

the path models, standardized drift rates from the three conditions were averaged to yield a 

single composite score (v). DTI indices of white matter tracts from both hemispheres were 

also averaged. Because the extant literature does not report lateral differences in associations 

between the RT and DTI parameters, we had no reason to hypothesize such relationships 

and opted for reducing the number of tested paths and reducing the risk for spurious findings 

by aggregating the measurements over the two hemispheres.

2.5. Statistical Analyses

2.5.1. General linear models—To investigate age-relate differences on RT components 

and DTI indices, we used separate general linear models (GLM). In these models, each RT 

component or DTI indices served as dependent variables, while age and sex were 

independent variables. The possible interactions between age and sex were also included in 

the model, and removed if the interaction terms turned to be nonsignificant (p > .10). For 

DTI indices analysis, white matter tracts served as the within-subject (repeated measure) 

factor.

2.5.2 Path analysis—We used SEM-based path analyses to assess whether age 

differences in RT components were associated with individual differences in white matter 

diffusion properties. SEM was performed using maximum likelihood estimation in Mplus 7 

(Muthén & Muthén, 2012). Model fit is considered good if χ2 is nonsignificant or χ2/df < 2, 
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both comparative fit index (CFI) and Tucker–Lewis Index (TLI) are more than .95, and root 

mean square error of approximation (RMSEA) is less than .06 (Hu & Bentler, 1999).

Separate models were fitted for each DTI index because each reflects different property of 

the white matter. Only the white matter tracts and RT components that showed significant 

association with age from previous analyses were included in the SEM step. Significance of 

the quadratic component of association with age was formally tested for DTI indices that 

displayed apparent nonlinearity on scatter plots. Each set of analyses started with a 

hypothesis-based target model. Then, constrained or unconstrained models were generated 

by eliminating statistically non-significant paths and adding paths based on modification 

indices generated from previous analyses and theoretical perspective. Finally, the goodness 

of fit among the hierarchically nested models was compared and a most parsimonious and 

best fit model was obtained.

Because age-related differences in diffusion properties of white matter might be influenced 

by individual differences in cognition (Chiang et al., 2011), we evaluated two alternative 

models: a reversed-path and a correlational. The model specification was the same as each 

final model except for reversing the path direction between measures of RT components and 

DTI indices of white matter tracts in the reverse model and replacement of directional paths 

with correlations in the correlation model.

3. Results

3.1. Age-related Differences in Drift Rate, Response Conservativeness, and Non-Decision 
Time

The descriptive statistics and zero-order correlations of age with accuracy and response time 

across six conditions are presented in Table 2. Older age was associated with decreased 

response accuracy and increased response time for all conditions. Table 3 contains the 

descriptive information of three RT components.

The GLM analyses revealed significant main effects of age on all three components of RT. 

Advanced age was associated with slower drift rate [F (1, 87) = 34.31, p < .001], greater 

response conservativeness [F (1, 87) = 5.32, p < .05], and slower non-decision time [F (1, 

87) = 31.57, p < .001] (see Figure 1). Neither the main effect of sex nor age × sex interaction 

was significant.

3.2. Diffusion indices in the normal-appearing white matter: Age and sex differences

Zero-order correlations between age and DTI indices across white matter tracts are 

presented in Table 4. Scatter plots of age differences in DTI-derived indices of white matter 

diffusion properties in each examined region are presented in Figures 2-5 below.

3.2.1. Fractional anisotropy (FA)—The GLM analysis revealed no age differences 

across the white matter tracts: main effect of age F (1, 86) = 1.35, ns. However, there was a 

significant tract × age interaction, F (6, 516) = 14.12, p < .001, indicating that the magnitude 

of age differences varied across the tracts. Neither the main effect of sex nor age × sex 

interaction was significant. Decomposition of the interaction revealed a negative age-FA 
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association in the genu, the anterior limb of the internal capsule, and the cingulum; but 

neither the body, nor splenium of the corpus callosum, nor the superior longitudinal 

fasciculus. There was a positive age-FA association in the posterior limb of the internal 

capsule (see Table 5).

