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ABSTRACT: Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with 

aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a 

reciprocal relationship. This relationship progresses with organismal age, follows the history of cell 

proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in 

an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms. We 

summarize our knowledge of these mechanisms, outline the most important unanswered questions and 

suggest directions for future research. 
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The relationship between mechanisms underlying aging 

and cancer evolves with the chronological age of an 

organism and, thus, reflects the proliferation history of 

cells and the chronology of their senescence program [1-

8]. 

In young and adult organisms, cell-autonomous 

mechanisms that reduce the extent of cellular stress, 

damage and dysfunction are aimed at eliminating these 

common aetiologies of aging and cancer; as such, these 

mechanisms not only delay the aging process but also 

suppress tumor formation [1, 2, 8-10]. Because of a short 

proliferative history of cells in young and adult organisms, 

the biological clocks of cellular senescence operating in 

stem and progenitor cells do not limit their proliferation 

[11-16]. This enables an efficient mobilization of stem 

cells from their supportive niches to proliferate (thereby 

forming progenitor cells) and differentiate and, 

ultimately, to repair and regenerate renewable tissues by 

replacing their stressed, damaged or dysfunctional cells; 

these cells are still mitotically active and therefore at risk 

of accumulating potentially oncogenic lesions [13-19]. 

Such efficient and tightly regulated mobilization, 

proliferation and differentiation of stem and progenitor 

cells in young and adult organisms constitute a cell-

nonautonomous mechanism that simultaneously delays 

aging and suppresses tumor formation [15, 16, 20, 21]. 

Cell-intrinsic stresses that are coupled to cell 

division, along with lasting cell-extrinsic stresses that are 

unrelated to replicative cell history, amass with the 

chronological age of an organism. In old organisms, the 

excessive accumulation of such stresses commits stem 

and progenitor somatic cells as well as mitotically active 

cells within renewable tissues to a senescence program 

that is initiated by cell cycle arrest [3, 4, 7, 8, 14, 22-26]. 

The resulting proliferative decline of these cells provides 

a cell-autonomous mechanism for tumor suppression at a 

premalignant stage by preventing the proliferation of 

excessively stressed or damaged cells that harbor 

potentially oncogenic lesions and are, therefore, at risk for 

malignant transformation [3, 4, 7, 8, 13, 22, 25, 27]. 

However, the cell cycle arrest at an early stage of the 

senescence program in stem/progenitor somatic cells and 
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the resulting decline in their proliferation and 

mobilization to renewable and differentiated tissues not 

only suppresses cancer but also operates as a cell-

nonautonomous pro-aging mechanism by compromising 

tissue repair and regeneration, and thereby impairing 

tissue homeostasis [2, 3, 7, 8, 11, 12, 22]. 

The complexity of the interplay between 

mechanisms underlying aging and cancer is further 

underscored by the findings implying that in old 

organisms: (1) paracrine activities of the senescent non-

cancerous cells in a renewable tissue enable their 

interactions with mitotically active non-cancerous cells 

(in the same tissue or in other tissues) as well as with 

premalignant and tumor cells (in the same tissue or within 

the tumor microenvironment); and (2) these numerous 

interactions exhibit pleiotropic effects on aging and 

cancer, either beneficial or deleterious for the health of the 

organism [3-5, 7, 26, 28-30]. In fact, the cell cycle arrest 

at an early stage of the senescence program in 

stem/progenitor somatic cells and in division-competent 

cells within renewable tissues is followed by stepwise 

changes in chromatin organization and gene expression - 

which in turn alter secretion pattern of interleukins, 

inflammatory cytokines, chemokines, growth factors, 

insoluble protein components of the extracellular matrix, 

extracellular proteases, as well as such non-protein 

soluble compounds as reactive oxygen species (ROS), 

nitric oxide and prostaglandin E2 [4, 5, 7, 19, 28-33]. Over 

time, cells at an advanced stage of the senescence program 

progress through several consecutive steps of developing 

a senescence-associated secretory phenotype (SASP) also 

called senescence-messaging secretome (SMS) [5, 7, 28, 

31, 32]. Paracrine activities of various SASP components 

affect distant non-cancerous, premalignant and tumor 

cells through cell-nonautonomous mechanisms that 

underlie such diverse effects as: (1) tissue repair and 

regeneration; (2) wound healing; (3) cell senescence-

based suppression of tumor growth; (4) disruption of 

structure and function of normal tissues and the resulting 

acceleration of age-related degenerative diseases; (5) low-

level chronic inflammation; (6) immune clearance of non-

cancerous, premalignant and tumor cells; (7) excessive 

proliferation of division-competent non-cancerous, 

premalignant and malignant cells; (8) enhanced cell 

migration and tissue invasion; (9) tissue-specific changes 

in cell differentiation; and (10) promotion of tumor 

progression [3-5, 7, 22, 26, 28-30, 34-36]. 

Recent studies provided another evidence of the 

complex interplay between mechanisms underlying aging 

and cancer by demonstrating that in old organisms ROS 

secreted by epithelial cancer cells activate aerobic 
glycolysis and autophagic degradation in associated non-

cancerous fibroblasts within the tumor microenvironment 

- thereby causing their “accelerated aging” and resulting 

conversion to cancer-associated fibroblasts (CAFs) [37-

43]. By producing and then secreting growth-promoting 

nutrients, CAFs fuel oxidative mitochondrial metabolism 

in adjacent cancer cells – thereby promoting their 

proliferation to and ultimately facilitating tumor 

progression [37-43]. 

In sum, it seems that in old organisms aging and 

cancer may have common or differing causes and 

coalescent or divergent mechanisms. Such dualistic 

relationship between aging and cancer in old organisms is 

due to: (1) the antagonistically pleiotropic effects and 

complex temporal organization of the cellular senescence 

program executed in excessively stressed or damaged 

non-cancerous cells; and (2) the ability of cancer cells to 

accelerate aging of the senescent non-cancerous cells 

within the tumor microenvironment, thus extracting from 

these non-cancerous cells certain growth-promoting 

nutrients that fuel tumor progression.    

