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Abstract

We propose a semiparametric method for estimating a precision matrix of high-dimensional
elliptical distributions. Unlike most existing methods, our method naturally handles heavy tailness
and conducts parameter estimation under a calibration framework, thus achieves improved
theoretical rates of convergence and finite sample performance on heavy-tail applications. We
further demonstrate the performance of the proposed method using thorough numerical
experiments.
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[. Introduction

We Consider the problem of precision matrix estimation. Let X = (X1, ..., Xq)" be a d-
dimensional random vector with mean p € RY and covariance matrix ¥ € R9d, where
%1;=EX;X; — EX;EX;. We want to estimate the precision matrix £2= X1 based on n
independent observations. In this paper we focus on high dimensional settings where d/n —
oo. To handle the curse of dimensionality, we assume that 2is sparse (i.e., many off-
diagonal entries of f2are zero).

A popular statistical model for precision matrix estimation is multivariate Gaussian, i.e., X ~
N(y, 2). Under Gaussian models, sparse precision matrix encodes the conditional
independence relationship of the random variables [8], [21], which has motivates numerous
applications in different research areas [3], [15], [36]. In the past decade, many precision
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matrix estimation methods have been proposed for Gaussian distributions. For more details,
let X1, ..., X, € RY be n independent observations of X, we define the sample covariance
matrix as

1 - \*

— 1l
where :Ezizlxi. [1], [11], [38] propose the penalized Gaussian log-likelihood method
named graphical lasso (GLASSO), which solves

Q=argmin — log|Q+tx (SQ)+AY_|l,
Q

kj

where A > 0 is a regularization parameter for controlling the bias-variance tradeoff. In
another line of research, [5], [37] propose pseudo-likelihood methods to estimate the
precision matrix. Their methods adopt a column-by column estimation scheme and are more
amenable to theoretical analysis. More specifically, given a matrix A € R4, Jet Asj = (Ayj,
....,Agj)T denote the ji column of A, we define||A.;||,=S1|Ax;|and ||A.; || =mazi| A,
[5] propose CLIME estimator, which solves

A

Q,j=argmin||Q,;||,
*j @)
s.t. ||SQ*]_I*]H00 < A, ijl,...,d,

to estimate the j column of the precision matrix. Moreover, let ||A]|; = max;j ||Axjll1 be the
matrix ¢, norm of A, and ||A||, be the largest singular value of A, (i.e., the spectral norm of
A), [5] show that if we choose

logd
A= Q[ @

the CLIME estimator in (3) attains the rates of convergence

logd

HQ _QHp:OP (||Q|? "8 T) v (5)

where s=maz ;X1 ({4 # 0), and p = 1, 2. Scalable software packages for GLASSO and
CLIME=have been developed which scale to thousands of dimensions [16], [22], [40].

Though significant progress has been for estimating Gaussian graphical models, most
existing methods have two drawbacks: (i) They generally require the underlying distribution
to be light-tailed [5], [7]. When this assumption is violated, these sample covariance matrix-
based methods may have poor performance. (ii) They generally use the same tuning
parameter to regularize the estimation, which is not adaptive to the individual sparseness of
each column (More details will be provided in 8§111.B) and may lead to inferior finite sample
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performance. In another word, the regularization for estimating different columns of the
precision matrix is not calibrated.

To overcome the above drawbacks, we propose a new sparse precision matrix estimation
method, named EPIC (Estimating Precision matrlx with Calibration), which simultaneously
handles data heavy-tailness and conducts calibrated estimation. To relax the tail conditions,
we adopt a combination of the rank-based transformed Kendall’s tau estimator and Catoni’s
M-estimator [7], [18]. Such a semiparametric combination has shown better statistical
properties than those of the sample covariance matrix for the heavy-tailed elliptical
distributions [6], [7], [10], [17]. We will explain more details in § Il and § IV. To calibrate
the parameter estimation, we exploit a new framework proposed by [12]. Under this
framework, the optimal tuning parameter does not depend on any unknown quantity of the
data distribution, thus the EPIC estimator is tuning insensitive [25]. Computationally, the
EPIC estimator is formulated as a convex program, which can be efficiently solved by the
parametric simplex method [34]. Theoretically, we show that the EPIC estimator attains
improved rates of convergence than the one in (5) under mild conditions. Numerical
experiments on both simulated and real datasets show that the EPIC method outperforms
existing precision matrix estimation methods.

The rest of this paper is organized as follows: In 8l1, we briefly review the elliptical family;
In 8111, we describe the proposed method and derive the computational algorithm; In §1V,
we analyze the statistical properties of the EPIC estimator; In 8V and §VI, we conduct
numerical experiments on both simulated and real datasets to illustrate the effectiveness of
the proposed method; In §VII, we discuss other related precision matrix estimation methods
and compare them with our method [23]-[25].

Il. Background

We start with some notations. Let v = (vy, ..., vg)T € RY be a vector, we define vector
norms: ||v||, =%, |v;} | [v][3=2521v3, |[v]|co=rnaz1 < j<a|v;]. Lt be a subspace of RY,
we use v, to denote the projection of v onto :v_, =argmin, __ ||lu — v| \g. We also define

1 d|, T,  __ /
orthogonal complement of .7 as = — {u €R%|u"v=0,for any v € y}. Given a matrix

A € R, let Axj = (Agj,.... Agj)" and Agx = (Arg, ..., Axg)" denote the jt column and ki
row of A in vector forms, we define matrix norms: ||Ally = max;l|Axjll, |All2 = #max(A), ||
Alloo = maxid Al A7 =551 A5, AImax = max;liAsilloo, Where ymax(A) is the largest
singular value of A. We use Amax(A) and Anmin(A) to denote the largest and smallest
eigenvalues of A. Moreover, we define the projection of A«j onto .~ as

: 2
Ay =argmin, [[u— Al

We then briefly review the elliptical family, which has the following definition.

Definition 2.1 ([10]): Given p € RY and a symmetric positive semidefinite matrix X with
rank (X) = r < d, we say that a d-dimensional random vector X = (X1, ...,Xq)" follows an
elliptical distribution with parameter p, & and 3'denoted by
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XEC(;L,&E), (6)

if X has a stochastic representation

Xg#+§AU 7

where £2 0 is a continuous random variable independent of U. Here U € ™' is uniformly
distributed on the unit sphere in R", and X'= AAT.

Note that A and £in (7) can be properly rescaled without changing the distribution. Thus
existing literature usually imposes an additional constraint ||2]|max 1 to make the distribution
identifiable [10]. However, such=a constraint does not necessarily make X'the covariance
matrix of X. Since we are interested in estimating the precision matrix in this paper, we

2
require E (5 ) <% and rank (%) = d such that the precision matrix of the elliptical

2\ _
distribution exists. Under this assumption, we use an alternative constraint E (§ ) _d, which
not only makes the distribution identifiable but also has X' defined as the conventional
covariance matrix (e.g., as in the Gaussian distribution).

