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Introduction

Proton magnetic resonance spectroscopic imaging (MRSI) is a non-invasive technique that 

allows in vivo detection and quantification of metabolites within biologic tissues and has 

been shown to improve the specificity of conventional MRI in the detection of prostate 

cancer (1). Despite its potential benefits, MRSI has not gained acceptance in routine clinical 

practice due to a variety of factors including the length and complexity of data acquisition, 

processing, and analysis. The current work addresses the lack of automatic tools for 

analyzing the large datasets generated by prostate MRSI. Visual interpretation of the spectra 

by a trained spectroscopist is time consuming and requires accurate knowledge of prostate 

anatomy. The visual analysis relies on such features of the prostate spectra as the relative 

height of the choline, creatine and citrate peaks. However, it has been shown that the 

spectral patterns of cancer are different between the peripheral and transition zones of the 

prostate and thus the selection rules for cancerous voxels must take into account the location 

of the voxel within the prostate gland (2). Furthermore, periurethral tissue may exhibit high 

levels of choline-containing compounds due to the presence of glycerophosphocholine 

(GPC), a normal constituent of seminal fluid which is present primarily within the seminal 

vesicles and ejaculatory ducts but also to a lesser degree in the prostatic urethra (Fig. 1). 

GPC is virtually indistinguishable in vivo from phosphocholine, an important marker for 

prostate cancer (3). A trained spectroscopist with an expertise in zonal anatomy of the 
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prostate is able to incorporate the information about the voxel location in the analysis of 

MRSI data. Therefore, a method for automated analysis of the prostate spectra that takes 

into account the anatomical information may be more accurate than a method relying on 

spectra alone.

Traditional methods of analyzing MRSI data involve calculating individual metabolite ratios 

obtained from areas of spectral peaks (4). In contrast, when data are analyzed with a pattern 

recognition technique, all information in the spectra can be used as input simultaneously, 

and classification of voxels can be fully automatic. Pattern recognition may be superior to 

partial analysis of peaks and ratios within the spectra, especially when the pattern in the data 

is subtle (5,6). An artificial neural network (ANN) (7,8) is a tool for pattern recognition that 

can rapidly process a large amount of data and has excellent generalization capability for 

noisy or incomplete data. ANNs have been applied to MRSI of the central nervous system 

and have proven useful for evaluating patients with epilepsy (9), Parkinson's disease (10) 

and brain cancers (11). Thus, the goal of this study is to assess the feasibility of using an 

ANN to automatically detect cancerous voxels from prostate MRSI datasets, and to evaluate 

the impact of additional information concerning the prostate's zonal anatomy on the 

performance of an ANN in this setting.

Patients and Methods

Patients

This retrospective study complied with the Health Insurance Portability and Accountability 

Act and was approved by the Institutional Review Board, with a waiver of informed 

consent. Eighteen patients with biopsy-proven prostate cancer, who underwent endorectal 

MRI/MRSI at our institution followed by radical prostatectomy with whole-mount step-

section histopathology and had at least one tumor voxel detected by MRSI and confirmed by 

histopathology. The details of the spatial registration between MRSI and histopathology are 

given in section MRSI-histopathology correlation. The patient characteristics are 

summarized in Table 1.

MRI/MRSI data acquisition and analysis

MRI/MRSI examinations were performed on a 1.5 T whole-body unit (Signa Horizon; GE 

Medical Systems; Milwaukee, WI) with a body coil for excitation and a combination of a 

phased-array and endorectal coil (Medrad, Pittsburgh, PA) for signal reception. Anatomical 

images of the prostate were acquired with an axial T2-weighted fast spin-echo sequence 

with the following parameters: TR = 4000 ms, TE=102 ms; echo train length, 12; slice 

thickness, 3 mm; interslice gap, 0 mm; field of view, 14×14 cm2; typical number of slices, 

8–12; matrix, 256×192. The PROSE acquisition package (GE Medical Systems) was used to 

obtain MRSI data at 6.9×6.9 mm2 in-plane resolution (Fig. 2a). The MRSI acquisition 

parameters were: PRESS voxel selection, TR = 1000 ms, TE = 130 ms; one average; 

spectral width, 1250 Hz; number of points, 512; field of view, 11.0×5.5×5.5 cm3; and 