In this review, we discuss the intricate interplay 

between aging and cancer as a balance between coalescent 

and divergent mechanisms underlying them. We focus on 

the current knowledge of how this delicate balance is: (1) 

impacted by organismal age; (2) influenced by the 

proliferative history of cells; (3) affected by the temporal 

organization of the cellular senescence process; and (4) 

impinged on by the antagonistically pleiotropic effects of 

senescent cells on aging- and cancer-related processes. 

 

In young and adult organisms, cell-autonomous 

mechanisms that eliminate aetiologies of aging also 

suppress tumor formation 

 

The emergence and accumulation of stressed, damaged 

and dysfunctional macromolecules and organelles in 

mitotically active cells within renewable issues of young 

and adult organisms are known to have both the pro-aging 

and pro-cancer potentials [1-8]. Therefore, cell-

autonomous mechanisms that in young and adult 

organisms eliminate these common to aging and cancer 

aetiologies are expected to decelerate both the aging 

process and tumor formation [1-3, 5, 6, 8-10, 13, 44-46]. 

Because in young and adult organisms aging and cancer 

are likely to have common aetiologies and coalescent cell-

autonomous mechanisms, it is conceivable that in these 

organisms: (1) genetic interventions that accelerate the 

build-up of stress, damage and dysfunction in mitotically 

active cells by targeting some of such mechanisms may 

exhibit both pro-aging and pro-cancer effects; and (2) 

genetic, pharmacological and/or dietary interventions that 

decelerate the accumulation of stress, damage and 

dysfunction in mitotically active cells by affecting some 
of such mechanisms may elicit both anti-aging and anti-

cancer effects [1-3, 6, 10, 13, 44-46].  
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A body of evidence in support of the common 

aetiologies and coalescent cell-autonomous mechanisms 

for aging and cancer in young and adult organisms has 

been extensively reviewed over the last few years [5-8, 

44-53]. In brief, the following three lines of evidence 

support this commonly accepted concept on the 

relationship between aging and cancer in mitotically 

active cells within renewable issues of such organisms.  

First, all cellular processes that in young and adult 

organisms affect the common to aging and cancer 

aetiologies are orchestrated by an intricate signaling 

network; the network integrates several signaling 

pathways and is centered at the mammalian (or 

mechanistic) target of rapamycin complex 1 (mTORC1) 

[1, 2, 13, 44, 45, 48-55]. These signaling pathways 

regulate both cellular aging and tumorigenesis. They 

include: (1) the phosphatidylinositol-3-kinase/ 

phosphatase and tensin homolog/Akt/mTOR (PI3K/ 

PTEN/Akt/mTOR) pathway; (2) the rat sarcoma/rapidly 

accelerated fibrosarcoma/mitogen-activated protein 

kinase-extracellular-signal-regulated kinase/extracellular 

-signal-regulated kinase/mTOR (Ras/Raf/MEK/ERK/ 

mTOR) pathway; and (3) the liver kinase B1/5' adenosine 

monophosphate-activated protein kinase/ mTOR 

(LKB1/AMPK/mTOR) pathway [1, 2, 9, 13, 44-46, 48-

52, 54, 55]. By coordinating information flow along these 

convergent and multiply branched signaling pathways, 

the network orchestrates such common to aging and 

cancer cellular processes as ribosome biogenesis and 

protein synthesis in the cytosol, glycolysis and pentose 

phosphate pathway, lipid and nucleotide metabolism, 

mitochondrial tricarboxylic acid cycle and respiration, 

mitochondrial ROS formation and decomposition, 

biogenesis of mitochondria and lysosomes, autophagy, 

cytoskeletal organization, stress response, and apoptosis 

[8, 44, 45, 48-52, 56-76].     

Second, some protein components and downstream 

targets of the signaling network orchestrating cellular 

processes that in young and adult organisms affect the 

common to aging and cancer aetiologies have been shown 

to accelerate cellular aging and function as oncogenes. 

These protein components and downstream targets 

include PI3K, Ras, Raf, Akt, Ras homolog enriched in 

brain (Rheb), the eukaryotic translation initiation factor 

4E (eIF4E), the hypoxia-inducible factor 1-α (HIF1-α), 

mitochondrial succinate dehydrogenase subunits SDHB, 

SDHC and SDHD, the mitochondrial succinate 

dehydrogenase assembly factor 2 (SDHAF2), and 

mitochondrial fumarate hydratase FH [46, 48-50, 59, 71, 

72]. In contrast, other protein components and 

downstream targets of this signaling network have been 
shown to decelerate cellular aging and to act as tumor 

suppressors; they include PTEN, LKB1, the tuberous 

sclerosis proteins 1 and 2 (TSC1 and TSC2), the Von 

Hippel–Lindau tumor suppressor protein VHL, Ras 

inhibitors NF1 and NF2, and mitochondrial isocitrate 

dehydrogenases IDH1 and IDH2 [46, 48-50, 59, 71, 72]. 

Third, certain pharmacological interventions, a 

caloric restriction (CR) diet and some dietary restriction 

(DR) regimens exhibit both anti-aging and anti-cancer 

effects by specifically altering information flow along the 

PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK/mTOR 

and/or LKB1/AMPK/mTOR signaling pathways as well 

as by modulating some of the downstream targets of these 

pathways. As it has been mentioned above in this section, 

the PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ ERK/mTOR 

and LKB1/AMPK/mTOR pathways are integrated into a 

signaling network orchestrating cellular processes that in 

young and adult organisms affect the common to aging 

and cancer aetiologies. The cell-autonomous mechanisms 

that underlie both anti-aging and anti-cancer effects of 

such pharmacological interventions, CR and DR have 

been comprehensively discussed elsewhere [9, 44-46, 48-

50, 62-69, 71-85].   