Remark 1: X'can be factorized as X'= ©Z0, where Z is the Pearson correlation matrix, and
© =diag(&, ..., Gy) with g as the standard deviation of X;. Since © is a diagonal matrix, we
can rewrite the precision matrix  as Q = @ 1'B™1, where I = Z ™1 is the inverse correlation
matrix.

Remark 2: As a generalization of the Gaussian family, the elliptical family has been widely
applied to many research areas such as dimensionality reduction [19], portfolio theory [14],
and data visualization [33]. Many of these applications rely on an effective estimator of the
precision matrix for elliptical distributions.

Motivated by the above discussion, the EPIC method has three steps: We first use the
transformed Kendall’s tau estimator and Catoni’s M-estimator to obtain 7 and &
respectively; We then plug 7 into a calibrated inverse correlation matrix estimation

procedure to obtain - At last we assemble - and g to obtain ¢). We explain more details
about these three steps in the following subsections.

A. Correlation Matrix and Standard Deviation Estimation

To estimate Z, we adopt the transformed Kendall’s tau estimator proposed in [10] and [23].
More specifically, we define a population version of the Kendall’s tau statistic between X;
and Xy as follows,

= P ((X; - X{) (i~ X’ﬁ) >0)
-2 (X X;) (X - Xi) <0)
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where f(j and x, are independent copies of Xj and X respectively. For elliptical
distributions, [10], [23] show that Z;’s and %;’s have the following relationship

Z=Zy|= {sin (gﬂgﬂ - (®

Therefore given xq, ..., X, be n independent observations of X, where x; = (Xi1, ..., Xig) ", we
first calculate a sample version of the Kendall’s tau statistic between X;j and Xy by

Thi= n(n—1)

for all k # j, and 1 otherwise. We then obtain a correlation matrix estimator by the same
entrywise transformation as (8),

Z=|2y] = {sm (gm)} -

To estimate ©, we exploit the Catoni’s M-estimator proposed in [7]. For heavy-tailed
distributions, [7] show that the Catoni’s M-estimator has better theoretical and empirical
performance than the sample moment-based estimator. In particular, let y(t) = sign(t) - log(1

+|t| + t2/2) be a univariate function where sign(0) = 0. Let f2; and r7; be the estimatior of

EX; and EX respectively which solve the following two equations:

n [ 2

D ((%‘ — 1) W) =0, (10)
i—1 max
>v ((r’i —m) | ) =0. au)
i=1 max

Here Kmay is a preset upper bound of max; Var(X;) and maz;Var (Xf ) [7] shows that the
solutions to (10) and (11) must exist and can be efficiently solved by the Newton-Raphson

algorithm [31]. Once we obtain +; and £, we estimate the marginal standard deviation ¢} by

b=\ fmaz {i; — 2, Kin ), 2

where Ky, is a preset lower bound of mz‘nje_f-.

Remark 3: We choose the combination of the transformed Kendall’s tau estimator and
Catoni’s M-estimator instead of sample covariance matrix, because we are handling heavy-
tailed elliptical distributions. For light-tailed distributions (e.g. Gaussian distribution), we
can still use the sample correlation matrix and sample standard deviation to estimate the Z
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and 8. The extension of our proposed methodology and theory is straightforward. See more
details in 8§IV.

B. Calibrated Inverse Correlation Matrix Estimation

We then plug the transformed Kendall’s tau estimator 7 into the following convex program,

(f‘*j, %j) =argmin||Ty;||,+cm
A Lujomy (13)
s.t. ||ZP*] — I*]”oo < )\7']', ||P*j||1 < Tjs

forall j=1, ..., d, where c can be any constant between 0 and 1 (e.g., ¢ = 0.5). Here 7
serves as an auxiliary variable to calibrate the regularization [12], [32]. Both the objective
function and constraints in (13) contain 7 to prevent from choosing 7 either too large or too
small.

To gain more intuition of the formulation of (13), we first consider estimating the jt column
of the inverse correlation matrix using the CLIME method in a regularization form as
follows,

L. j=argmin||T.y |, +v(| 2T — L, (14)

*J

where v> 0 is the regularization parameter. The next proposition presents an alternative
formulation of (14).

Proposition 111.1: The following optimization problem

(f‘*j,f'j) =argmin||Ty;||,+ec7;
*55T5

5.6 |20y — Ll < £75-

has the same solution as (14).

The proof of Proposition 111.1 is provided in Appendix A. If we set v/ic = A, then the only
difference between (13) and (15) is that (13) contains a constraint || I%j||y < 7. Due to the
complementary slackness, this additional constraint encourages the regularization A7 to be
proportional to the 4 norm of the ji column (weak sparseness). From the theoretical
analysis in 81V, we see that the regularization is calibrated in this way.

In the rest of this subsection, we omit the index j in (13) for notational simplicity. We denote
', I, and 7 by y, €, and zrespectively. By reparametrizing y= y*=y~, we can rewrite (13)
as the following linear program,

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.
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(37,47,%) =argmin 1Tyt 1Ty er
T
Z -Z - ~T
st.| —Z Z - A
I | T
7" >0, 9720, 720

e
—e (16)
0

where A = A1. Though (16) can be solved by general linear program solvers (e.g. the simplex
method as suggested in [5]), these general solvers cannot scale to large problems. In
Appendix B, we provide a more efficient parametric simplex method [34], which naturally
exploits the underlying sparsity structure, and attains better empirical performance than the
simplex method.

C. Symmetric Precision Matrix Estimation

Once we get the inverse correlation matrix estimate 1, we estimate the precision matrix by

Remark 4: A possible alternative is that we first assemble a covariance matrix estimator
§=0z0, a7
then directly estimate Q by solving

(Q*J-, 7A'j) =argmin||Q.;||,+c7;
%27

st ISy — Lyl < A7y, Q] <7

forall j =1, ..., d. However, such a direct estimation procedure makes the regularization
parameter selection sensitive to marginal variability. See [20], [26], [29] for more
discussions of the ensemble rule.

The EPIC method does not guarantee the symmetry of ¢. To get a symmetric estimate, we
take an additional projection procedure to obtain a symmetric estimator

fl:argmin”ﬂ — QH* s.t. Q=0T (18)
Q

where ||']|« can be the matrix 4, Frobenius, or max norm. More details about how to choose
a suitable norm will be explained in the next section.

Remark 5: For the Frobenius and max norms, (18) has a closed form solution as follows,

Q:% (m(f) .

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.
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For the matrix #x2113;, norm, see our proposed smoothed proximal gradient algorithm in
Appendix C. More details about how to choose a suitable norm will be explained in the next
section.

