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Abstract

Aims—To assess strains of lactobacilli for their capacity to produce functional fatty acid-

conjugated linoleic acid. To assess the linoleate isomerase for CLA production in the most 

efficient CLA producer.

Methods and Results—In this study, strains of food-derived lactobacilli were cultured in 

media with linoleic acid and CLA production was assessed. Most of the selected strains produced 

CLA at different levels, with Lactobacillus plantarum ZS2058 being the most efficient CLA 

producer converting over 50% of linoleic acid to c9, t11-CLA and t9, t11-CLA. Some 

intermediates 10-hydroxy-cis-12-octadecenoic acid, 10-oxo-cis-12-octadecenoic acid and 10-oxo-

trans-11-octadecenoic acid were determined via GC-MS. The genes coding the multicomponent 

linoleate isomerase containing myosin-cross-reactive antigen, short-chain dehydrogenase/

oxidoreductase and acetoacetate decarboxylase for CLA production in Lact. plantarum ZS2058 

were cloned and expressed in Escherichia coli. With the mixture of recombinant E. coli, c9, t11-

CLA and three kinds of intermediates were produced from linoleic acid, which were in line with 

those in the lactobacilli.

Conclusions—The ability for CLA production by lactobacilli exhibited variation. Lactobacillus 

plantarum and Lact. bulgaricus were the most efficient producers in the selected strains. Lact. 

plantarum ZS2058 converted linoleic acid to CLAs with 10-hydroxy-cis-12-octadecenoic acid, 

10-oxo-cis-12-octadecenoic acid and 10-oxo-trans-11-octadecenoic acid as intermediates. The 

multiple-step reactions for CLA production catalysed by multicomponent linoleate isomerase in 

Lact. plantarum ZS2058 were confirmed successfully.
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Significance and Impact of the study—Multicomponent linoleate isomerase provides 

important results for the illustration of the mechanism for CLA production in lactic acid bacteria. 

Food-derived lactobacilli with CLA production ability offers novel opportunities for functional 

foods development.
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Introduction

Conjugated linoleic acid (CLA) refers to a group of positional and geometric isomers of 

linoleic acid (LA, 18:2 n-6) with conjugated double bonds. In the past several decades, CLA 

has attracted great interest because of its heath-associated activities including 

anticarcinogenic (Ip et al. 1991, 1994; Field and Schley 2004; Shen et al. 2013), anti-

atherogenic (Lee et al. 1994; Valeille et al. 2004; McClelland et al. 2010), antidiabetic 

(Moloney et al. 2007; Castro-Webb et al. 2012; Rungapamestry et al. 2012), anti-

inflammatory (Sugano et al. 1998; Coakley et al. 2006) and anti-obesity (Noone et al. 2002; 

Park et al. 2004; Sluijs et al. 2010).

CLA isomers occur naturally in ruminant meat and a variety of dairy food derived from 

ruminants as a minor component of the lipid fraction. CLAs are formed as intermediates 

during linoleic acid biohydrogenation to stearic acid by the anaerobic rumen bacteria. The 

complete biohydrogenation of linoleic acid by the anaerobic rumen bacterium (such as 

Butyrivibrio fibrisolvens) is a multi-step process (Kepler and Tove 1967). The first reaction 

occurs rapidly by linoleate isomerase, the conversion of linoleic acid to c9, t11-CLA, 

followed by the slower conversion to trans-11 vaccenic acid (Kepler et al. 1966). Vaccenic 

acid is known to be reduced to stearic acid by microbial activity other than that of B. 

fibrisolvens in the rumen. Vaccenic acid can also be converted to c9, t11-CLA by the delta-9 

desaturase in the mammary tissue itself, providing another mechanism for its formation in 

milk (Griinari and Bauman 1999).