 

In old organisms, multiple mechanisms underlying a 

multistep cellular senescence program impose 

antagonistically pleiotropic effects on aging and 

cancer  
 

In response to excessive intracellular and extracellular 

stresses, mitotically active stem/progenitor somatic cells 

and division-competent cells within renewable tissues 

enter a senescence program that is initiated by an 

irreversible cell cycle arrest [3, 4, 7, 8, 24, 28, 32, 86]. 

Some senescence-inducing stresses are coupled to cell 

division; because these stresses reflect the replicative 

history of division-competent cells, they function as 

biological clocks counting the finite number of cell 

divisions progressing with the chronological age of an 

organism [4, 7, 12-14, 22, 87-91]. Other stresses 

triggering cellular senescence do not relate directly to the 

replicative age of cells, and thus may not operate as 

“replicometers” or “mitotic clocks” set to count the 

progression of cell divisions with organismal 

chronological age [4, 7, 22, 25, 90]. The various stresses 

triggering cellular senescence generate certain 

intracellular signals modulating a distinct set of 

senescence-inducing signaling pathways [1, 3, 5, 7, 12, 

22, 86]. These pathways are integrated into circuits that 

orchestrate a cellular senescence program progressing 

through several spatially and temporally distinct steps [1, 

3, 5, 22, 86, 92-96]. Multiple mechanisms underlying the 

spatiotemporal organization of this program impose 

antagonistically pleiotropic effects on aging and cancer, 
as outlined in this section. 
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Triggers, sensors, signaling pathways and circuits of the 

cellular senescence program 

 

A replicative mode of cellular senescence can be triggered 

by the following two kinds of intrinsic stresses that are 

coupled to cell division: (1) the gradual loss of telomeric 

DNA elements at S phases of successive mitotic cell 

divisions leading to telomeric dysfunction and causing a 

form of cellular senescence known as telomere-initiated 

senescence; and (2) the steady rise in the expression of the 

INK4a/ARF locus leading to a progressing with the 

proliferative history of cells accumulation of the 

p16INK4a and p14ARF tumor suppressor proteins [1, 11-

13, 22, 86-89, 91]. Some stresses can trigger a mode of 

cellular senescence known as premature or stress-induced 

senescence; these stresses include: (1) an accumulation of 

unrepaired damage to chromosomal DNA and the 

resulting genomic damage at non-telomeric sites; (2) 

chromatin remodeling resulting in heterochromatin foci 

formation and large-scale chromatin condensation; (3) 

oncogene overexpression/ activation or tumor suppressor 

gene inactivation, all causing a so-called oncogene-

induced form of cellular senescence; (4) an enhanced 

expression of cell proliferation activators that create 

robust mitogenic signals; (5) an excessive proliferation of 

dysfunctional mitochondria, which results in ROS 

accumulation and oxidative stress; (6) autophagy 

induction; and (7) changes in expression patterns of 

numerous microRNAs [3, 4, 7, 12, 22, 23, 86, 97-116]. 

Because these stresses are not coupled to cell division 

(and thus do not relate directly to the replicative age of 

cells, sometimes being called cell-extrinsic stresses), they 

are unlikely to function as molecular chronometers that 

count the number of successive mitotic cell divisions 

progressing with organismal chronological age [4, 12, 22, 

86, 90]. 

When the extent of cellular stress, damage and 

dysfunction inflicted by a combined action of various 

triggers of replicative and premature senescence reaches 

a threshold level, mitotically active cells respond by 

activating a multistep senescence program that is initiated 

by an irreversible cell cycle arrest [3, 4, 7, 22, 24, 28, 86]. 

The cell cycle arrest and the ensuing downstream events 

of the cellular senescence program are orchestrated by 

complex circuits integrating several signaling pathways 

and networks, including: (1) the p14ARF/p53 and 

p16INK4a/pRB tumor suppressor pathways, two master 

regulator pathways of senescence that are activated by 

various cell-intrinsic and cell-extrinsic stresses in a 

parallel- (in human fibroblasts) or linear (in mouse 

fibroblasts) fashion; (2) the Ras/Raf/MEK/ERK/mTOR 
oncogene signaling pathway; (3) the 

PI3K/PTEN/Akt/mTOR nutrient-sensing signaling 

pathway; (4) the Wnt/HIRA/ASF1a/UBN1 chromatin 

remodeling pathway; and (5) the C/EBPβ- and NFκB-

governed senescence secretome transcriptional network 

[3, 4, 5, 12-14, 22, 33, 44, 45, 86, 117-138]. These 

signaling pathways: (1) transmit signals generated by 

sensor and effector proteins in response to individual 

senescence triggers (cell-intrinsic or cell-extrinsic) or to 

their combinations; (2) are linked via a series of 

connections; (3) are integrated into circuits by the 

p14ARF/p53 and p16INK4a/pRB master regulator 

pathways of senescence; (4) govern the spatiotemporal 

organization of the multistep cellular senescence 

program; and (5) elicit various hallmark features of the 

senescent phenotype [3, 5, 12, 13, 22, 44, 86, 124]. A 

detailed description of the signaling circuitry 

characteristic of the cellular senescence program is 

beyond the scope of this review; the recent significant 

progress in this area has been comprehensively 

summarized elsewhere [3, 5, 12, 22, 44, 86, 124]. 