16×8×8 phase encoding steps. Spectral/spatial pulses were used for water and lipid 

suppression within the PRESS selected volume and very selective outer voxel suppression 

pulses were used to reduce the contamination from surrounding tissues.
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Spectral data were transferred to an Advantage workstation (GE Medical Systems), 

automatically processed by Functool software (GE Medical Systems) and interpreted by an 

experienced spectroscopist (X.X., >10 yrs of experience). In each patient, all voxels within 

the PRESS excitation volume were labeled as cancerous or non-cancerous according to 

established decision rules which incorporated both the level of polyamines relative to total 

choline and the ratio of choline plus creatine to citrate (12). The pertinent peaks were 

located at the following chemical shifts: total choline (Cho) at 3.2 ppm, creatine/

phosphocreatine (Cr) at 3.0 ppm, polyamines (PA) at 3.1 ppm and citrate (Cit) at 2.6 ppm 

(Fig. 3). A total of 5308 voxels were analyzed in 18 patients and 148 voxels were marked as 

suspicious on MRSI. The locations of the suspicious voxels were recorded on the 

corresponding underlying T2-weighted images.

Histopathological analysis

Prostatectomy specimens were first inked with tattoo dye (green dye on right, blue dye on 

left) for orientation and fixed in 10% formalin for 36 hours. The distal 5 mm portion of the 

apex was amputated and coned. The remainder of the gland was serially sectioned apex to 

base at 3-4 mm intervals and entirely submitted for paraffin embedding as whole-mounts. 

The seminal vesicles were amputated and submitted separately. After paraffin embedding, 

microsections were placed on glass slides and stained with hematoxylin and eosin. Cancer 

foci were outlined by an experienced pathologist (X.X., >5 yrs of experience in urologic 

pathology) in ink on whole-mount, apical, and seminal vesicle sections so as to be grossly 

visible, and photographed. These constituted the tumor maps.

MRSI-histopathology correlation

Spatial registration of the MRI/MRSI data with digitized pathologic tumor maps was 

performed jointly by an experienced radiologist (X.X., >5 yrs experience reading prostate 

MRI) and an experienced pathologist (X.X., >5 yrs of experience in urologic pathology) 

working in consensus. The T2-weighted images with spectral grids overlaid (see Fig. 2) 

were viewed side-by-side with the pathologic tumor maps. The most closely corresponding 

axial T2-weighted images and pathology step sections were paired based on the following 

anatomic landmarks: urinary bladder and seminal vesicles in superior slices, slice with 

largest diameter, ejaculatory duct entrance to verumontanum, thickness of the peripheral 

zone and position of the pseudocapsule, presence, size, and shape of the transition zone (4). 

Once the MRI and pathologic sections were registered, it was determined whether voxels 

that were classified as cancerous by MRSI corresponded to tumors in matching pathological 

sections. Because unavoidable gland deformation and shrinkage as well as slight differences 

in the angle of section limited the precision of MRI/MRSI-pathology registration, a finding 

of tumor in the same prostate sextant on both MRI/MRSI and pathologic tumor maps was 

considered a match. Voxels that were first identified by a spectroscopist as cancerous and 

confirmed by matching with histopathological maps were used as the target classification, or 

“gold standard”, for the ANN. Of the 148 voxels that were marked suspicious by the 

spectroscopist, 129 voxels were labeled as true cancer voxels by comparison with histology.

Anatomical segmentation of the prostate on MRI was performed manually by a radiologist 

(X.X., radiology fellow trained and supervised by X.X.), who outlined the peripheral zone 
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(PZ), transition zone (TZ) and periurethral region on the T2-weighted images and the 

superimposed spectroscopy matrix (Fig. 2b). The percentage of the area within each voxel 

located in the PZ, TZ, periurethral region (U) and/or outside (O) the prostate was visually 

estimated (X.X.) and recorded.

Among the prostate voxels, 1139/5308 (21.5% of all voxels) contained more than 50% PZ, 

1457/5308 (27.4%) contained more than 50% TZ and 7.3% contained more than 10% U.

The real parts of all spectra were exported using a custom Matlab script (Mathworks; 

Natick, MA), and the spectral range of 4.3–0.4 ppm (256 points) was analyzed.