Additionally, it has also demonstrated that certain strains used in food fermentation possess 

the capacity to generate c9, t11-CLA. Two strains of Propionibacterium freudenreichii 

subsp. freudenreichii and one strain of P. freudenreichii subsp. shermanii can convert free 

LA to c9, t11-CLA (Jiang et al. 1998). Several bifidobacteria, isolated from the human gut 

and other sources, can produce c9, t11-CLA with LA in the medium (Coakley et al. 2003; 

Rosberg-Cody et al. 2004; Gorissen et al. 2010). Furthermore, several studies have reported 

the production of CLA isomers from LA by different lactic acid bacteria grown in MRS, 

skim milk and cheddar cheese (Lin et al. 1999; Alonso et al. 2003; Mohan et al. 2013; Ye et 

al. 2013).

To date, only three linoleate isomerases derived from Lactobacillus reuteri PYR8 (Rosson et 

al. 2004), Clostridium sporogenes (Peng et al. 2007) and Propionibacterium acnes 

(Liavonchanka et al. 2006) have been characterized. The linoleate isomerase from Lact. 

reuteri PYR8 was a myosin-cross-reactive antigen (MCRA), which was originally found in 
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Streptococcus pyogenes and predicted to have a polyunsaturated fatty acid isomerase 

function (Kil et al. 1994). Several putative linoleate isomerases, which were highly 

homologous to that from Lact. reuteri PYR8, were expressed in E. coli; unfortunately, none 

can produce CLA (Volkov et al. 2010; Rosberg-Cody et al. 2011), and instead of CLA, 10-

hydroxy-cis-12-octadecenoic acid (10-HOE) was produced. A multiple-fraction linoleate 

isomerase was purified from Lact. plantarum AKU 1009a, which produced c9, t11-CLA, 

t10, c12-CLA and t9, t11-CLA, but no detailed results for the enzyme were reported 

(Kishino et al. 2011a). In a later study, the genes encoding the multicomponent enzyme 

machinery catalysing double bond migration in Lact. plantrum AKU 1009a were illustrated 

(Kishino et al. 2011b), with the transformed E. coli as the catalysts, t9, t11-CLA was 

produced at a significant level with c9, t11-CLA and 10-HOE. A multiple-step reaction for 

CLA production in Lactobacillus was hypothesized but without evidences for the putative 

intermediates. Recently, the mass spectra and NMR data for 10-hydroxyl-cis-12-

octadecenoic acid, 10-oxo-cis-12-octadecenoic acid and 10-oxo-trans-11-octadecenoic acid, 

intermediates in CLA bioconversion catalysed by the multicomponent linoleate isomerase, 

were further demonstrated (Kishino et al. 2013).

In our previous study, MCRAs from several lactic acid bacteria were confirmed as fatty acid 

hydratase (Yang et al. 2013). In the present study, a selection of strains including different 

food-derived lactobacilli was assessed for CLA production from free linoleic acid. The 

genetic determinants for CLA production in the most efficient producer, Lact. plantarum 

ZS2058, were cloned in isolation in E. coli, and the ability of the resultant strains was then 

assessed for CLA production successfully.

Materials and methods

Strains, media and growth conditions

The lactic acid bacteria strains used in this study are detailed in Table 1. Strains of 

lactobacilli were cultured in de Man, Rogosa and Sharpe (MRS) medium consisting of 1·0% 

tryptone, 1·0% meat extract, 0·5% yeast extract, 2·0% glucose, 0·1% Tween 80, 0·2% 

K2HPO4, 0·5% sodium acetate, 0·2% diammonium citrate, 0·02% MgSO4·7H2O and 

0·005% MnSO4·H2O (pH 6·5) under anaerobic conditions at 37°C for 48 h. When solid 

media were required, 2·0% agar was added to the MRS medium. For growth of 

bifidobacteria, 0·05% (w/v) L-cysteine hydrochloride was added to the MRS medium and 

cultured at 37°C for 48 h. Escherichia coli BL21 (DE3) carrying the plasmid pET28a was 

routinely cultured aerobically in Luria–Bertani (LB) medium (10 g l−1 tryptone, 5 g l−1 yeast 

extract, 10 g l−1 NaCl) at 37°C in the presence of kanamycin (50 μg ml−1) as a selective 

marker.