 

The complexity and spatiotemporal organization of the 

cellular senescence program 

 

When mitotically active cells respond to excessive 

intracellular and extracellular stresses in culture or in vivo 

by entering a state of senescence, they undergo various 

morphological and functional changes to acquire a 

number of features (Tables 1 and 2). Some of these 

features are often observed not only in different types of 

cultured cells exposed to various triggers of either 

replicative or premature (stress-induced) mode of cellular 

senescence, but also in senescent cells derived from 

several organismal tissues. These features therefore are 

likely to serve as hallmarks of a state of cellular 

senescence and to be used as diagnostic biomarkers of 

cells entered such a state in different tissues. A body of 

evidence supports the view that these 

hallmarks/biomarkers of senescent cells may include: (1) 

cell enlargement and acquisition of a flat or spindle-like 

shape [5, 22, 139, 140]; (2) cell cycle arrest (which is an 

irreversible process in vivo, but in culture can be reversed 

by certain genetic manipulations) [5, 7, 12, 97-99, 139, 

141, 142]; (3) increased size and number of lysosomes, 

many of which are non-functional due to accumulation of 

lipofuscin-like indigestible molecular aggregates [140, 

143-148]; (4) an elevated activity of senescence-

associated β-galactosidase (SA β-Gal) detectable at pH 6 

[140, 147, 149-151]; (5) an excessive proliferation of 

mitochondria that are elongated, interconnected to form 

an extensive network, aggregated, depolarized, 

dysfunctional, impaired in ATP synthesis, and produce 

excessive quantities of ROS [140, 147, 152-161]; (6) a 
permanent establishment of DNA damage nuclear foci 

that are marked with a set of the DNA damage response 

(DDR) proteins and known as DNA segments with 
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chromatin alterations reinforcing senescence (DNA-

SCARS), DNA double-strands breaks (DSBs), 

senescence-associated  

DNA-damage foci (SDF), and telomere dysfunction-

induced foci (TIF) [4, 12, 22, 25, 111, 140, 162-168]; (7) 

a formation of promyelocytic leukemia nuclear bodies 

(PML NBs) - also known as PML oncogenic domains 

(PODs) - that concentrate numerous DNA-binding 

proteins initiating heterochromatin establishment [103, 

124, 169-171]; (8) a PML NBs-instigated formation of 

senescence-associated heterochromatic foci (SAHF) that 

concentrate a set of heterochromatin-associated proteins 

[4, 12, 172-177]; and 9) specific changes in cell 

transcriptome and the resulting stepwise development of 

a complex secretion pattern known as SASP and also 

called SMS [4, 11, 22, 28, 31, 32, 165] (Table 1). 

Importantly, none of the above features considered as 

probable hallmarks/biomarkers of senescent cells has 

been found to be common for all types cells entered a state 

of senescence in culture or in vivo. Therefore, only the 

simultaneous assessment of many of these features can 

identify cells entered such a state. Furthermore, it is 

conceivable that some of the features outlined in Table 2 

can be elicited only in response to a particular trigger of a 

certain mode of cellular senescence and/or can be seen 

only in senescent cells confined to a specific tissue. 
 

 

Table 1. Features of senescent cells that can serve as hallmarks of a state of cellular senescence and/or can be used as 

diagnostic biomarkers of senescent cells existing in organismal tissues 

 

 

Affected 

aspect of cell 

morphology 

and function 

 

Feature of senescent cells 

Observed 
Can serve as 

a hallmark/ 

diagnostic 

biomarker 

of senescent 

cells 

References 

in vitro* in vivo** 

Cell size and 

shape 
Cell enlargement and acquisition of a flat or spindle-like shape    22, 139, 140 

Cell cycle 
Cell cycle arrest - which is an essentially irreversible in vivo, but 

in culture can be reversed by certain genetic manipulations 
   

12, 97-99, 139,141, 

142 

Lysosomes 

Increased size and number of lysosomes    140, 143, 145, 146 

Many lysosomes become non-functional due to accumulation of 

lipofuscin-like indigestible molecular aggregates 
   140, 144, 146 

Senescence-

associated β-

galactosidase 

(SA β-Gal) 

Elevated activity of SA β-Gal detectable at pH 6 - likely due to a 
senescence-associated increase in the level of lysosomal β-Gal 

protein, which exhibits the highest activity at pH 4, but if becomes 

abundant can also be detected at suboptimal pH 6 

   140, 147, 149-151 

Mitochondria 

Excessive proliferation of mitochondria that are elongated, highly 
interconnected to form an extensive network, and aggregated 

   140, 152, 154, 157 

Depolarization of the mitochondrial inner membrane, 

mitochondrial dysfunction, reduced ATP synthesis in 
mitochondria, and accumulation of ROS (that are produced mostly 

in mitochondria) 

   140, 153, 157-161 

DNA damage 

foci 

Permanent establishment of nuclear foci marked with a set of the 
DNA damage response (DDR) proteins; these stable foci are 

known as DNA segments with chromatin alterations reinforcing 

senescence (DNA-SCARS), DNA double-strands breaks (DSBs), 
senescence-associated DNA-damage foci (SDF) and telomere 

dysfunction-induced foci (TIF) 

   
4, 12, 22, 25, 111, 

140, 162-168 

Nuclear 

bodies 

Formation of promyelocytic leukemia nuclear bodies (PML NBs) 

also known as PML oncogenic domains (PODs); these sub-nuclear 
organelles concentrate numerous DNA-binding proteins that 

initiate heterochromatin establishment 

   103, 124, 169-171 

Heterochrom

atic DNA foci 

PML NBs-instigated formation of senescence-associated 

heterochromatic foci (SAHF); these foci are enriched in 

methylated Lys 9 of histone H3 (a heterochromatin marker) and 

concentrate a set of heterochromatin-associated proteins 

   4, 12, 172-177 

SASP/SMS 

Specific changes in pattern of gene expression at transcriptional 
level - which result in secretion of a distinct set of interleukins, 

inflammatory cytokines, chemokines, growth factors, insoluble 

protein components of the extracellular matrix, extracellular 
proteases, as well as such non-protein soluble compounds as ROS, 

nitric oxide and prostaglandin E2 

   
4, 11, 22, 28, 31, 32, 

165 

*Observed in cells entered a state of senescence in culture. ** Observed in senescent cells recovered from organismal tissues. 
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Table 2. Features of senescent cells that may or may not serve as hallmarks of a state of cellular senescence and may or may 

not be used as diagnostic biomarkers of senescent cells existing in organismal tissues 

 
 

Affected aspect 

of cell 

morphology and 

function 

 

Feature of senescent cells 
Observed 

Can serve as a 

hallmark/ 

diagnostic 

biomarker of 

senescent cells  

References 

in vitro* in vivo** 

Cell 

morphology 

Cell multi-nucleation and extensive vacuolization 
 ? ? 