IV. Statistical Properties

To analyze the statistical properties of the EPIC estimator, we define the following class of
sparse symmetric matrices,

/4 (S,A’L ku) = {F S RdXd > O;Amax (F) S kua

maz3T (T #0) < 5, [T, < M
7k

where rq is a constant, and (s, d, M) may scale with the sample size n. We assume that the
following conditions hold:

(Al) T e (s,M,r,)

(A.2) Oin < minj ej < max; 9] < Omax:

(A3) max; |l < Mmax, Max; EX; < K,
(A.4) s?log d/n—0,

where Gnax, Gmin: Mmax, and K are constants.

Remark 6: Condition (A.3) only requires the fourth moment of the distribution to be finite.
In contrast, sample covariance-based estimation methods can not achieve such theoretical
results. See more details in [5] and [7].

Remark 7: The bounded mean in Condition (A.3) is actually a mild assumption. Existing
high dimensional theories (Cai et al. 2011; Yuan, 2010; Rothman et al. 2008) on sparse
precision matrix estimation all require the distribution to be light-tailed. For example, there

exists some constant K such that maz;E|X;|” < K <oc for some r >> 4. By Jessen’s
inequality, we have (E| X;|)" < E|X;|" < K <oo, which implies that

maz;B| X;| < K" < 0. In another word, they also require maxi|uj| to be bounded

Before we proceed with main results, we first present the following important lemma.

Lemma 1: We assume that X ~ EC(l, & X) and (A.2)-(A.4) hold. Let 7 and éj be defined in
(9) and (12). There exist universal constants x; and x» such that for large enough n,

N logd 1
P(”}q%ﬂzkj_zkﬂ <k . ) 21—5, (19)

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.
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A1 1 logd 2
P 0. —0. " <k >1—-.
(mgm i R )_ 7 @

The proof of Lemma 1 is provided in Appendix D.

Remark 8: Lemma 1 shows that the transformed Kendall’s tau estimator and Catoni’s M-
estimator possess good concentration properties for heavy-tailed elliptical distributions. That
enables us to obtain a consistent precision matrix estimator in high dimensions.

A. Parameter Estimation Consistency

Theorem V.1 provides the rates of convergence for precision matrix estimation under the
matrix #x2113;,, spectral, and Frobenius norms.

Theorem IV.1: Suppose that X ~ EC(l, & o) and (A.1)-(A.4) hold, if we take

A=r1/1/logd/n and choose the matrix #x2113;; norm as ||-||« in (18), then for large enough
nand p = 1,2, there exists a universal constant C; such that

A logd 3
P(||Q—Q|p§C’1Ms 5 ) >1-50 @

Moreover, if we choose the Forbenius norm as ||-||~ in (18), then for large enough n, there
exists a universal constant C, such that

1 A 2 logd 3
P(=Q-Q| <CoM?==) >1- =,
(dH [, <Co >_ - @

o
n

The proof of Theorem 1V.1 is provided in Appendix E. Note that the rates of convergence
obtained in the above theorem are faster than those in [5].

B. Model Selection Consistency

Theorem V.2 provides the rate of convergence under the elementwise max norm.

Theorem IV.2: Suppose that X ~ EC(, & %) and (A.1)-(A.4) hold. If we take

A=k1/1/logd/n and choose the max norm for (18), then for large enough n, there exists a
universal constant C3 such that

A logd
’ (n “a),.. <o i) 215 e

n

Moreover, let E = {(k, j)|f4; # 0}, and E= {(k,j) |ij * 0}, if there exists large enough
constant Cy4 such that

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.
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logd
min_ Q| > CiM2 222,
(ki)eE n

then we have P (E - E) — 1

The proof of Theorem 1V.2 is provided in Appendix G. The obtained rate of convergence in
Theorem V.2 is comparable to that of [5].

Remark 9: Our selected regularization parameter A=x1/y/logd/n in Theorems IV.1 and IV.
2 does not contain any unknown parameter of the underlying distribution (e.g. ||T'1|). Note
that x; comes from (19) in Lemma 1. Theoretically we can choose x; as a reasonably large

without any additional tuning (e.g. V27, See more details in [23]). In practice, we found that
a fine tuning of #; delivers better finite sample performance.

V. Numerical Results
In this section, we compare the EPIC estimator with several competing estimators including:

1. CLIME.RC: We obtain the sparse precision matrix estimator by plugging the
covariance matrix estimator § defined in (17) into (3).

2. CLIME.SC: We obtain the sparse precision matrix estimator by plugging the
sample covariance matrix estimator S defined in (1) into (3).

3. GLASSO.RC: We obtain the sparse precision matrix estimator by plugging the
covariance matrix estimator & defined in (17) into (2).

Moreover, (3) is also solved by the parametric simplex method as our proposed EPIC
method, and (2) is solved by the block coordinate descent algorithm. All experiments are
conducted on a PC with Core i5 3.3GHz CPU and 16GB memory. All programs are coded
using C using double precision, and further called from R.

A. Data Generation

We consider three different settings for comparison: (1) d = 101; (2) d = 201; (3) d = 401.
We adopt the following three graph generation schemes, as illustrated in Figure 1, to obtain
precision matrices:

e Band. Each node is assigned an index j with j =1, ..., d. Two nodes are connected
by an edge if the difference between their indices is no larger than 2.

» Erdds-Rényi. We set an edge between each pair of nodes with probability 4/d,
independently of the other edges.

»  Scale-free. The degree distribution of the graph follows a power law. The graph is
generated by the preferential attachment mechanism.

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.
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The graph begins with an initial chain graph of 10 nodes. New nodes are added to the graph
one at a time. Each new node is connected to an existing node with a probability that is
proportional to the number of degrees that the existing nodes already have. Formally, the

k;
probability p; that the new node is connected to the it" existing node is pi:gjkj where kj is
the degree of node i.

Let G be the adjacency matrix of the generated graph, we calculate G= [ij] as
=~ &) Uy it Gp=Gy=1
Cin=Grj= { 0 if Gp=Gy=0

where all Uy’s are independently sampled from the uniform distribution Uniform (-1, +1).
Let &, be the rescaling operator that converts a symmetric positive definite matrix to the
corresponding correlation matrix, we further calculate

$-0%, [(é+ (0‘1 — Amin (é)) : 1)71} e,

where © is the diagonal standard deviation matrix with @jjzg%&‘%)l forj=1,...,d.

We then generate *= [14 \/EW independent samples from the t-distribution with 6 degrees of
freedom, mean 0, and covariance 2 For the EPIC estimator, we set ¢ = 0.5 in (13). For the
Catoni’s M-estimator, we set Kiax = 10 and Ky = 0.1.