Fat extraction from bacterial supernatant fluids and pellets

Prior to examination of the strains for CLA production, each was subcultured twice in MRS 

broth. All strains were then cultured (1%) in broth spiked with 0·55 mg ml−1 free linoleic 

acid (99% purity; Sigma, St. Louis, MO). The linoleic acid was added as a 30 mg ml−1 stock 

solution containing 2% (v/v) Tween 80 and was previously filter sterilized through a 0·45-

μm Minisart filter (Sigma) and stored in the dark at −20°C. The strains were incubated 
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anaerobically at 37°C in a modular atmosphere-controlled system (Whitley DG250 

anaerobic workstation; Don Whitley Scientific, West Yorkshire, UK) that was continuously 

sparged with a mixture of 80% nitrogen, 10% carbon dioxide and 10% hydrogen.

Lipid extraction and methylation

After 48-h incubation, the cultures were centrifuged at 5000 g for 10 min at room 

temperature. The fat was extracted from the culture supernatant fluid as follows. The 

internal standard, C17:0 heptadecanoic acid (99% pure; Sigma), was added to 4 ml of the 

supernatant fluid to give a final concentration of 217 μg internal standard per sample. Four 

millilitre of isopropanol was added to the supernatant fluid, and the samples were vortexed 

for 30 s. Four millilitre of n-hexane was added to this mixture, vortexed and centrifuged at 

5000 g for 5 min. The resultant hexane layer (containing lipids) was dried off under a stream 

of nitrogen.

The fat was extracted from the bacterial pellet as follows. The pellet from 10 ml of bacterial 

culture was washed in 2 ml saline solution (0·137 mol l−1 NaCl, 7·0 mmol l−1 K2HPO4 and 

2·5 mmol l−1 KH2PO4). The cells were vortexed and centrifuged at 5000 g for 10 min and 

the washing step repeated twice. The cells were suspended in 2 ml saline solution, and then 

the samples were extracted completely as described above for the bacterial supernatant fluid.

Preparation of fatty acid methyl esters and gas chromatography analysis

Fatty acids were converted to corresponding methyl esters with (trimethylsilyl)-

diazomethane (Sigma) as described previously (Yang et al. 2013). The FAMEs were 

extracted in n-hexane and separated on a Rtx-2560 column (100 m × 0·25 mm × 0·25 μm) 

using a gas chromatograph (GC2010 plus, Shimadzu, Kyoto, Japan) fitted with a QP2010 

ultra mass spectrometer. Injections of 1 μl were administered automatically at a split ratio of 

10 : 1. Helium was used as the carrier gas. The column temperature was set initially at 

150°C, then increased to 200°C in increments of 5°C min−1 and maintained for 10 min, and 

finally increased to 240°C in a rate of 4°C min−1. The 240°C was maintained for 10 min. 

The injector and detector were operated at 240°C. Electron energy of 70 eV and ion source 

temperature of 220°C were used. The CLA isomers were identified by retention time with 

reference to CLA standard mix (Sigma). The percentage conversion to CLA isomers was 

calculated by dividing the amount of CLA present in the broth after inoculation/ incubation 

with the amount of linoleic acid present in the spiked broth before incubation.

Cloning and expression of recombinant protein in Escherichia coli

Genomic DNAs were isolated rapidly from Lact. plantarum ZS2058 as described by 

Hoffman and Winston (1987). According to previous result (Kishino et al. 2011b), myosin-

cross-reactive antigen (mcra, GenBank: JF747255.1), short-chain dehydrogenase/

oxidoreductase (dh, GenBank: KJ019513) and acetoacetate decarboxylase (dc, GenBank: 

KJ019514) were amplified from Lact. plantarum ZS2058 genomic DNA with specific 

primers according to their homologous gene in Lact. plantarum WCFS1 (GenBank: 

NC_004567). PCR was performed with KOD-plus DNA polymerase (Toyobo, Osaka, 

Japan) according to the manufacturer’s protocol. PCR conditions were as follows: 30 cycles 

of 45 s of denaturation (94°C), 30 s of annealing (55°C) and 2 min of elongation (68°C). For 
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expression in E. coli, the three genes were amplified with the primers listed in Table 2 and 

cloned into the pET28a expression vector (Novagen, Darmstadt, Germany), yielding 

plasmids pET28a-mcra, pET28a-dh and pET28a-dc (N-His-tagged version).