Artificial Neural Network Analysis

The purpose of the ANN was to identify voxels which had been designated by the 

spectroscopist as cancer and confirmed by histopathology. ANN analysis was performed on 

a Pentium 4, 3.2 GHz computer using Statistica Neural Networks software (StatSoft Inc., 

Tulsa, OK). The input data of the ANN models consisted either of MRSI spectra (intensities 

at ppm positions) or spectra and additional anatomical information. The output of the ANN 

was a continuous confidence level value ranging between 0 and 1, which indicates the 

probability of a given voxel belonging to one of two possible classes, cancer or non-cancer, 

where confidence of 0 indicates that the voxel is certainly cancerous and 1 indicates a 

certainly non-cancerous voxel. The pattern recognition ability of the ANN models was 

characterized using the receiver operator characteristic (ROC) curve, which was created by 

calculating the sensitivity and specificity of the model as the confidence level separating 

cancer and non-cancer assumes a series of values between 0 and 1. For each trial, the full 

dataset (5308 spectra) was randomly split into training set (70% of all spectra), test set 

(15%) and validation dataset (15%). The training set was used for adjusting the network 

connection weights; the test set was used to monitor the progress of ANN training and 

prevent overtraining; finally, the model was applied to a validation data set that had not been 

shown to the model during the training process. The ANN model that provided the highest 

area under the ROC curve (AUC) was selected as the optimally performing model.

The ANN was implemented as a feed-forward multilayer perceptron (MLP) with three 

layers: input, hidden and output layers. The input and output layers both contained a single 

neuron. We decided to use only one neuron in the hidden layer because the performance of 

such model for the test set reached an AUC of 0.99. Increasing the number of neurons in the 

hidden layer may lead to overtraining and poor generalization, which occur when excessive 

flexibility of the model improves its performance on the test set, but compromises the 

model's ability to correctly evaluate future observations (13). The back propagation 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative algorithm was used to train the model 

(14). With this algorithm, a classification was first made and compared with the target 

classification and the error was back-propagated through the network to adjust the 

connection weights between neurons to achieve a closer match between the output and the 

observed data. The error was then recalculated and the process repeated on the next 

iteration. The error function was calculated as the cross entropy. The logistic sigmoid 

activation function was used between the input and the hidden layer and the softmax 

(normalized exponential) activation function for the output layer.
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Two models were created with the same configurations of hidden and output layers, but with 

different input variables. Model 1 used as input only MRSI spectra (256 variables as 

resonance intensities at given ppm positions) and model 2 used the spectra and the 

anatomical segmentation information (260 variables total: the same 256 variables as in 

model 1 plus four additional variables as percentage of PZ, TZ, U, and O). The final models 

1 and 2 were selected as the models that provided the highest AUC values for the test set 

among one hundred models for each model type constructed automatically by the software 

with the same data randomly assigned to the training, validation and test sets each time a 

new model was created. The pattern recognition abilities of the two models were compared 

by assessing their ROCs on the validation sets using the method of DeLong et al. (15) 

implemented in Analyse-it for Microsoft Excel (Analyse-it Software, Ltd., United Kingdom) 

and the sensitivity and specificity at the confidence level of 0.5.

To determine whether the variations of the signal-to-noise ratio (SNR) influenced the pattern 

recognition capabilities of the ANN models, the SNR values were defined for each voxel as 

the amplitude of the choline signal divided by the standard deviation of the signal in the 

range 0.5 – 0 ppm, which contains only noise (16). The mean SNR values for the correctly 

and incorrectly classified cancerous spectra were compared using the Mann-Whitey U-test.

To establish the relative importance of the input variables for the accuracy of voxel 

classification, the ANN model's sensitivity to each input variable (not to be confused with 

the sensitivity of pattern recognition) was assessed by calculating the error in response of the 

ANN to the change in each variable. The error was computed after the data set was 

repeatedly submitted to the network, with each variable replaced with its mean value 

determined from the training sample. The sensitivity to the input variable was expressed as 

the ratio of the error calculated with the variable missing to the error obtained from the 

complete set of variables. A variable was considered important if the model's sensitivity to 

this variable was greater than 1.

Results

Fig. 4 presents ROC curves from training, test and validation sets for the optimal versions of 

model 1 (spectra only, Fig. 4a) and model 2 (spectra plus segmentation, Fig. 4b). The AUC 

values for all sets classified by model 1 (training, 0.955; test, 0.976; validation, 0.949) were 

lower than the corresponding AUCs for model 2 (training, 0.988; test, 0.993; validation, 

0.968). The difference between the AUCs of the two models was the highest for the training 

set.

The performance of the ANN models for the validation data set is summarized in Table 2. 