B. Timing Performance

We first evaluate the computational performance of the parametric simplex method. For
each model, we choose a regularization parameter, which yields approximate 0.05 - d(d — 1)
nonzero off-diagonal entries. The EPIC and CLIME methods are solved by the parametric
simplex method, which is described in Appendix B. The GLASSO is solved by the dual
block coordinate descent algorithm, which is described in [11]. Table | summarizes the
timing performance averaged over 100 replications. To obtain the baseline performance, we
solve the CLIME.SC method using the simplex method? as suggested in [5]. We see that all
four methods greatly outperform the baseline. The EPIC, CLIME.RC, and CLIME.SC
methods attain similar timing performance for all settings, and the GLASSO.RC method is
more efficient than the others for d = 201 and d = 401.

C. Parameter Estimation

To select the regularization parameter, we independently generate a validation set of n
samples from the same distribution. We tune 1 over a refined grid, then the selected optimal

. . . A . AN S .
regularization parameter is A=ar gmmx‘ |E - I) where ¢* denotes the estimated

max’

IThe implementation of the simplex method is based on the R packages linprog and IpSolve.

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.
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precision matrix of the training set using the regularization parameter 4, and 5. denotes the
estimated covariance matrix of the validation set using either (1) or (17). Tables 1l and 11l
summarize the numerical results averaged over 100 replications. We see that the EPIC
estimator outperforms the GLASSO.RC and CLIME.RC estimators in all settings.

D. Model Selection

To evaluate the model selection performance, we calculate the ROC curve of each obtained
regularization path using the false positive rate (FPR) and true positive rate (FNR) defined
as follows,

Zk_].I(Qg;-)iO,ijzo)
Zk jI(ka:O) ’

AN
Zk,jI Qk] ¢0,ij$0)

AN
Zk,jl (ij ;to)

F.PR.=

TPR.=

Figure 1 summarizes ROC curves of all methods averaged over 100 replications.2 We see
that the EPIC estimator outperforms the competing estimators throughout all settings.
Similarly, our method outperforms the sample covariance matrix-based CLIME estimator.

VI. Real Data Example

To illustrate the effectiveness of the proposed EPIC method, we adopt the sonar dataset from
UCI Machine Learning Repository3 [13]. The dataset contains 101 patterns obtained by
bouncing sonar signals off a metal cylinder at various angles and under various conditions,
and 97 patterns obtained from rocks under similar conditions. Each pattern is a set of 60
features. Each feature represents the logarithm of the energy integrated over a certain period
of time within a particular frequency band. Our goal is to discriminate between sonar signals
bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

We randomly split the data into two sets. The training set contains 80 metal and 77 rock
patterns. The testing set contains 21 metal and 20 rock patterns. Let u) be the class
conditional means of the data where k = 1 represents the metal category and k = 0 represents
the rock category. [5] assume that two classes share the same covariance matrix, and then
adopt the sample mean for estimating py’s and the sample covariance matrix-based CLIME
estimator for estimating §2. In contrast, we adopt the Catoni’s M-estimator for estimating
Hi’s and the EPIC estimator for estimating £2. We classify a sample x to the metal category
if

NOMPS O
CHETHETY o (a0 _ 500
(I 5 ) Q(u fi )20,

2The ROC curves from different replications are first aligned by regularization parameters. The averaged ROC curve shows the false
gositive and true positive rate averaged over all replications w.r.t. each regularization parameter
Available at http://http://archive.ics.uci.edu/ml/datasets.html.
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and to the rock category otherwise. We use the testing set to evaluate the performance of the
EPIC estimator. For tuning parameter selection, we use a 5-fold cross validation on the
training set to pick the regularization parameter A.

To evaluate the classification performance, we use the criteria of misclassification rate,
specificity, sensitivity, and Mathews Correlation Coefficient (MCC). More specifically, let

yi'sand },’s be true labels and predicted labels of the testing samples, we define

Misclassification Rate
TP+TN

L INFTP+FNAED P
Spemﬁmtyz TN+FP’ Sensitivityzw,
MCC= TP~TN—FP-FX7

\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)’

where

TP=YI (§;=y;=1), FP=YI (§;=1,4:=0),
3

TN=YI (§;=y:=0) , FN=YI (§,=0,5i=1).
1

Table IV summarizes the performance of both methods averaged over 100 replications (with
standard errors in parentheses). We see that the EPIC estimator significantly outperforms the
competitor on the sensitivity and misclassification rate, but slightly worse on the specificity.
The overall classification performance measured by MCC shows that the EPIC estimator has
about 8% improvement over the competitor.

VII. Discussion and Conclusion

In this paper, we propose a new sparse precision matrix estimation method for the elliptical
family. Our method handles heavy-tailness, and conducts parameter estimation under a
calibration framework. We show that the proposed method achieves improved rates of
convergence and better finite sample performance than existing methods. The effectiveness
of the proposed method is further illustrated by numerical experiments on both simulated
and real datasets.

[25] proposed another calibrated graph estimation method named TIGER for Gaussian
family. However, unlike the EPIC estimator, the TIGER method can not handle the elliptical
family due to two reasons: (1) The transformed Kendall’s tau estimator cannot guarantee the
positive semidefiniteness. If we directly plug it into the TIGER method, it makes the TIGER
formulation nonconvex. Existing algorithms may not obtain a global solution in polynomial
time. (2) The theoretical analysis in [25] is only applicable to the Gaussian family.
Theoretical properties of the TIGER method for the elliptical family is unclear.

Another closely related method is the rank-based CLIME method for estimating inverse
correlation matrix estimation for the elliptical family [24]. The rank-based CLIME method
is based on the formulation in (3) and cannot calibrate the regularization. Furthermore, the
rank-based CLIME method can only estimate the inverse correlation matrix. Thus for
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applications such as the linear discriminant analysis (as is demonstrated in 86) which
requires the input to be a precision matrix [2], [30], [35], the rank-based CLIME method is
not applicable.
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APPENDIX A PROOF OF PROPOSITION I1I.1

Proof: To show the equivalence between (14) and (15), we only need to verify that the

optimal solution (f‘*j, ?j) to (15) satisfies

A A CA
12T = Ljllo=-75- (A1)

We then prove (A.1) by contradiction. Assuming that there exists some 7; > 0 such that

R c— ¢,
12T = Lijllo=775< 75 (A2)

(A.2) implies that (F*‘f’ TJ'> is also a feasible solution to (15) and
[Tl +em;<||Tujll +e?s. (A3

A

(A.3) contradicts with the fact that (I‘*j, ?j) minimizes (15). Thus (A.1) must hold, and (15)
is equivalent to (14).