For protein production, E. coli BL21 (DE3) Star strain (Invitrogen, Carlsbad, CA) 

harbouring pET28a-mcra, pET28a-dh and pET28a-dc plasmids, separately, was used. 

Bacteria were cultivated in LB medium supplied with kanamycin at 37°C until OD600 

reached 0·6. At that point, IPTG was added to a final concentration of 0·05 mmol l−1, and 

the culture was placed at 18°C for 10-h induction of protein expression. pET28a vector-

inserted E. coli was used as negative control. Following induction, cells were harvested by 

centrifugation, washed with 20 mmol l−1 potassium phosphate buffer (KPB) (pH 6·5) and 

sonicated (Uilbra-Cell VCX500; Sonics & Materials Inc., Newtown, CT). The cell debris 

was removed by centrifugation, and the supernatant containing soluble proteins was 

collected. Ten micrograms of protein was subjected to SDS-PAGE (12% SDS-PAGE) 

followed by protein transfer to a PVDF membrane (Amersham Pharmacia Biotech, 

Amersham, UK); the immunoblots were developed with the use of anti-His antibody at a 

dilution of 1 : 2000 (Tiangen, Beijing, China). Horseradish peroxidase (HRP)-conjugated 

anti-mouse IgG (Tiangen) secondary antibody diluted at 1 : 500 was used for the detection 

of specific antibody binding. The bands were visualized with enhanced chemiluminescence 

reagents (Kangwei, Beijing, China) according to the manufacturer instructions.

Activity assay and fatty acid analysis

For activity assay, the reaction was performed in a screw tube that contained 1 ml of 

reaction mixture (20 mmol l−1 KPB, pH 6·5) with 5 mmol l−1 NADH and 0·1 mmol l−1 FAD 

as cofactors, 0·5 mg ml−1 linoleic acid complexed with BSA as substrate and the 

recombinant E. coli cells under microaerobic conditions in a sealed chamber filled with N2 

and shaken (180 strokes min−1) at 37°C for 6 h. All the transformed E. coli were suspended 

in KPB at a final concentration of 0·5 mg ml−1 wet cells. Fifty microlitre of each 

transformed E. coli suspension was used as catalyst in various combinations. The following 

reactions were carried out: (i) E. coli BL21(DE3)/pET28a-mcra recombinant suspension 

plus free linoleic acid, FAD and NADH; (ii) E. coli BL21(DE3)/pET28a-mcra recombinant 

suspension with FAD and NADH without linoleic acid; (iii) E. coli BL21(DE3)/pET28a-

mcra recombinant suspension and E. coli BL21(DE3)/pET28a-dh recombinant suspension 

with substrate, FAD and NADH; (iv) E. coli BL21(DE3)/pET28a-mcra recombinant 

suspension and E. coli BL21(DE3)/pET28a-dh recombinant suspension without substrate 

but with cofactors; (v) mixture of E. coli BL21(DE3)/pET28a-mcra suspension, E. coli 

BL21(DE3)/pET28a-dh suspension and E. coli BL21(DE3)/pET28a-dc suspension plus 

linoleic acid, FAD and NADH; and (vi) all the three transformed E. coli suspension mixed 

with FAD and NADH without substrate. Following reaction, fatty acids were extracted, 

methylated and analysed as above.
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Results

Screening of lactobacilli for conjugated linoleic acid production

In this study, a number of strains of lactobacilli (see Table 1) were assessed for the ability to 

generate CLA from free linoleic acid. The origin of these strains varied in vegetable 

fermentation and dairy fermentations to human intestinal isolates. Bifidobacteria previously 

reported to synthesize c9, t11-CLA from free linoleic acid, Bifidobacterium animalis subsp. 

lactis BB-12 (Coakley et al. 2003) and Lact. reuteri ATCC55739 (Rosson et al. 2004) were 

used as positive controls in this study.