3.2.2. Mean diffusivity (MD)—There was a significant main effect of age, F (1, 86) = 

11.37, p < .01; advanced age was associated with higher MD across the examined white 

matter tracts. However, a significant sex × age interaction, F (1, 86) = 4.58, p < .05, 

indicated that the overall effect of age on MD was significant in men: F (1, 28) = 10.07, p 

< .01, but not in women: F (1, 58) = 1.13, p = .29. A significant tract × age interaction, F (6, 

516) = 3.08, p < .01, indicated that the magnitude of age differences varied across the white 

matter tracts. Decomposition of this interaction showed age-related increase in MD in the 

genu, and body of the corpus callosum; the posterior limb of the internal capsule; and the 

cingulum; but not in the splenium of the corpus callosum, the anterior limb of the internal 

capsule, or the superior longitudinal fasciculus (see Table 5). There was a significant tract × 

sex interaction, F (6, 516) = 3.12, p < .01, indicating that MD was higher for women than 

for men in the cingulum, F (1, 86) = 5.90, p < .05, and the internal capsule: anterior, F (1, 

86) = 9.69, p < .01; posterior, F (1, 86) = 7.44, p < .01.

3.2.3. Axial diffusivity (DA)—The GLM analysis revealed a significant main effect of 

age, F (6, 516) = 5.52, p < .01: advanced age was associated with increased DA across white 

matter tracts. There was a significant main effect of sex, F (1, 86) = 3.99, p < .05, with 

higher DA in women compared to men. A significant tract × age interaction, F (6, 516) = 

4.19, p < .001, indicated that the effect of age differed across white matter tracts. Simple 

effects decomposition of this interaction revealed a positive association with age in the genu, 

and body of the corpus callosum; the posterior limb of the internal capsule; but not the 

splenium of the corpus callosum; the anterior limb of the internal capsule, the superior 

longitudinal fasciculus; or the cingulum (see Table 5). A significant tract × sex interaction, F 

(6, 516) = 2.68, p < .05, was due to DA being higher in the internal capsule of women 

compared to men: in the anterior limb, F (1, 86) = 7.82, p < .01, and the posterior limb, F (1, 

86) = 8.71, p < .01.

3.2.4. Radial diffusivity (DR)—We observed a significant main effect of age, F (1, 86) = 

12.74, p < .01, showing that advanced age was associated with higher DR across the white 

matter tracts. A significant tract × age interaction, F (6, 516) = 2.88, p < .01, indicated 

differential associations with age across white matter tracts. Advanced age was associated 

with higher DR in the genu, body of the corpus callosum; the anterior limb of the internal 

capsule; the superior longitudinal fasciculus; and the cingulum; but not in the splenium of 

the corpus callosum, and the posterior limb of the internal capsule (see Table 5). There was 

a significant tract × sex interaction, F (6, 516) = 3.42, p < .01, as DR was higher in women 

than in men in the anterior, F (1, 86) = 8.67, p < .01, and the posterior limb of the internal 

capsule, F (1, 86) = 4.60, p < .05, and the cingulum, F (1, 86) = 5.88, p < .05. A sex × age 

interaction was marginally significant (p = .052), and simple effects analyses showed that 

the age differences in DR were significant only in men: F (1, 28) = 10.69, p < .01, but not in 

women: F (1, 58) = 1.85, p = .18.
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3.3. Comparison of age-DTI correlations in normal-appearing and whole white matter

Correlations between age and DTI indices in normal-appearing and whole white matter were 

compared using Steiger’s Z (Table 6). For FA, relatively stronger negative age association 

was observed in the body and splenium of the corpus callosum, the anterior limb of the 

internal capsule in whole than in normal appearing white matter. For DR, age correlation 

was stronger in the genu of the corpus callosum in whole than in normal appearing white 

matter. For FA, MD, DA, and DR, positive correlation with age was greater in the posterior 

limb of the internal capsule in normal appearing than in whole white matter. Overall, age-

related differences in DTI indices from whole white matter are greater than in those that 

were estimated in normal-appearing white matter regions (see Table 6).