22, 263 

Cell motility 

and adhesion 

Reduced cell motility; enhanced focal adhesion of cells to the 
extracellular matrix 

 ? ? 
140, 264, 
265 

Cell-cell contact Reduced efficacy of cell-cell contacts    ? ? 86, 140 

Glycogen Accumulation of glycogen granules, inactivating phosphorylation of the 

glycogen synthesis inhibitor GSK3, and activating dephosphorylation of 
glycogen synthase 

  ? 

140, 143, 

266, 267 

Cytoskeleton Reduced cellular level of actin; nuclear accumulation of G-actin, jointly 

with an active phosphorylated form of the actin depolymerizing factor 
cofilin    

  ? 

140, 268-

270 

Elevated cellular level of the intermediate filament protein vimentin; 

elongation, condensation and linearization of the intermediate filaments 

containing vimentin      

  ? 

140, 271-

273 

Increased number of microtubule organizing center, which nucleates 

individual microtubules  
 ? ? 

140, 274 

Lysosomes Enhanced expression of numerous genes encoding lysosomal enzymes 
 ? ? 

140, 143, 

147, 148 

Mitochondria Reduced efficacy of mitochondrial fission and the resulting shift of the 

balance between mitochondrial fission and fusion towards fusion 
 ? ? 

140, 147, 

155, 156 

Autophagy Reduced efficacy of chaperone-mediated autophagy and non-selective 

macroautophagy, including mitophagy  ? ? 

114, 115, 

125, 275-
279 

Nucleus Aberrant shape of the nucleus; reduced levels of the lamin A-associated 

protein LAP2 and several other nuclear proteins    
  ? 

140, 166, 

280, 281 

Chromosomes  Chromosomal instability exhibited as polyploidy or aneuploidy 
  ? 

263, 282-
288 

Senescence-

associated 

microRNAs 

(SA-miRNAs) 

Expression of numerous SA-miRNAs is altered (either elevated or 

reduced) in cultured cells undergoing senescence caused by cell 
exposure to various triggers of either replicative or premature (stress-

induced) mode of cellular senescence; many of these SA-miRNAs play 

essential roles in regulating senescence of cultured cells by targeting the 
signaling circuitry characteristic of the cellular senescence program; at 

least one of these SA-miRNAs, miR-22, can induce cellular senescence 

in vivo   

 ? ? 

112, 113, 

289-296 

Apoptosis Resistance to apoptotic cell death elicited by certain pro-apoptotic 

stimuli  
 ? ? 

12, 196-202 

* Observed in cells entered a state of senescence in culture.** Observed in senescent cells recovered from organismal tissues. 

 

Recent findings strongly suggest that the numerous 

events characteristic of a state of cellular senescence 

(Tables 1 and 2) are organized into a multistep cellular 

senescence program. As outlined below in the section, the 

advancement of this program through spatially, 

temporally and mechanistically separable steps is 

orchestrated by complex circuits integrating several 
signaling pathways and networks (Figure 1).  

In response to excessive intracellular and 

extracellular stresses elicited by various senescence 

triggers, the p14ARF/p53 and p16INK4a/pRB tumor 

suppressor pathways alter transcription of genes encoding 

several key inhibitors and activators of cell cycle 

progression through the G1/S checkpoint – thereby 

establishing and maintaining a senescence-associated 

irreversible cell cycle arrest in the G1 phase (Figure 1) [7, 

12, 97-99, 142]. Among the genes whose transcription is 
activated by these two master regulator pathways of 

cellular senescence is a gene for mitochondrial manganese 

superoxide dismutase (Mn-SOD). The activation of Mn-
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SOD expression significantly elevates mitochondrial 

production of hydrogen peroxide, a form of ROS that 

elicits a caspase-3 (Csp-3)-dependent activation of the 

protein kinase C-δ isozyme (PKC-δ). By establishing a 

positive feedback loop to sustain ROS/PKC-δ signaling, 

PKC-δ irreversibly blocks cytokinesis (Figure 1) [14, 124, 

178-180]. Noteworthy, some genetic manipulations and 

senescence triggers in culture can cause a senescence-

associated irreversible S, G2 or G2/M cell cycle arrest [12, 

101, 181-183]. 

The p16INK4a/pRB tumor suppressor pathway also 

responds to various senescence triggers by modulating 

Rac1 and Cdc25. These two members of the Rho family 

of small GTPases then alter cytoskeleton dynamics and a 

pattern of gene transcription to orchestrate senescence-

associated changes in cell size, shape, morphology, 

motility and adhesion (Figure 1) [124, 184-190]. 

Moreover, a significant enlargement of cells entering a 

state of senescence is caused by the AMPK/TOR 

signaling pathway, which promotes ribosome 

biogenesisand protein translation in the cytosol under the 

conditions of a senescence-associated irreversible cell 

cycle arrest (Figure 1) [9, 24, 80, 140, 191-195]. 

 

 

 

 

 
 

Figure 1. The numerous events characteristic of a state of cellular senescence are organized into a multistep cellular 

senescence program. The advancement of this program through spatially, temporally and mechanistically separable steps is 

orchestrated by complex circuits integrating several signaling pathways and networks. For additional details, see text. 