The model 2 yielded a significantly higher AUC than model 1 (p = 0.03) and had a narrower 

confidence interval. At the confidence level of 0.5, model 1 classified correctly only 50% of 

cancer voxels, but model 2 was able to correctly classify two more voxels and had the 

sensitivity of 62.5%. The difference between the specificity values of the two models was 

smaller, because of the small proportion of cancer voxels relative to the number of benign 

voxels. The disproportionately large percentage of non-cancerous voxels in the dataset 

(5179 out of 5308 voxels, or 97.6%) presented a challenge in developing the ANN. The 
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model correctly identifies the vast majority of the healthy voxels while failing to detect a 

large percentage of cancer voxels and yields a deceptively high the AUC, which does not 

correctly reflect the classification rate in the cancer class.

The capabilities of either model to correctly recognize the cancerous voxels did not appear 

to depend on the variations of SNR (Table 3). The mean SNR values among the correctly 

and incorrectly classified voxels in all three datasets combined (training, test and validation 

sets) were not significantly different for either model.

Fig. 5 shows the ten most important input variables identified by the ANN model’s 

sensitivity analysis. For model 1, the most important variables were the ppm positions 

corresponding to the choline peak in the 3.15–3.26 ppm range with the sensitivities of about 

1.2 – 1.3 (Fig. 6a). For model 2, the most important variable was the percentage of PZ, 

%PZ, for which the model sensitivity, equal to 2.8, was considerably higher than the 

sensitivity to the variables corresponding to the ppm positions corresponding to choline, 

which was in the range of 1.3–1.5 (Fig. 6b). The next most important segmentation variable 

was the percentage of region U, %U, which was in the eighteenth position with the model 

sensitivity of 1.19.

Discussion

We implemented and compared two models for automatic classification of MRSI voxels in 

the prostate gland: model 1, which used only spectra as input, and model 2, which used the 

spectra plus information from anatomical segmentation. The models were trained, tested and 

validated using spectra from voxels that the spectroscopist had designated as cancer and that 

were verified on histopathological maps. At ROC analysis, model 2 provided significantly 

better classification of voxels than did model 1. At the confidence level of 0.5, model 2 was 

able to correctly detect more cancerous voxels than model 1. Variations in the SNR did not 

influence the pattern recognition capabilities of either model; hence, the errors in 

classification were caused by other sources, which are discussed below.

For a predictive model, the quality of the training dataset is of paramount importance for 

accurate outcome. In our analysis, the quality of the training set was based on two 

assumptions— namely, that cancerous voxels showed a unique spectral pattern and that the 

spectroscopist was able to recognize all voxels with this spectral pattern (12). Thus, if a 

cancerous voxel was marked by the spectroscopist as non-cancerous either because the 

spectrum did not satisfy the selection criteria or because the spectroscopist missed it, that 

voxel was not compared with histopathology. If the first assumption is invalid, that is, 

cancer does not in fact have a unique spectral pattern, it is a limitation of MRSI as a method 

and is impossible to correct. However, in the second scenario, if some of the cancer voxels 

are missed by the spectroscopist, the ANN may be able to correct the spectroscopist's error 

and correctly classify the voxel, using knowledge gained from the voxels in the training set.

In our study, sensitivity and specificity were defined with respect to a potentially imperfect 

reference classification. The target classification was the result of a one-way matching of 

voxels detected on MRSI by the spectroscopist to the histopathological maps; however, 
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cancers identified only on histopathologic maps were not “back”-correlated to voxels in the 

MRSI.

False positives, i.e., voxels incorrectly classified as cancerous based on their spectral 

patterns, originate from sources such as prostatitis, benign prostatic hyperplasia, or the 

elevated choline peak originating from the urethra (17,18). The limited number of k-space 

samples in each dimension gives rise to a point-spread function (19) that can “smear” the 

choline signal over voxels adjacent to the urethra. Based on previous experience, the 

spectroscopist can often recognize this type of spectral “bleed”. The ANN model 2 was 

sensitive to the designation of a voxel as being in the U region, with this input variable 

ranking eighteenth out of 260 variables. However, our model does not take into account the 

potential for “bleed” into voxels adjacent to the urethra. In theory, one could teach the neural 

network to recognize a multivoxel pattern of Cho emanating from a maximum in the urethra. 

However, the feasibility of this idea needs to be tested.