3.4. Age, DTI Indices and RT Components

Three subsets of the path models investigated the contribution of individual differences in 

FA, DA, and DR to age differences in RT components. Because MD is an index that 

includes both DA and DR, we did not include it in the models. To account for multiple 

comparisons (i.e. testing three models for FA, DA, and DR), the nominal α = .05 was 

adjusted to Bonferroni α’ = .0166.

The final model for FA fitted the data well (see Table 7 for the goodness-of-fit indices). The 

analysis revealed no significant directional path between FA and any RT components. There 

was a negative association between FA in the cingulum and response conservativeness (p = .

01), and a positive association between FA in the posterior limb of the internal capsule and 

non-decision time (p = .036). Advanced age was associated with decreased FA in the genu 

of the corpus callosum, the cingulum, and the anterior limb of the internal capsule, but 

increased FA in the posterior limb of the internal capsule. Older age was associated with 

lower drift rate, higher response conservativeness and longer non-decision time. See Figure 

6 for the final model. However, the association between age and FAs in the anterior limb of 

the internal capsule (p = .027) and cingulum (p = .019), between FA in the posterior limb of 

the internal capsule and non-decision time became nonsignificant after Bonferroni 

correction, although the association between age and response conservativeness (p = .016) 

remained significant.

As shown in Table 7, the final model for DA fitted the data well. There were linear and 

quadratic associations between age and DA in the genu and the body of the corpus callosum 

and in the posterior limb of the internal capsule. The directional path from DA in the genu of 

the corpus callosum to drift rate bordered on significance (p = .05) (Figure 6). Both the 

reversed model and correlational model fitted the data equally well (see Table 7). The 

directional path from drift rate to DA in the genu of the corpus callosum and the correlation 

between these two variables were marginally significant (p = .07). Thus, none of these paths 

between DA in the genu of the corpus callosum and drift rate was significant after 

Bonferroni correction.

The final model for DR showed good fit according to multiple goodness-of-fit indices (see 

Table 7). Advanced age was lineally associated with increased DR in the genu of the corpus 

callosum. There were quadratic associations between age and DR in the body of the corpus 
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callosum, the anterior limb of the internal capsule, and the cingulum. There were positive 

directional paths from DR in the genu of the corpus callosum to drift rate (p = .026), and 

from DR in the body of the corpus callosum to non-decision time (p = .031). Because the 

model with reversing directional paths simultaneously did not converge, two reversed-

direction models (the v reversed model and the ter reversed model) with changing one 

directional path each time were generated. They fitted the data well (see table 7). There were 

significant reversed directional paths between DR in the genu of the corpus callosum and 

drift rate (p = .022), and between DR in the body of the corpus callosum and non-decision 

time (p < .01). The well fitted correlational model (see table 7) revealed that the correlations 

between DR in the genu of the corpus callosum and drift rate (p = .02), and between DR in 

the body of the corpus callosum and non-decision time (p < .01) were significant (Figure 6). 

However, the association between DR in the genu of the corpus callosum and drift rate 

became nonsignificant after Bonferroni correction. After the correction, higher DR in the 

body of the corpus callosum was associated with longer non-decision time.

To examine whether the results were affected by exclusion of WMH, we repeated the 

analyses on the whole white matter. We found that smaller FA in the body of the corpus 

callosum was related to increased non-decision time (p = .013), whereas FA in the cingulum 

was negatively related to response conservativeness (p = .032). Greater DR in the genu of 

the corpus callosum was associated with higher drift rate (p = .037) and higher DR in the 

cingulum was related to increased response conservativeness (p = .037). Higher DR in the 

body of the corpus callosum was related to increased non-decision time (p = .010). There 

was no significant association between DA of any white matter tracts and RT components. 

However, the only significant association after Bonferroni corrections was that between 

smaller FA and higher DR in the body of the corpus callosum with prolonged non-decision 

time.