Appendix B Parametric Simplex Method

We provide a brief description of the parametric simplex method only for self-
containedness. More details of the derivation can be found in [34]. We consider the
following generic form of linear program,
Te st Az < >
maze’ o st. Az <b, x>0, 1
where c € R™, A € R™™ and b € R". It is well known that (B.1) has a dual formulation as
cfollows,

. T T
;ré]%qzb y st.Ay<e, y2=>0, (B.2)

wherey = (yy, ..., Yn)' € R" are dual variables. The simplex method usually solves either
(B.1) or (B.2). It contains two phases: Phase | is to find a feasible initial solution for Phase
Il; Phase Il is an iterative procedure to recover the optimal solution based on the given initial
solution.
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Different from the simplex method, the parametric simplex method adds some perturbation
to (B.1) and (B.2) such that the optimal solutions can be trivially obtained. More
specifically, the parametric simplex method solves the following pair of linear programs

maz (c+6q) Tzst. Az < b+6p,z > 0, (B.3)
rER™

Q%Q(bJrﬂp)TyS-t- ATy >ect+Bq,y >0, o
where $= 0 is a perturbation parameter, p € R" and g € R™ are perturbation vectors. When
S, p, and q are suitably chosen such thatb + fp=0andc + fg<0,x=0and y =0 are the
optimal solutions to (B.3) and (B.4) respectively. The parametric simplex method is an
iterative procedure, which gradually reduces gto 0 (corresponding to no perturation) and
eventually recovers the optimal solution to (B.1).

To derive the iterative procedure, we first add slack variables w = (wy, ..., w,)T € R", and
rewrite (B.3) as

_mazx (E—i—ﬁt})Ti s.t. Hz=b+pp, z>0. (B.5)
TER™MHN '

where H = [Al], ¢= (CT: OT)T, g:( T 0T>T and

~ ~ ~ o~ ~ T
r= ('Tla'”axmyxm+1>"'>:rm+n)
T
= (Z1,.. s Ty W1, ..., Wy,)" € RMTT

Sinceb + fp=0andc+pq<0, z=(0, b+gp)T is the optimal solution to (B.5). We then
divide all variables in 4 into a nonbasic group .4 and a basic group #. In particular,
Z1,...,4m, Delong to the nonbasic group denoted by 7 _, and z,,,, 1, ..., &,,, belong to the
basic group denoted by 7 _,. We also divide H into two submatrices H , and H,_,, where H
contains all columns of H corresponding to 7 , and H , contains all columns of H
corresponding to  , . We then rewrite the constraintin (B.5)asH , 7 , +H _Z ,=b+3p.
Consequently, we obtain the primal dictionary associated with the basic group % by

z,=a" +pz, —H_'H,, (86

AT
Gp=0" — (2*+ﬁ z> xz,. (B7)

T
~ — - — . S* -1 ~ ~
where &* =H_'b, z,=H_'p, ¢* =¢_ H b, 2 Z(H% Hw) s — Cu,

_ T
2= (H;;H,v) g% — G-/ and ¢p is the objective value of (B.5) at current iteration.

We then add slack variables z = (z1, ... , zy)", and rewrite (16) as
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gé% (g+ﬁﬁ)Ty

(B.8)
st. A—z2Tg>ct+pq, 7>0.

To make the notation consistent with the primal problem, we define

z= (Zla ceey ZTTL727TL+17 cee 7Z’IIL+’IL)
T
= (213"'vzmvyla"'vyn) eRm—i—n.

Similarly we can obtain the dual dictionary associated with the nonbasic variable .4 by

~ e _ . T
zZ,= ZJV—I—,BZJV —|—(H38 HAA,) Zgy (B.9)

T
—¢,=— ¢*D — <m;—|—ﬂx_@> Z,, (B.10)

* T —1 . . . . .
where ¢7 =¢,_ H_"b, and ¢p is the objective value of the dual problem at current iteration.

Once we obtain (B.6), (B.7), (B.9), and (B.10), we start to decrease f, and the smallest value
of fat current iteration is obtained by

B*=min {,3|§’;€+,35c% >0, z' 48z, > 0} )

we then swap a pair of basic and nonbasic variables in B and N and update the primal and
dual dictionaries such that £ can be decreased to #*. See more details on updating the
dictionaries in [34]. By repeating the above procedure, we eventually decrease 5to 0. The
parametric simplex method guarantees the feasibility and optimality for both (B.3) and (B.4)
in each iteration, and eventually obtain the optimal solution to the original problem (B.3).

Since the parametric simplex method starts with all zero solutions, it can recover the optimal
solution only in a few iterations when the optimal solution is very sparse. That naturally fits
into the sparse estimation problems such as the EPIC method. Moreover, if we rewrite (16)
in the same form as (B.3), we need to set p = (0T, e, 0)T and start with #= 1. Since ¢ =
(-17, =), we can set q = 0 i.e., we do not need perturbation on c. Thus the computation in
each iteration can be further simplified due to the sparsity of p and g.

Remark B.1: For sparse estimation problems, Phase | of the simplex method does not
guarantee the sparseness of the initial solution. As a result, Phase 1l may start with a dense
initial solution, and gradually reduce the sparsity of the solution. Thus the overall
convergence of the simplex method often requires a large number of iterations when the
optimal solution is very sparse.
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APPENDIX C Smoothed Proximal Gradient Algorithm

We first apply the smoothing approach in [28] to obtain a smooth surrogate of the matrix
#x2113;1 norm based on the Fenchel dual representation,

02— ﬁHn: ijqﬁingltr (UT (Q - ﬁ)) +gIIUH§7 .1

where 77> 0 is a smoothing parameter. (C.1) has a closed form solution ¢y as follows,

ﬁ%zsign (627) - mazx {\6%| — fyk} . (C2)

~ Q ~
where U "= (Q - Q) /m, and 7k is the minimum positive value such that
0] =maz||Uk||, < 1. See [9] for an efficient algorithms to find )k with the average

computational complexity of O(d2). As is shown in [28], the smooth surrogate || — flll77 is
smooth, convex, and has a simple form gradient as

_oR -8, go
N ki

Since ﬁgj is obtained by the soft-thresholding in (C.2), we have G(£2) continuous in 2 with
the Lipschitz constant n~1. Motivated by these good computational properties, we consider
the following optimization problem instead of (18),

ﬁ:argmin Q-Qf.

T [ ()

To solve (C.3), we adopt the accelerated projected gradient algorithm proposed in [27].
More specifically, we define two sequences of auxiliary variables {M®} and {W®} with

MO = WO = ) and a sequence of weights {4 = 2/(1+t)}. For the t" iteration, we first
calculate the auxiliary variable M® as

MO =(1-6,) Q¢ V1o, W-D,

We then calculate the auxiliary variable W® as

W= argmanW ﬁH +tr ((W — W(t71)>TG (M(t))>
wW=wT
+ g |W — W= 1)” = (W(f_l) - 4G (M(t)»

Ao -geu).

where 7 is the step size. We can either choose 7 = nin all iterations or estimate 7;’s by the
back-tracking=line search for better empirical performance [4]. At last, we calculate 29 as,
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QW =(1-6,) Q¢ 1o,Wh,

The next theorem provides the convergence rate of the algorithm with respect to minimizing
(18).