Sensitivity to input variables was higher for model 2 than for model 1. Apart from 

segmentation, for both models, the most important variables were the ppm positions around 

3.21 ppm corresponding to choline. This finding is in accord with the previously determined 

decision criteria, which identify choline as a marker of malignancy (20). For model 2 (with 

segmentation), the percentage of PZ within a given voxel was the most important input 

variable.

In this study, we attempted to address some of the well-described theoretical disadvantages 

of ANNs. The first is the risk of “overtraining”. As a network is being trained, initially the 

error of recognition drops rapidly with every iteration, but then the rate of improvement 

diminishes. Further training improves fitting of this particular training set, but makes the 

model less capable of correctly predicting any other dataset, a problem that is referred to as 

poor generalization of the ANN. We used two common approaches to prevent this 

phenomenon (13). Firstly, we used the smallest possible number of neurons in the hidden 

layer. In general, increasing the number of hidden units increases the modeling power of the 

neural network but also makes it larger, more difficult to train, slower to operate, and more 

prone to overfitting. Secondly, to avoid overtraining we also applied the so called “early-

stopping” method, in which the training process was stopped when the error of classification 

of the test set ceased to decrease.

Many studies using ANN provide the results only for training and test sets (21), which may 

present an overly optimistic estimation of the model's performance. In our study the final 

models were tested with the independent validation subset (i.e., data never shown to the 

model during the training process), in order to ensure that the results were not artifacts of the 

training process. However, a weak point in this preliminary analysis is the consideration of 

every spectrum independently without providing information from adjacent spectra in a 

particular patient. The only information about anatomical localization is the PZ, TZ, U or O 

labeling.

Although ANNs can “learn” from specific patterns, it is very difficult to understand how 

exactly the model learns and how different weights are attached to variables during this 
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process. Thus it is difficult to ensure that clinical and methodological sense always prevails 

in the interpretation of results. We addressed this by performing the ANN model's sensitivity 

analysis, which identified specific points of the MRSI spectra that were especially important 

for the model in distinguishing cancerous from non-cancerous voxels. Our sensitivity 

analysis confirmed that choline, as determined previously by the visual method of MRSI 

spectral analysis (12), is an important marker for making this distinction.

In our study, spatial matching of MRSI and histopathological maps was limited to the 

sextant level due to the difficulties arising from variability in the size, shape and contour of 

the resected gland as well as angle of tilt in sectioning. In the future, development of a 

mechanism for fusing MRSI data with the whole-mount step-section pathology maps would 

be helpful for informing the ANN about the locations of cancerous voxels.

Many studies have looked at the usefulness of incorporating clinical data such as age, 

prostate volume, PSA level and digital rectal examination and transrectal ultrasound results 

into ANNs for predicting prostate cancer (22-33). However, these studies have attempted to 

recognize only the presence or absence of the cancer and the clinical outcome. In our study, 

ANNs were used for detection and localization of cancer based on MRSI data, and therefore 

our ANN model used different input variables.

A major limitation of the current study was the low number of patients included. However, 

our goal was to demonstrate the feasibility of including anatomical data in an ANN model as 

well as the potential advantage for correctly identifying cancer-containing voxels. A larger 

population to validate and refine the model is necessary in order to demonstrate clinical 

utility.

Another limitation of the current study was the manual segmentation of the prostatic zones, 

which is time consuming. The automatic prostate segmentation is currently an area of active 

study (34-36).

In conclusion, though our preliminary findings require validation in a larger prospective 

clinical trial, we have shown the feasibility of using an ANN to automatically analyze in-

vivo MRSI and thus detect and localize prostate cancer non-invasively. The incorporation of 

novel biomarkers and non-invasive imaging data into predictive tools has the potential to 

improve clinical decision-making in patients with prostate cancer (37). The ANN model 

presented herein is a significant step toward an automatic, user-independent and fast method 

of analyzing prostate MRSI data, and could facilitate the clinical use of MRSI to boost 

predictive accuracy in prostate cancer assessment.
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Fig. 1. 
Averaged spectra from different prostate zones. The curves were derived from 129 

cancerous spectra; 1139 peripheral zone spectra (> 50% peripheral zone within the voxel); 