4. Discussion

4.1. Age-related Differences in RT components and DTI indices

The results revealed that advanced age was associated with lower drift rate, longer non-

decision time and greater response conservativeness. These findings extend the observations 

reported by Ratcliff and colleagues in extreme age groups to an adult life-span sample 

(Ratcliff, 2008b; Ratcliff, Thapar, & McKoon, 2001, 2006, 2007; Thapar, Ratcliff, & 

McKoon, 2003).

As commonly reported in the literature (e.g., Sullivan, Rohlfing, & Pfefferbaum, 2010; 

Madden et al., 2009a), lower FA and greater MD, DA and DR were associated with 

advanced age in several examined white matter tracts in normal-appearing white matter. The 

observed anterior-posterior gradient of negative age differences in FA and positive age 

differences in diffusivity measures of several white matter regions were also consistent with 

previous findings (Head et al., 2004; Sullivan & Pfefferbaum, 2006; Sullivan et al., 2010). 

Although age-related increase in DR has been interpreted as a sign of myelin loss (Madden 

et al., 2009a), current evidence indicates that such differences are not specific to myelination 

unless the direction of the principle eigenvector is aligned with the corresponding tissue 
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architecture, which is not the case in areas with high density of crossing fibers or in voxels 

with partial volume (Wheeler-Kingshott & Cercignani, 2009).

We observed stronger associations between age and DTI indices in men than in women in 

several white matter tracts. This finding is in contradiction to an earlier report suggesting no 

sex difference in age-DTI associations (Inano, Takao, Hayashi, Abe, & Ohtomo, 2011). The 

reason for the discrepancy is unclear. Lack of screening for vascular diseases in that study 

may account for the discrepancy with our findings obtained in healthy adult. In an age-

heterogeneous sample, vascular risk and sex may interact in modifying the association 

between age and DTI indices. Therefore, the effect of sex might be masked across people 

with different vascular risk factors. Indeed, Kennedy and Raz (2009) found a significant age 

× sex × hypertension interaction, with no significant age-MD association for hypertensive 

men, but highly significant association for normotensives, whereas the correlations between 

age and MD was somewhat higher in hypertensive women compared to their normotensive 

counterparts. This finding underscores the importance to take into consideration of vascular 

risk factor as a modifier of brain aging. In this study, we did not have a sufficient number of 

participants with hypertension to merit a separate analysis and therefore, restricted our 

sample to normotensive individuals.

Notably, all the reported age differences in DTI-derived indices were observed in the 

normal-appearing white matter. As the analyses of the whole white matter (with WMH 

included) revealed stronger associations with age, it is apparent that studies that fail to 

account for WMH contribution to DTI indices over-estimate age-related differences. 

Nonetheless, even after exclusion of the WMH, white matter of healthy older adults still 

presents evidence of reduced organization and degraded microstructure. Interestingly, in 

contrast to other examined regions, positive correlations with age were observed for DTI-

derived indices in the posterior limb of the internal capsule, and these correlations were 

greater in the in normal appearing rather than in whole white matter. Although the 

underlying mechanism for this observation is unclear, iron accumulation in this area might 

play a role, as the presence of non-heme iron leads to increase anisotropy by introducing 

local field inhomogeneity (Pal, 2011). Moreover, increased iron content has been found in 

normal-appearing white matter and at the edges of WMH (Bagnato et al., 2011; Paling et al., 

2012). In the future studies, this phenomenon may be assessed by combining iron imaging 

with assessment of WM organization and regional myelin content.

4.2. Association between age-related DTI Indices and RT Components

The results revealed no significant associations between normal WM FA or DA and any RT 

parameters. The only significant finding that survived Bonferroni correction was the 

associations between higher DR in the body of the corpus callosum and longer non-decision 

time. In the whole WM (including WMH), the same association was observed in addition to 

the association between lower FA and prolonged non-decision time. Reduced FA and 

increased DR are consistent with reduced organization of the white matter and non-decision 

time, which is a non-cognitive component of the RT. Thus, the only finding in this sample 

was response slowing associated with limited, local reduction in white-matter micro-

organization. This limited finding suggests that although in healthy adults, non-cognitive 
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speed may be associated with age-related impairments in diffusion properties of normal 

WM, such associations are limited to selected locations and selected indices of WM 

microstructure.