Theorem C.1: Given the desired accuracy & such that [|[Q®) — Q||, — || — Q]|,<e, let =
d~1&/2, we need the number of iterations to be at most

t=2v2dQ0 - Q| -e ' —1=0 (= 71).

Proof: Due to the fact that ||A||e < d||A||oco, a direct consequence of (C.1) is the following
uniform bound

12 - @, —dn < 2 -9, < |2 -Q,.

Then we consider the following decomposition

Y- -e@-a, o
=[Q© — Q|| — |2~ Q|+~ 2, — 12—,

12© -, — (12 — Q| +dn

2 -

o T

IN

IN

where the last inequality comes from the result established in [27],
O e 2000 -q)
Q% -qf, - I2-9f, < ————.

(t+1)"n
Thus given d7 = &2, we only need

1)@ -Q)° e

—. (C4)
(t+1)* 7 2
By solving (C.4), we obtain
2/24||Q°) — Q|
t< E_ 1.

€

Theorem C.1 guarantees that the above algorithm achieves the optimal rate of convergence
for minimizing (18) over the class of all first-order computational algorithms.
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APPENDIX D Proof of Lemma 1

Proof: [7] shows that there exist universal constants #3 and g such that

P (‘/}j - :uj| < k30maw€) >1—exp (_7“2) , (DY)

P (‘ﬁl] — IE'.XJ2| < ky \/?e) >1—exp (—nez) . (D.2)
We then define the following events
1= |:[l_] - /Lj‘ < /Lmar}a
(52: |1&‘] - )U’J‘ S k307na:1;€} 5

%73: ’I’hJ —EXJQ| S k4 \/Fé},
€1={10; — 0] < Omin } -

Conditioning on ¢, we have

5 = 3] =iy — pyl - ]
< iy = gl |y = w18y — pl - 201
< (2ptmantlty = 151) 1y — 1] ®
< Sﬂmaxmj - ,LL]'|.

Conditioning on ¢, and 7, (D.3) implies
A2 N N
105 =071 =l — i —QEXf;Luﬁ\ )
< |y = BXG |+ |k — pjl (D.4)
S <3ﬂmazk36ma1+k4 \/ﬁ) €.

(D.4) further implies

2 2
6 o <1
J J = 0,40, — 0; D.5
3 k30 VK (05
< ( HmaxR3 maxtka K)E

Omin
Conditioning ¢, (D.5) implies

[ .

0,05 — (8;—6;)0;+262
(3pmask3Omaztka VK e

= (05—5)0;0min+2020min

< (BtmasksOmazths VK)e

= 20%0,1,in

< (BrmacksOmas+ha VE)e
= 3 N

min

A1 _
6, —67'|=

(D.6)

Combining (D.1), (D.2), and (D.6), for small enough & such that
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HKmaz 02 3
e < min , mn y (D.7
k3 amax 3/Lmar kS amax + k4 \% K ®©1

we have

ae1 1 (3Hma1k30mam+k4 ﬁ) €
PLIO; —077] < 93

min

) >1—2exp (—4n<—:2> . (D.8)

By taking the union bound of (D.8), we have

(3lumaz kS 0max+k4 \/I_(> €
93

min

P (mam |é;1 - 49]._1| <

> 1— — 2 .
2z ) >1 Zexp( dne +logd)

If we take €= V109 /7 then (D.7) implies that we need n large enough such that

2
k§02 (3/1’mazk30max+k4 \% K)
n > max Qm‘m, vi
emin

,umaa:

- logd.

Taking k2= (3,umazli36maz+’{4 VK ) /03, we then have

. logd 2
Pl maz|d;' =07l < ko[22 >1- 2.
1<j<d 7 J n d

(19) is a direct result in [24], therefore its proof is omitted.

Appendix E Proof Of Theorem IV.1

Proof: We first define the following pair of orthogonal subspaces (5”;‘7 f’f)

= {'v € Rvp=0for all I‘IW:O} ,

5/]4: {’U € Rvp=0for all Ly # 0} .

We will use (5”;" yf) to exploit the sparseness of I'xj. We then define the following event

P = {12 = Zl|pae <2}

Conditioning on ,, we haveis
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|20~ Lyll,= || (2-2) Tyl

. (E.1)
< I0yl: 112 = Z||

<ALl

maxr —

Now let 7j = [|Tsjll1, (E.1) implies that (T'«j, ) is a feasible solution to (13). Slnce( 5 TJ)
is the empirical minimizer, we have

IPilly 4 AT, Aefs =l et

(E2)
< [l ter; i=IT 1l +eTjs

where the last equality comes from the fact that ij%j -

Let A_f> _ 1 be the estimation error, (E.2) implies

I8, S IRl = Il e (7 = 75)
< A, | +e(r = 7))
< Al e (Il = 1R400) g
@) 1A, +elAsgl,
<

i) (o) 1A, ] elA,,

where (i) comes from the constraint in (13);] |f*j||1 < 7;and (ii) comes from the fact

A1 =l1A; 11,

7k | ‘1 Combining the fact “Ay'jlj le‘ |1“ij]_ - 0”1:HFyfj | |1 with
(E.3), we have

1A <clA, Il e

sLs ||
where ¢ = (1+c) / (1 — ¢). (E.4) implies that A, ; belongs the following cone shape set

J/gjcz{v e R7\ {0} [y <c v, | }

J

The following lemma characterizes an important property of .//ljE when ¢, holds.

Lemma E.1: Suppose that X ~ EC(u, & %), and (A.1) and ¢, hold. Given any v € ///]-E, for

2
2<1+ E) Sk, <1

small enough A such that , we have

2 2k, (ESD)
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The proof of Lemma E.1 is provided in Appendix E.1. Since A«j exactly belongs to ,///jz, we
have a simple variant of (E.5) as

o PN AT A AP
1812800 2 A28 2 g
18,05 185,10 &
= 2k, = 28k,

where the last inequality comes from the fact that A.yﬂ has at most s nonzero entries. Since

1ZAjllo < 121 — Ll o+ 2T — L]l

< A(F+7)

S A@F+Ty —15) €
< A(285+1AL,) |
<

A <2fj+ <1+ E) ||Ayﬂ.|\1) ,
where the last inequality comes from (E.4). Combining (E.6) and (E.7), we have

1Z80]. <A (2242 (14 ) husl 2B ) )

Assuming that 1 ~ 2 (1+ C) KusA=01>0 (g gy implies
1ZA|,, < 267'A75. (E9)
Combining (E.6) and (E.9), we have

et <A, Fery < 2kus| 2D | e

E.10
< 4ku55f1A7°j+CTj. (E10)

Assuming that 1 — 4k, 56, 'c*A=6,>0, (E.10) implies

£ <6 . (E1D)

Recall A=k 1/log d/n, in order to secure

1-2 <1+ c | kysA=8;>0,
c — 4k, 507 TA=035>0,

2
2<1+ E) sAk, <1,

we need large enough n such that
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2
n > mazx {4(1 -5 (1—0— E) E2,16(c — 82) 2k2572,

4
4(1—0— E) kukrl} - s%logd.