Twenty-five selected strains were investigated for their ability to convert free linoleic acid 

(0·55 mg ml−1) to CLA. The results demonstrated that c9, t11-CLA, t10, c12-CLA and t9, 

t11-CLA could be generated, but to varying levels ranging from 3 to 56% for CLA 

production. Most CLA isomers were found in the supernatant from the cultures rather than 

in the cell pellets. All nine strains of Lact. plantarum tested, except Lact. plantarum STIII, 

produced CLA. Lact. plantarum ZS2058 was the most efficient of the lactobacilli strains 

tested for the conversion of linoleic acid to CLA. There was a 37·78% conversion of linoleic 

acid into c9, t11-CLA and 16·57% conversion to t9, t11-CLA. Lact. bulgaricus CCFM3004, 

Lact. bulgaricus CCFM3029, Lact. crispatus CCFM5136, Lact. gasseri CCFM5115 and 

Lact. helveticus CCFM8310 converted 10–20% linoleic acid into three CLA isomers. Of the 

remaining strains in Table 1, some did not convert linoleic acid to CLA at any significant 

level, including Lact. acidophilus, Lact. brevis, Lact. rhamnosus, one strain of Lact. casei 

and one strain of Lact. plantarum. Although the concentration of 10-HOE differed (data not 

shown), it was produced in all the assessed strains.

Conjugated linoleic acid production by Lactobacillus plantarum ZS2058 in the presence of 
linoleic acid

As Lact. plantarum ZS2058 was the most efficient strain for linoleic acid conversion in this 

study, this strain was then studied in a lot more detail. Following culturing with linoleic 

acid, both c9, t11-CLA and t9, t11-CLA isomers were mainly found in cell supernatant, with 

very low concentration being recovered in the cell pellet (data not shown). Interestingly, t10, 

c12-CLA was not significantly produced in this strain. Indeed, c9, t11-CLA was the major 

isomer and represented over 65% in total CLAs. During CLA production, three kinds of 

intermediates were produced (Fig. 1), based on previous result (Yang et al. 2013), and the 

mass spectra in this study, the intermediate with retention time at 36·3 min, with significant 

mass fractions of 169 and 201 m/z were identified as 10-HOE (Figs 1 and 2a). As all the 

intermediates in the reaction were out of commercial standards, according to previous 

hypothesis (Kishino et al. 2011b), the fragmentation patterns of each intermediate were 

analysed. As structures of the two intermediates, 10-oxo-cis-12-octadecenoic acid and 10-

oxo-trans-11-octadecenoic acid, were of high similarity, amount of mass fractions were 

identical, such as 171, 139 and 199 m/z (Fig. 2b, c). The significant difference between the 

two intermediates was the position of carbon double bond; therefore, 213 m/z was more 

notable in 10-oxo-cis-12-octadecenoic acid instead of 225 m/z in 10-oxo-trans-11-

octadecenoic acid (Fig. 2b, c).
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Expression and activity of the recombinant proteins

Based on the previous hypothesis (Kishino et al. 2011b), the three genes encoding myosin-

cross-reactive antigen (mcra), short-chain dehydrogenase/oxidoreductase (dh) and 

acetoacetate decarboxylase (dc) were cloned from Lact. plantarum ZS2058. These three 

genes were overexpressed separately in E. coli BL21 (DE3) (Fig. 3a). Major bands with 

apparent molecular weights of 64·76 kDa (MCRA), 32·10 kDa (DH) and 30·71 kDa (DC) 

were visualized by SDS-PAGE and these corresponded to the expected molecular weights of 

the three proteins, which were absent in pET28a vector inserts. Immunoblotting with anti-

His-tag antibodies confirmed that each single band contained a 6× His tag (Fig. 3b).

To assess the activity of the three recombinant proteins, different combinations of the 

resultant cells were tested for conversion of linoleic acid. In the case where the MCRA 

recombinant was used for reaction, linoleic acid was only converted to 10-HOE according to 

the retention time and mass fraction compared with that in Lact. plantarum ZS2058 (Fig. 