This study has several limitations. First, its cross-sectional design precludes gauging true 

age-related change, and most notably, individual differences in change (Lindenberger et al., 

2011). Indeed, magnitude of the age-related decline in RT had been shown to be 

underestimated in cross-sectional designs (Schaie, 1989). In addition, cross-sectional 

designs may lack sensitivity to brain-cognition associations revealed by longitudinal studies 

(e.g., Raz, Lindenberger, Rodrigue et al., 2005) and have questionable validity in 

establishing mediators of age-related change (Maxwell & Cole, 2007). Second, all 

participants in this study were normotensive, healthy adults. Although this sample selection 

is for the purpose of reducing some confounding factors associated with hypertension and 

antihypertensive medication, it may conceal the brain-cognition association modified by 

vascular risk factors. Vascular risk factors may matter more than age for WMH progression 

and cortical shrinkage in posterior brain regions and accelerated declines in cognitive 

performance, especially in the domain of executive functions, are associated with elevated 

vascular risk (Raz, Rodrigue, & Acker, 2003; Raz, Rodrigue, Kennedy, & Acker, 2007). 

Third, some important pathways such as the uncinate fasciculus and fornix were not 

included in the analysis because of their particular sensitivity to multiple influences such as 

head orientation, noise level, image registration and voxel size (Bach et al., 2014). Thus, the 

role played by the integrity of these white matter tracts in RT parameters remains to be 

explored. Fourth, the b0 images used for identifying WMH and CSF-filled regions are, in 

spite of being true T2 images, less than ideal for the task. Use of FLAIR images co-

registered with the DTI may be a better alternative. Such approach, however, will involve 

co-registration step that in its own right may introduce error and bias. Finally, diffusion 

tensor approach, as implemented in this study and in almost all previous studies, cannot 

characterize white matter voxels containing crossing fibers and allows no clear 

neurobiological interpretation of the findings (Jones, Knösche, & Turner, 2013).

In summary, in a sample of healthy adults, we found little evidence of association between 

diffusion properties of the normal appearing white matter and reaction time parameters. 

After conservative control for chance findings was applied, only in the body of the corpus 

callosum was higher DR reliably associated with longer non-decision time. Notably, this 

limited result was obtained while we replicated all the major findings in the extant literature 

on RT components and age differences in DTI indices: associations of advanced age with 

lower drift rate, greater response conservativeness and longer non-decision time as well as 

smaller FA and larger MD in most examined white matter tracts. Moreover, we confirmed 

anterior-posterior gradient in age-related decrease in FA and increase in MD, DA, and DR 

of the corpus callosum and in FA and DR of the internal capsule. Thus, the observed lack of 

associations between DTI-based indices of normal-appearing white matter and RT 

components cannot be explained by an atypical sample or measurement methods. 

Understanding cerebral substrates of age-related cognitive slowing will require longitudinal 

studies, accounting for vascular risk factors, and employing a wider variety of approaches to 

gauging brain myelin content (e.g., De Santis et al, 2014).
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HIGHLIGHTS

• We examined associations of white matter and reaction time components in 

healthy adults.

• White matter hyperintensities that could affect DTI parameters was excluded.

• We replicated age differences in RT and WM and extended them to adult 

lifespan.