Abbreviations: ASF1a/HIRA, anti-silencing function 1a/Histone Repressor A; ATM/CHK2, the DNA damage response kinases 

ataxia telangiectasia mutated/checkpoint kinase 2; Bcl-2 (B-cell lymphoma 2), an anti-apoptotic protein; Cdc25, a member of 

the Rho family of small GTPases; C/EBPβ, a transcriptional factor; CREB, cAMP responsive element binding protein; Csp-3, 

caspase-3; HMGA, High Mobility Group A proteins; HP1γ, Heterochromatin Protein 1 γ; H3, histone H3; IL-1α, an α isoform 

of the multifunctional cytokine IL-1; IL-1αR, a juxtaposed receptor of IL-1α; IRAK1, a protein kinase; miR, microRNA; Mn-

SOD, manganese superoxide dismutase; mTORC1, mammalian (or mechanistic) target of rapamycin complex 1; NFκB, a 

transcriptional factor; PKC-δ, a δ isozyme of the protein kinase C; PML, promyelocytic leukemia; PP2A, protein phosphatase 

2A; Rac1, a member of the Rho family of small GTPases; ROS, reactive oxygen species; SASP, a senescence-associated 

secretory phenotype; SAHF, senescence-associated heterochromatic foci; SMS, senescence-messaging secretome. 
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Cells that entered a state of senescence in culture are 

resistant to apoptotic death elicited by certain pro-

apoptotic stimuli [12, 124, 196-202]. The resistance of 

these cells to apoptosis is due in part to elevated 

expression of a gene encoding the anti-apoptotic Bcl-2 

protein [124, 198, 203-207]. Transcription of this gene is 

activated by a phosphorylated form of the cAMP 

responsive element binding protein (CREB). Several 

senescence triggers increase the level of phosphorylated 

CREB by causing inactivation of the protein phosphatase 

PP2A (which dephosphorylates it) - thereby promoting 

transcription of the Bcl-2 gene known to be stimulated by 

phosphorylated CREB (Figure 1) [124, 196, 207, 208]. 

Furthermore, the resistance of senescent cells to apoptosis 

can also be caused by the demonstrated ability of certain 

senescence triggers to repress transcription of a gene for 

the executioner caspases-3, perhaps by activating a yet-to-

be-identified transcriptional repressor protein (Figure 1) 

[12, 201]. Of note, the preferential recruitment of p53 to 

the promoters of certain cell-cycle arrest genes in cultured 

cells becoming senescent can weaken its ability to activate 

transcription of such pro-apoptotic genes as TNFRSF10b, 

TNFRSF6 and PUMA - thus also contributing to the 

resistance of senescent cells to apoptosis [12, 209]. 

 
Figure 2. Pleiotropic effects of a multistep cellular senescence program on aging and cancer. Multiple mechanisms underlying 

the advancement of the cellular senescence program through temporally and spatially separable steps impose antagonistically 

pleiotropic effects on aging and cancer. For additional details, see text. Abbreviations: CXCR-2/IL-8RB, a receptor of the pro-

inflammatory cytokine IL-8; IGFBP-7, an insulin-like growth factor binding protein type 7; IGFBP-7, PAI-1, a plasminogen activator 

inhibitor type 1; SASP, a senescence-associated secretory phenotype; SMS, senescence-messaging secretome. 
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Formation of SAHF and the resulting global 

chromatin reorganization in cells entered a state of 

senescence is a multistep process [3, 174, 175, 177, 211]. 

It is initiated by chromosome condensation, which is 

driven by: (1) a pRB-orchestrated alteration of the cell-

cycle gene expression profile; (2) a replacement of histone 

H1 by HMGA (High Mobility Group A) proteins during 

an early step of chromatin condensation; and (3) a 

governed by the ASF1a/HIRA (anti-silencing function 

1a/Histone Repressor A) protein complex generation of 

nucleosome-dense heterochromatin (Figure 1) [3, 172-

177, 210, 212-214]. The ASF1a/HIRA complex is 

established after GSK3β (Glycogen Synthase Kinase 3 β) 

phosphorylates HIRA in the PML NBs; the activity of this 

histone chaperone is under negative control of the Wnt 

signaling pathway [3, 177, 215]. The associated with the 

condensed chromatin pool of histone H3 is then 

methylated to create binding sites for HP1γ 

(Heterochromatin Protein 1 γ; which is phosphorylated in 

the PML NBs) and the histone variant macroH2A, thereby 

finalizing the process of SAHF formation (Figure 1) [3, 

173-175, 177, 210]. 

The cell cycle arrest and stepwise epigenomic 

changes at early stages of the senescence program are 

followed by the establishment of a specific pattern of gene 

expression that results in secretion of numerous proteins 

and non-protein soluble compounds (Figure 1). Over 

time, senescent cells progress through a multistep process 

of developing a complex secretion pattern known as 

SASP and also called SMS (Table 1) [4, 11, 22, 28, 31, 

32, 165].  An initial step in this process involves a 

transcriptional activation of genes encoding at least two 

early-response SASP/SMS proteins, specifically α and β 

isoforms of the multifunctional cytokine IL-1 (Figure 1). 

A cascade of the DNA damage response kinases 

ATM/CHK2 (ataxia telangiectasia mutated/checkpoint 

kinase 2) as well as a governed by yet-to-be-identified 

proteins chromatin remodeling activate transcription of 

these genes, whereas the p14ARF/p53 tumor suppressor 

pathway represses it [3, 26, 28, 31, 112, 165, 172, 175, 

210, 216]. A cell surface-bound pool of the IL-1α isoform 

then binds to its juxtaposed receptor IL-1αR, which in turn 

activates the downstream protein kinase IRAK1 to 

stimulate the transcriptional factors NFκB and C/EBPβ [4, 

22, 26, 30, 112, 120, 123, 216-218]. These two factors 

activate transcription of genes encoding numerous late-

response SASP/SMS proteins (including the pro-

inflammatory cytokines IL-6 and IL-8 and their protein 

receptors, other pro-inflammatory cytokines and 

chemokines, growth factors, insoluble protein 

components of the extracellular matrix, and extracellular 
proteases) as well as the SA-miRNAs miR-146a and miR-

146b (Figure 1) [4, 22, 28, 32, 112, 120, 123]. The 

spatiotemporal organization of SASP/SMS is modulated 

by a positive transcriptional feedback loop involving 

NFκB and by a negative post-transcriptional feedback 

loop involving miR-146a/b (Figure 1) [4, 30, 112, 219, 

220]. 