1457 transition zone spectra (> 50% transition zone within the voxel); and 389 periurethral 

zone spectra (>= 10% periurethral tissue within the voxel). While the most characteristic 

marker of prostate cancer on MRSI is an elevated choline signal at 3.21 ppm, elevated 

choline is also observed in the normal periurethral region. The averaged spectra illustrate the 

difficulty of correctly classifying the voxels close to the urethra and suggest that anatomical 

segmentation may be helpful for distinguishing the periurethral spectra from cancerous 

spectra. Cancer tissue spectra also reveal a relatively elevated peak at 2.06 ppm, which is 

likely to be spermine (38); however, this region is in the transition band of the spectral-

spatial refocusing pulses (4).
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Fig. 2. 
(a) A grid of proton MR spectra overlaid on a T2-weighted image of the prostate. The 

spectroscopic acquisition parameters were: PRESS voxel selection, TR = 1000 ms, TE = 

130 ms; one average; spectral width, 1250 Hz; number of points, 512; field of view, 11.0 × 

5.5 × 5.5 cm3; and 16 × 8 × 8 phase encoding steps. (b) Example of zonal segmentation of 

the prostate on T2-weighted image with overlaid MRSI grid. Prostatic zones are indicated 

by color overlays: peripheral zone (yellow), transition zone (blue), periurethral tissue (red). 

The numeral in each voxel in (b) is assigned by the manufacturer's software and has no 

meaning for the analysis.
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Fig. 3. 
A representative 1.5 T prostate cancer voxel spectrum from peripheral zone (256 spectral 

points) shows typically elevated Cho relative to Cr and Cit peaks. Abbreviations: choline, 

Cho; polyamines, PA; creatine, Cr; and citrate, Cit. The voxel is suspicious for cancer based 

on the criteria published in reference 12.
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Fig. 4. 
Receiver operating characteristic curves of the pattern recognition models for training, test 

and validation sets: (a) model 1, with only spectra as input; (b) model 2, using spectra and 

anatomical segmentation. The optimally performing models 1 and 2 were chosen out of one 

hundred automatically generated models of each kind, with the full dataset split into 

training, test and validation sets every time a new model is created. The legends indicate 

AUC for each dataset. Model 2 (b) has higher AUCs than model 1 (a) for each of the three 

datasets.
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Fig. 5. 
ANN model’s sensitivity for the top ten most important variables, in the order of descending 

relative importance from left to right: (a) model 1, using spectra only; (b) model 2, using 

spectra and anatomical segmentation. For model 1 (a), all top ten variables originate from 

the Cho ppm range. For model 2 (b), the most important variable is %PZ followed by the 

Cho ppm intensities, which are similar to the Cho ppm positions for model 1. The overall 

sensitivity of model 2 is higher than the sensitivity of model 1.
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Table 1

Patient characteristics.

Parameter Value

Number of patients 18

Age at MRI [years], median (range) 55 (36–71)

Serum prostate-specific antigen [ng/mL], median (range) 4.63 (0.58– 11.6)

Clinical stage, number (%)

1c 14 (78)

2a 4 (22)

Time between MRI/MRSI and prostatectomy [days], median (range) 63 (3–148)

Biopsy Gleason score, number (%)

3+3 12 (67)

3+4 4 (22)

4+3 2 (11)

4+4 0

Prostatectomy Gleason score, number (%)

3+3 6 (33)

3+4 9 (50)

4+3 2 (11)

4+4 1 (6)
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Table 2

Performance of the ANN model 1 (spectra only) and model 2 (spectra plus anatomical segmentation) in 

validation data set (796 voxels): area under ROC curve (AUC) and sensitivity and specificity at confidence 

level of 0.5.

AUC Sensitivity (%) Specificity (%)

Estimate 95% CI

Model 1 0.949 0.909 – 0.990 50.0 (8/16) 98.7 (770/780)

Model 2 0.968 0.937 – 0.999 62.5 (10/16) 99.0 (772/780)

Note: AUC for model 2 is significantly higher than AUC of model 1 (p = 0.03) (15).
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Table 3

Signal-to-noise ratios (SNRs) of spectra correctly and incorrectly classified as cancer by model 1 and model 2 

at confidence threshold 0.5 for training, test and validation data sets combined.

Model Classification correctness Number of voxels SNR [mean±SD] p-value*

Model 1
correct 48 5.5 ± 2.7

0.813
incorrect 81 5.6 ± 2.3

Model 2
correct 107 5.5 ± 2.5

0.819
incorrect 22 5.8 ± 2.3

*
Mann-Whitney U test for SNR of correctly classified voxels versus incorrectly classified voxels for a given model.
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