• However, DTI indices of normal WM integrity were largely unrelated to RT 

components.
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Figure 1. 
Association between age and RT components according to the Diffusion Model (Ratcliff, 

1978): Drift rate, Response conservativeness, and Non-decision time.
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Figure 2. 
Associations between age and fractional anisotropy (FA) in each of the examined normal 

appearing white matter regions.
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Figure 3. 
Association between age and mean diffusivity (MD) in each of the examined normal 

appearing white matter regions.
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Figure 4. 
Association between age and axial diffusivity (DA) in each of the examined normal 

appearing white matter regions.
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Figure 5. 
Association between age and radial diffusivity (DR) in each of the examined normal 

appearing white matter regions.
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Figure 6. 
Path models for the associations between regional DTI indices, FA, DA, and DR in normal-

appearing white matter, and three RT components: drift rate (v), response conservativeness 

(a) and non-decision time (ter). Abbreviated labels of the white matter regions: CCg: the 

genu of the corpus callosum; ALIC: the anterior limb of the internal capsule; Cing: the 

cingulum; PLIC: the posterior limb of the internal capsule; CCb: the body of the corpus 

callosum.
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Table 1

Sample descriptors: A statistical summary.

Total Women Men t p

N 90 60 30

Age (years) 47.39±16.87 47.6±16.41 46.97±18.04 0.16 0.87

Education (years) 15.28±2.05 15.22±2.28 15.4±1.52 −0.45 0.65

MMSE 28.69±1.07 28.8±0.99 28.47±1.20 1.32 0.19

Systolic BP (mm Hg) 120.74±13.91 120.02±13.34 122.19±15.13 −0.67 0.51

Diastolic BP (mm Hg) 76.08±8.08 75.14±7.08 77.96±9.63 −1.43 0.16
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Table 2

Descriptive statistics for accuracy and reaction time measures across task conditions.

Accuracy Reaction time

Condition Mean SD CV rage Mean SD CV rage

D 13 0.67 0.10 0.14 −.59 526.28 81.05 0.15 0.65

D 26 0.78 0.12 0.15 −.55 505.77 77.41 0.15 0.62

D 39 0.88 0.08 0.10 −.53 479.33 69.59 0.15 0.65

D 52 0.92 0.07 0.08 −.53 465.00 66.26 0.14 0.64

D 66 0.94 0.06 0.06 −.47 456.62 64.67 0.14 0.62

D 80 0.94 0.06 0.06 −.41 461.95 63.57 0.14 0.63

Mean 0.85 0.07 0.09 −.57 479.02 67.58 0.14 0.65

Note. D: duration of stimulus presentation; CV: coefficient of variation; rage: correlation between age and a model parameter mean; all significant 
at p < .05.
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Table 3

Descriptive statistics for three RT components.

Drift Rate Response
Conservativeness

Non-decision time

Condition Mean SD CV Mean SD CV Mean SD CV

D 13 0.17 0.11 0.66

D 26 0.34 0.19 0.56

D 39 0.60 0.30 0.51

D 52 0.83 0.44 0.54 0.087 0.019 0.21 0.39 0.054 0.14

D 66 1.01 0.64 0.63

D 80 0.99 0.65 0.66

Note. D: duration of stimulus presentation; CV: coefficient of variation.
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Table 4

Correlations between age and DTI indices across white matter tracts.

ROI rage_FA rage_MD rage_DA rage_DR

CCg −0.44*** 0.41*** 0.25* 0.43***

CCb 0.11 0.38*** 0.36** 0.36**

CCs 0.02 0.15 0.09 0.17

ALIC −0.21* 0.12 −0.07 0.25*

PLIC 0.38*** 0.26* 0.30** 0.18

SLF −0.19 0.09 0.01 0.16

Cing −0.24* 0.21* 0.06 0.30**

Note. CCg: the genu of the corpus callosum; CCb: the body of the corpus callosum; CCs: the splenium of the corpus callosum; ALIC: the anterior 
limb of the internal capsule; PLIC: the posterior limb of the internal capsule; SLF: the superior longitudinal fasciculus; Cing: the cingulum.

*
p <0.05

**
p <0.01

***
p <0.001.
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Table 5

GLM results of age difference in DTI indices in normal-appearing white matter.