 

Pleiotropic effects of the multistep cellular senescence 

program on aging and cancer 

 

Multiple mechanisms underlying the advancement of the 

cellular senescence program through temporally and 

spatially separable steps impose antagonistically 

pleiotropic effects on aging and cancer.  

Both stem/progenitor somatic cells and mitotically 

active cells within renewable tissues respond to an 

accumulation of excessive cellular stress or damage by 

undergoing an irreversible cell cycle arrest and entering 

the cellular senescence program [1, 2, 4, 13, 14, 17, 18, 

20-22, 25, 26]. The resulting proliferative decline of these 

somatic, progenitor and committed cells harboring 

potentially oncogenic lesions prevents their malignant 

transformation [1-4, 13, 22, 23, 25-27]. Thus, the 

irreversible cell cycle arrest at an early stage of the 

cellular senescence program provides a cell-autonomous 

mechanism for tumor suppression (Figure 2) [91]. The 

cell cycle arrest in stem/progenitor cells entering the 

senescence program also operates as a cell-

nonautonomous pro-aging mechanism. Indeed, by 

declining the proliferation of these somatic cells and 

reducing their mobilization to renewable differentiated 

tissues, the senescence-associated irreversible cell cycle 

arrest compromises tissue repair and regeneration and 

ultimately impairs tissue homeostasis (Figure 2) [1, 2, 4, 

12-14, 18, 20-22, 25-27, 91, 221, 222]. 

The senescence-associated irreversible cell cycle 

arrest and the ensuing stepwise changes in chromatin 

organization are followed by the ATM/CHK2- and 

p14ARF/p53-tuned transcriptional activation of genes 

encoding the early-response SASP/SMS proteins IL-1α 

and IL-1β (Figure 1) [4, 26, 28, 31, 112, 165, 172, 175, 

210, 216]. The resulting activation of the autocrine IL-

1α/IL-1αR signaling cascade in senescence-committed 

cells orchestrates a late-response SASP/SMS 

transcriptional program, which is driven by the 

transcriptional factors NFκB and C/EBPβ and which is 

fine-tuned by the NFκB- and miR-146a/b-dependent 

feedback loops (Figure 1) [4, 22, 26, 28, 30, 32, 112, 120, 

123, 216-220]. The relative levels of various late-response 

SASP/SMS protein components are developed in a 

senescence trigger- and tissue context-dependent manner; 

the established extracellular molecular signature exhibits 

pleiotropic effects on aging and cancer, either beneficial 
or harmful for the health of the organism (Figure 2) [4, 22, 

25, 26, 28-30, 32]. As outlined below in this section, many 

of the individual late-response SASP/SMS protein 
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components impose several antagonistically pleiotropic 

pro-aging, anti-aging, pro-cancer and/or anti-cancer 

effects. 

Such late-response SASP/SMS protein components 

as the pro-inflammatory cytokines IL-6 and IL-8, 

chemokine/growth-related oncogene GROα, chemokine 

ligands (other than IL-8 and GROα) of the CXCR-2/IL-

8RB receptor, insulin-like growth factor binding protein 

IGFBP-7, and plasminogen activator inhibitor PAI-1 

reinforce the senescence-associated cell cycle arrest – 

thereby sustaining both its cell-autonomous anti-cancer 

effect and its cell-nonautonomous pro-aging impact 

(Figure 2) [4, 25, 28, 32, 120, 123, 223-225]. However, 

by stimulating the proliferation of premalignant and 

malignant cells (IL-6, IL-8, GROα and PAI-1) as well as 

by promoting their migration and tissue invasion (IL-6, 

IL-8 and PAI-1), some of these protein components also 

exhibit a pro-cancer effect [4, 22, 26, 28, 31, 32, 226, 

227]. Furthermore, one of them (namely, IGFBP-7) 

operates cell-nonautonomously as an anti-cancer protein 

not only by reinforcing the senescence-associated cell 

cycle arrest but also by triggering mitochondria-

controlled death of melanoma cancer cells (Figure 2) [4, 

25, 28, 225, 228]. 

The growth regulator amphiregulin AREG is a pro-

cancer late-response SASP/SMS protein component that 

stimulates proliferation of premalignant epithelial cells, 

whereas the pro-cancer impacts of hepatocyte and 

fibroblast growth factors HGF and FGF are due to their 

stimulatory effects on pancreatic cancer cells migration 

and tissue invasion (Figure 2) [4, 25, 28, 29, 226, 229, 

230]. Such late-response SASP/SMS protein components 

as the vascular endothelial growth factor VEGF as well as 

chemokines IL-8, eotaxin and I-309 stimulate the 

migration and tissue invasion of endothelial cells - thereby 

promoting tumor-associated angiogenesis and facilitating 

cancer cell invasion and metastasis to distant sites [4, 25, 

28, 29, 227, 231-234]. In contrast, the produced by 

senescent keratinocytes late-response SASP/SMS protein 

component maspin is a tumor suppressor that slows down 

angiogenesis by inhibiting the migration of endothelial 

cells (Figure 2) [4, 28, 235, 236]. 

Matrix metalloproteinases MMP-1, -2, -3, -10, -12, -

13 and -14 are late-response SASP/SMS protein 

components that exhibit several antagonistically 

pleiotropic effects on aging and cancer (either beneficial 

or detrimental for the health of the organism) in a 

senescence trigger- and tissue context-dependent manner. 