Combining (E.9) and (E.11), we have
1ZA||,, < 26765 A7), (E12)
Combining (E.4), (E.6), and (E.12), we obtain

||A*]||1 <4 <1-|— E) ku61_152_15/\7'j. (E.13)

Combining (E.12) and (E.13), we have

P
N
g
A

1A - 12 Ak

8 <1+ E) hudy 205 2sa2r2, (519

IN

By Lemma E.1 again, (E.14) implies

1Al <16 (14 o) k26726250077, 19

Lot K5=4 (1+ E) Kudy 65 K1 g K6=16 (1+ E) Ku01 0553 Recall \=rr \/log d/n,
by definition of the matrix #x2113;1 and Frobenius norms, (E.13) and (E.15) imply

[Ali= maz| Al <4 (14 ) ko705 samaor,
J J E.16
< kg M-sy/lesd =0

n ?

and

F

A 2 A~ 2 — Y,
LA 5Z||A*j\\2 <16 (1+ c> k26725, 25A2Tj2
J (E.17)

IN

kg - M2 . slogd

n

Now we start to derive the error bound of ¢ obtained by the ensemble rule. We have the
following decomposition
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Q-Q= (2)‘11“@) '_e're!

= (67 -e'+e!) (I -T+T)

: (é)’1 ~0 40 -0 re!

= (o Al_—l o) (P - r) (6 - @rl_)l
+ (@ - @‘1) (- - r) o'+ (e - (?—1) re-!
+ ( 1) r (? 1) 1oL (r - r) e!
ot (b1 (6 -0
+O'r (@ - @*1) .

(E.18)

Moreover, for any A, B, C € R9%d, where A and C are diagonal matrices, we have

IABCl; < [[Allae - By - 1Cllnazs  €19)

IABCI|, < [[Allq - Bl - 1Cllmae-  (€20)

Here we define the following event

~ log d
%={|® Oy < 2y 25 }

n

Thus conditioning ¢, (E.16), (E.18), and (E.19) imply

HQ Q|_, < K3Ks - logd -M - sw/l g d

g BB

+K3 M egdy k2 py. flood (E.21)

Omin

Nzhr logd M-s log d
‘NLLIL n n
K5 M. g /log d /-62 M-

02
min Omin

If (A.4): s2logd/n — 0 holds, then (E.21) is determined by the slowest rate /5 /109 dfn,
Thus for large enough n, there exists a universal constant C4 such that

~ log d
10— ,<Ci-M-sy |22 €2
n

Similarly, conditioning on ¢, (E.17), (E.18), (E.20) and the fact ||T'[| , < M Vd imply
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Hﬁ_Q”F < l{glmﬁ l()qd /(]sloqd
[log d /dslo d
+%§A 1V o . AIJ‘\/ el Exn)
ngng . /log /ds logd
::1‘1 dslogd ]\I\/— /1l

’rn7w

Again if (A.4) holds, then (E.23) is determined by the slowest rate */ V@5 Log d/n Thys
for large enough n, there exists a universal constant C, such that

1, log d
SIQ - <cpon? 9L g
d F n

We then proceed to prove the error bound of ¢ obtained by the symmetrization procedure
(18). Let Cq = 2C,4, if we choose the matrix #x2113;1 norm as ||-||x in (18), we have

-9, < IIQN— Q|+ -0,
<2IQ-Q|, <Cp - M- sy /lead

n

(E.25)

where the second inequality comes from the fact that €2 is a feasible solution to (18), and ¢
is the empirical minimizer. If we choose the Frobenius norm as |||« in (18), using the fact
that the Frobenius norm projection is contractive, we have

1 A 2 1, 2 slogd
~10 - < 2| — < CoM?P22—. &
1=l <[l <, ——. (E26)

All above analysis are conditioned on ¢, and ¢,. Thus combining Lemma 1 with (E.25) and
(E.26), we have

A logd 3
P (HQ —-Q, < C1Ms oi ) >1-=, (E27)

slogd 3
(‘HQ Q|| < o228 )21—3. (E.28)

where p =1, 2, and (E.27) comes from the fact that ||A||2 < ||Al|1 for any symmetric matrix
A.

APPENDIX F Proof of Lemma E.1

Proof: Since A, (Z) =1/Apmae (T') > &, ', We have
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vIZy =vTZv — o7 (Z — 2) v

. (F.1)
_ 2 2
> ol = ol 12 = 2]
Since v € //ljz, we haveH”yjL ||1 <cllvy, ||1, which implies
ol =l +lo,01 < (14 €) o I,
71 (F2)

< (1+2) Vil |

2?

where the last inequality comes from the fact that there are at most s nonzero entries in V..
Then combining (F.1) and (F.2), we have

2
2o 2wl = (14 ¢) o, 12 = 2]
( (F-3)

2
— - 2
> ol = (14 € ) Ao 13

2
Since we have 2<1+ c) sMu = 1(E 3) implies

vT Zv >

APPENDIX G Proof Of Theorem IV.2

Proof: Our following analysis also assumes that Z1= {||2 = Zl| 00 < )\} holds. Since ¢,
implies (E.1),

|ZT.; — Lj|l < Amj,  Vi=1,....d,

where 7 = ||[%j||1. Then (I3, 5) is a feasible solution to (13), which implies

|ZTs; — Lijll o +[12T 45 — Ll
A AT

|Z (P —Tu) |

= G.1
p @Y

Moreover, we have
(I+0) [Tully < [[Tglly+efy < [Tl +er;

= (I+0) [Tyl = (1+e) 7,

which further implies

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhao and Liu

Il < Pl I = Ty < 2Tl @2
Combing (G.1) and (G.2), we have where the last inequality comes from

12 (Do —T) |

< H?( = F*J) |+l (Z z) ( - Ty) e ©3)
< )\T+/\7—3+HZ ZHmaxHF*J *]”1
< BATAs; < WA

where the last inequality comes from

ctj < ||Dujlly +e?j < [Tl emj= (14c) 7.