ROI
FA MD DA DR

F (df) P F (df) P F (df) P F(df) P

CCg 23.76 (1, 86) *** 18.27(1, 86) *** 5.48 (1, 86) * 20.77 (1, 86) ***

CCb 1.24 (1, 86) ns 18.82 (1, 86) *** 15.84 (1, 86) *** 16.78 (1, 86) ***

CCs 0.14 (1, 86) ns 2.56 (1, 86) ns 1.02 (1, 86) ns 2.85 (1, 86) ns

ALIC 5.30 (1, 86) * 1.72 (1, 86) ns 0.39 (1, 86) ns 7.76 (1, 86) **

PLIC 16.12 (1, 86) *** 8.30 (1, 86) ** 12.33 (1, 86) ** 3.48 (1, 86) ns

SLF 3.23 (1, 86) ns 2.52 (1, 86) ns 0.51 (1, 86) ns 4.92 (1, 86) *

Cing 7.05 (1, 86) * * 6.83 (1, 86) * 0.81 (1, 86) ns 13.09 (1, 86) ***

Note. CCg: the genu of the corpus callosum; CCb: the body of the corpus callosum; CCs: the splenium of the corpus callosum; ALIC: the anterior 
limb of the internal capsule; PLIC: the posterior limb of the internal capsule; SLF: the superior longitudinal fasciculus; Cing: the cingulum.

*
p <0.05

**
p <0.01

***
p <0.001.
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Table 6

Comparison of correlations between age with DA and DR across white matter tracts in normal-appearing and 

whole white matter.

ROI rageN rageW Steiger’s Z p

CCg −0.44 −0.45 .23 ns

CCb 0.11 −0.31 3.04 <.01

CCs 0.02 −0.17 2.01 <.05

FA AIC −0.21 −0.33 2.48 <.05

PIC 0.38 −0.06 4.90 <.01

SLF −0.19 −0.21 .33 ns

Cing −0.24 −0.28 1.93 ns

CCg 0.41 0.47 −1.28 ns

CCb 0.38 0.33 .46 ns

CCs 0.15 0.04 1.31 ns

MD AIC 0.12 0.12 0 ns

PIC 0.26 −0.18 4.37 <.01

SLF 0.09 0.24 −1.42 ns

Cing 0.21 0.20 .39 ns

CCg 0.25 0.33 −1.53 ns

CCb 0.36 0.15 1.54 ns

CCs 0.09 −0.02 1.15 ns

DA AIC −0.07 −0.03 −.53 ns

PIC 0.30 −0.27 4.50 <.01

SLF 0.01 0.16 −1.24 ns

Cing 0.06 0.05 .47 ns

CCg 0.43 0.49 −2.0 <.05

CCb 0.36 0.36 0 ns

CCs 0.17 0.10 1.41 ns

AIC 0.25 0.25 0 ns

DR PIC 0.18 −0.07 4.00 <.01

SLF 0.16 0.26 −1.24 ns

Cing 0.30 0.29 .49 ns

Note. CCg: the genu of the corpus callosum; CCb: the body of the corpus callosum; CCs: the splenium of the corpus callosum; ALIC: the anterior 
limb of the internal capsule; PLIC: the posterior limb of the internal capsule; SLF: the superior longitudinal fasciculus; Cing: cingulum; Significant 
linear age correlations are bolded; rageN: association with age in normal-appearing white matter; rageW :association with age in whole white 

matter.
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Table 7

Goodness-of-fit indices for path models.

Models χ 2 df χ2/df p CFI TLI RMSEA

FA The final model 20.83 21 0.99 .47 1.00 1.00 .00

The final model 13.53 15 0.90 .56 1.00 1.01 .00

DA The reversed model 14.09 15 0.94 .52 1.00 1.01 .00

The correlational model 14.09 15 0.94 .52 1.00 1.01 .00

The final model 20.23 20 1.01 .44 1.00 1.00 .01

DR

The v reversed model 19.87 20 0.99 .47 1.00 1.00 .00

The ter reversed model 17.94 20 0.90 .59 1.00 1.01 .00

The correlational model 16.47 20 0.82 .69 1.00 1.02 .00

Notes: CFI: Comparative Fit Index; TLI: Tucker–Lewis Index; and RMSEA: Root mean square error of approximation; v: drift rate; ter: non-
decision time.
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