By proteolytically degrading the extracellular matrix 

(ECM) proteins that are secreted by hepatic stellate cells 

or fibroblasts to form a fibrotic scar after acute liver injury 
or during skin wound healing (respectively), several 

MMPs impose an anti-aging effect by resolving the 

fibrotic mass - thus maintaining tissue integrity by 

promoting its repair and regeneration (Figure 2) [4, 25, 28, 

122, 131, 237]. However, by proteolytically degrading the 

ECM proteins in other tissue contexts, the MMPs have a 

detrimental impact on organismal health as they impose: 

(1) a pro-aging effect by compromising the unique 

physical, biochemical and biomechanical properties of the 

tissue surrounding senescent cells and ultimately 

impairing tissue architecture and function; and (2) a pro-

cancer effect by facilitating the migration of tumor cells 

through the ECM, promoting the invasiveness of tumor 

cells and ultimately enabling their metastasis to distant 

sites (Figure 2) [4, 25, 28, 29, 238-246]. 

Some of the cytokines and chemokines constituting 

the late-response SASP/SMS (including IL-7, IL-15, 

CXCL-1, MCP-1 and CSF-1), as well as its HMGB-1 

protein component, are able to attract innate immune cells 

to the tissue surrounding senescent cells and then to 

activate these immune cells [4, 28-30, 122, 247-254]. By 

killing and clearing senescent non-cancerous cells, the 

attracted cells of the innate immune system maintain 

tissue integrity – and thus impose an anti-aging effect 

(Figure 2) [4, 26, 29, 30, 122, 251, 252]. However, in 

some tissue contexts the innate immune cells attracted by 

cytokines and chemokines can have a pro-aging effect by 

releasing strong oxidants and tissue-remodelling 

molecules that disrupt tissue architecture, impair tissue 

function and deplete stem cell niches [4, 30, 245, 250, 

255-257]. Furthermore, by facilitating the phagocytic and 

cytotoxic elimination of senescent tumor cells, innate 

immune cells exhibit a potent anti-cancer effect (Figure 2) 

[4, 29, 30, 247, 249, 251-254].  

Some of the late-response SASP/SMS protein 

components impose a pro-cancer effect because they 

affect the differentiation status of epithelial cells. MMP-3 

can promote tumor growth by disrupting the 

morphological and functional differentiation of breast 

epithelial cells (Figure 2) [4, 28, 29, 242-244].  

Furthermore, by disrupting clusters of pancreatic breast 

epithelial cells and causing morphological changes 

reminiscent of an epithelial-to-mesenchymal cell 

transition, such late-response SASP/SMS protein 

components as IL-6, IL-8, MMP-3, HFG and uPAR (a 

receptor of urokinase plasminogen activator) can 

stimulate epithelial cell migration and tissue invasion 

(Figure 2) [28, 29, 31, 242, 258-260]. 

 

Conclusions and perspectives 

 

A growing body of evidence supports the view that the 

complex relationship between mechanisms underlying 

aging and cancer evolves with organismal chronological 
age. Significant progress has been made in defining cell-

autonomous and cell-nonautonomous mechanisms that in 

young and adult organisms simultaneously delays aging 
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and suppress tumor formation. Furthermore, it is now well 

established that the intricate interplay between 

mechanisms underlying aging and cancer reflects the 

proliferative history of cells and is impacted by the 

progression of a cellular senescence program through 

temporally and spatially separable steps. Recent findings 

imply that the advancement of the multistep cellular 

senescence program imposes antagonistically pleiotropic 

effects on aging and cancer. Mechanisms underlying 

some of these effects have emerged. 

Despite an important conceptual advance in our 

understanding of the complex interplay between 

mechanisms underlying aging and cancer, we are still 

lacking answers to the following fundamentally important 

questions. 

Which of the numerous morphological and 

functional changes observed in various types of senescent 

cells in culture and in vivo (Tables 1 and 2) are universal 

hallmarks of a state of cellular senescence – and, thus, 

which of these changes can be used as diagnostic 

biomarkers of cells entered such a state in any tissue? 

Which of these features of senescent cells are, in contrast, 

characteristic only of a certain senescence trigger, mode 

of cellular senescence or tissue? The use of genome-wide 

expression analyses and/or antibody arrays designed to 

detect various SASP/SMS protein components could 

facilitate the identification of both universal and tissue-

specific senescence biomarkers.     

Given that the progression of the cellular senescence 

program through temporally and spatially separable steps 

imposes antagonistically pleiotropic effects on aging and 

cancer (Figures 1 and 2), what therapeutic interventions 

have a potential to be used not only for enhancing those 

effects that are anti-aging and/or anti-cancer but also for 

attenuating those effects that are pro-aging and/or pro-

cancer? Recent findings in mice engineered for a reversal 

of the cellular senescence state by a drug-inducible 

telomerase reactivation [261] or for a late-life immune 

clearance of senescent cells by their drug-inducible 

elimination [262] suggest that small chemicals can be 

used for: (1) a protein target-specific pharmacological 

enhancement of the beneficial for organismal healthspan 

effects imposed by the cellular senescence program; 

and/or (2) a protein target-specific pharmacological 

attenuation of the deleterious for organismal healthspan 

effects inflicted by this program [5, 7, 8, 22-24]. 

Another attractive direction for future research is a 

temporal separation of the exogenously accelerated 

progression of the cellular senescence program from the 

pharmacologically triggered attenuation of its SASP/SMS 

at an advanced stage of SASP/SMS development – 
thereby limiting chronic inflammation, enabling tissue 

repair and stimulating a targeted immune clearance of 

those senescent cells that have developed a harmful for 

organismal health version of this extracellular molecular 

signature [5, 7, 8, 22-24, 167].  
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