By (G.3), we have

IPs = Tujll o < 0114112 (Bsj = Ty |
1+4c) )\(1+Oéfc)‘r (G.4)
< AL, < =%

Recall A=k1 1/log d/n, by the definition of the max norm and (G.4), we have

logd
<hge M2, (@9

(A

max

where 7 = xq(1 + 4c)/c. Since for any A, B, C € R9d, where A and C are diagonal
matrices, we have

[ABC[00 < [Allnaz - IBllinaz - 1Cllmas- (G6)

max

A — logd
2= {n@ 07 < \/%} . @D

(G.6), (E.18) and the fact ||T|max < M imply

max max

Conditioning on

10— Q. < K2k - le2d. M2 [logd

mar — n
k k /logd /1l
672711771 ’ Z\Iz o
+k3 M- £g£+_2_ M /_9_ G.8)

+2 kakz . [logd  pg2. / o

7TL’LTL

ko 2, loqd ko logd
to M S e e

min
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Again if (A.4): 2 log d/n — 0 holds, then (G.8) determined by the slowest rate

2
M7 Jlog d/n Thys for large enough n, if we choose the max norm as ||-||« in (18), we
have

12 = Rl < 112 = Rl

< 2)Q-Q]

+Hﬂin“maz
< 2k; - M?. \[lead

n

max

(G.9)

max

where the second inequality comes from the fact that 2 is a feasible solution to (18), and ¢
is the empirical minimizer.

Note that the results obtained here only depend on ¢, and ¢,. Thus by Lemma 1 and (G.9),
let C3 = 21, we have

R [10gd
P(\Q—Qnmaxgcg-z\fz- i) >1-2
n d

To show the partial consistency in graph estimation P (E c E) — 1, we follow a similar
argument to Theorem 4 in [25]. Therefore the proof is omitted.
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True Positive Rate

True Positive Rate

True Positive Rate

Fig. 1.
Three different graph patterns and corresponding average ROC curves. EPIC outperforms

the competitors throughout all settings. (a) Band (d = 401). (b) Band (d = 101). (c) Band (d
=201). (d) Band (d = 401). (e) Erd6s-Rényi (d = 401). (f) Erdds-Rényi (d = 101). (g) Erdos-
Rényi (d = 201). (h) Erdds-Rényi (d = 401). (i) Scale-free (d = 401). (j) Scale-free (d = 101).
(k) Scale-free (d = 201). (I) Scale-free (d = 401).
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Timing Performance of Different Estimators on the Band, Erdds-Rényi, and Scale-Free
Models (in Seconds). The Baseline Performance Is Obtained by Solving the CLIME.SC
Method Using the Simplex Method

Model

d

EPIC

GLASSO.RC

CLIME.RC

CLIME.SC

BASELINE

Band

101
201
401

0.1561(0.0248)
1.6622(0.1253)
23.061(0.5777)

0.3633(0.0070)
0.4417(0.0122)
1.0864(0.1403)

0.1233(0.0057)
1.5897(0.1249)
24.441(1.5344)

0.1701(0.0119)
1.6085(0.0518)
25.445(3.8066)

49.467(1.7862)
687.57(23.720)
4756.4(170.25)

Erdos-Rényi

101
201
401

0.1414(0.0079)
1.6214(0.5175)
21.722(0.5470)

0.3703(0.0072)
0.4448(0.0164)
1.1517(0.0959)

0.1309(0.0331)
1.5992(0.1840)
22.795(0.6999)

0.2073(0.0925)
1.6155(0.2957)
24.230(3.1871)

59.775(2.0521)
803.51(29.835)
4531.7(151.46)

Scale-free

101
201
401

0.2245(0.0514)
1.8682(0.1078)
21.926(0.7112)

0.4398(0.0843)
0.4632(0.0067)
1.0093(0.1140)

0.1509(0.0054)
1.5472(0.1350)
23.135(1.4318)

0.1871(0.0149)
1.7235(0.1778)
25.596(3.3401)

55.112(1.7109)
865.98(31.399)
4991.2(202.44)
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Quantitive Comparison of Different Estimators on the Band, Erdds-Rényi, and Scale-Free Models. The EPIC

Estimator Outperforms the Competitors in all Settings

Spectral Norm: | Q- 01 l5

Model d EPIC GLASSO.RC  CLIME.RC CLIME.SC
101  3.3748(0.2081)  4.4360(9,1445) 3.3961(0.4403)  3.6885(0.5850)

Band 201 3.3283(0.1114)  4.8616(0.0644)  3.4559(0.0979)  4.4789(0.3399)
401 3.5033(0.5192)  5.1667(0.0354)  4.0623(0.2397) 5.7164(0.9666)

101 2.1849(0.2281)  2.6681(0.1293) 2.6787(0.8414)  2.3391(0.2976)

Erdés-Rényi 201  1.8322(0.0769)  2.3753(0.0949)  2.0106(0.3943)  2.0528(0.1548)

401 1.3322(0.1294)  2.4265(0.0564)  2.0051(0.4144)

4.0667(1.1174)

101 2.1113(0.3081)  2.9979(0.1654)  2.0401(0.3703)
Scale-free 201 2.3519(0.1779)  3.2394(0.1078)  2.3785(0.4186)
401 3.2273(0.1201)  4.0105(0.5812)  3.3139(0.5812)

2.6541(0.5882)
2.5789(0.5139)
3.9287(1.1750)
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Quantitive Comparison of Different Estimators on the Band, Erdds-Rényi, and Scale-Free Models. The EPIC
Estimator Outperforms the Competitors in All Settings

Frobenius Norm: | |h— Q1 |2

Model d EPIC GLASSO.RC  CLIMERC  CLIME.SC
101 9.4307(0.3245)  11.069(0.2618)  9.7538(0.3949)  11.392(0.8319)

Band 201 12.720(0.2282)  16.135(0.1399)  13.533(0.1898) 14.850(0.6167)
401  18.208(1.0537)  23.177(0.1957)  20.412(0.2366)  25.254(1.0002)

101  6.0660(0.1552)  6.8777(0.2115)  6.7097(0.3672)  7.3789(0.4390)

Erdés-Rényi 201  6.7794(0.1632)  8.1531(0.1828)  7.6175(0.2616)  8.3555(0.2844)
401 7.3497(0.1743)  10.795(0.1323)  8.3869(0.4755) 11.104(0.6069)

101  4.6695(0.2435)  5.6689(0.2344)  4.9658(0.1762)  6.2264(0.3841)

Scale-free 201  5.6732(0.1782)  7.2768(0.0940)  6.2343(0.2401)  7.2842(0.3310)
401 7.2979(0.1094)  9.0940(0.0935)  7.3765(0.2328)  9.5396(0.5636)
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TABLE IV

Quantitive Comparison of the EPIC and Sample Covariance Matrix-Based CLIME Estimators in the Sonar
Data Classification

Method Misclassification Rate Specificity Sensitivity MCC
EPIC 0.1990(0.0285) 0.7288(0.0499)  0.8579(0.0301)  0.6023(0.0665)
CLIME.SC 0.2362(0.0317) 0.7460(0.0403)  0.7791(0.0429) 0.5288(0.0631)

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.