4b). Addition of the E. coli cells containing DH protein resulted in the production of both 

10-HOE and 10-oxo-cis-12-octadecenoic acid (Fig. 4c). While combination of all the three 

recombinant E. coli resulted in 10-HOE, 10-oxo-cis-octadecenoic acid, 10-oxo-trans-11-

octadecenoic acid and c9, t11-CLA (Fig. 4d), about 13·66% of LA was converted to CLA by 

the recombinant E. coli.

Discussion

The reason for bacteria converting linoleic acid to CLA is unclear, and it remains uncertain 

as to why some strains of lactobacilli, in particular Lact. plantarum, exert superior CLA 

producers while some other do not produce CLA at a significant level. It has been reported 

that bioconversion of linoleic acid to CLA might be a key step for fatty acid detoxicification 

in bacteria (Jiang et al. 1998; Maia et al. 2007, 2010). In the present study, the ability of 25 

strains of different food-derived lactobacilli to produce CLA from free linoleic acid was 

investigated. None of the Lact. acidophilus, Lact. brevis and Lact. rhamnosus tested 

converted linoleic acid to CLA at a significant level, while the range of Lact. plantarum 

exhibited considerable CLA production ability. From those strains, Lact. plantarum ZS2058, 

isolated from Chinese traditional fermented sauerkraut (Niu et al. 2007), was the most 

efficient producer of CLA, in which over 50% linoleic acid was converted to c9, t11-CLA 

and t9, t11-CLA as dominant isomers. The conversion percentages reported in the present 

study are in agreement with earlier studies (Alonso et al. 2003; Zeng et al. 2009; Li et al. 

2012). Considering the potential health promotion of CLA, the discovery of food-grade 

lactobacilli with high ability to synthesize CLA, such as Lact. plantarum and Lact. 

bulgaricus strains in this study, may offer novel opportunities for developing health-

promoting functional food safely with the multiple benefits of CLA and probiotics.

Following culturing with free linoleic acid in MRS medium, Lact. plantarum ZS2058 

converted more than 50% linoleic acid to c9, t11-CLA and t9, t11-CLA. In addition, 10-

HOE was produced during CLA production. Ogawa et al. (2001) firstly reported the 10-

HOE accumulation in CLA production in Lact. acidophilus. With Lact. acidophilus 

AKU1137 grown in MRS medium containing free linoleic acid for four days, 10-HOE was 

significantly accumulated from linoleic acid in the first two days, while CLA was produced 
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slowly. Moreover, when the concentration of 10-HOE reached a high level, it was converted 

into CLA rapidly. Volkov et al. (2010) firstly reported the MCRA from S. pypgenes as a 

fatty acid double-bond hydratase, which converted linoleic acid into 10-HOE and 10, 13-

dihydroxy-octadacenoic acid. MCRA from Bifidobacterium breve NCIMB 702258, a high 

CLA producer, was reported as a FAD-dependent fatty acid hydratase (Rosberg-Cody et al. 

2011), which has a function in stress protection. Kishino et al. (2011a) reported the multiple-

component enzymes for CLA production from Lact. plantarum AKU1009a. With different 

fractions from ultracentrifugation, 10-HOE was produced by a membrane-bound protein; 

further then c9, t11-CLA was produced while the membrane fraction was mixed with the 

other two unknown proteins from soluble fractions. Later, more MCRAs were reported as 

fatty acid hydratases from different bacteria (Joo et al. 2012; Kim et al. 2012; Yang et al. 

2013).

Following culturing with free linoleic acid, 10-HOE, 10-oxo-cis-12-octadecenoic acid and 

10-oxo-trans-11-octadecenoic acid combined with c9, t11-CLA and t9, t11-CLA were 

produced at different levels in Lact. plantarum ZS2058. The conversion of linoleic acid to 

10-HOE and 10-oxo-octadecenoic acid derivatives was in agreement with previous 

hypothesis (Kishino et al. 2011b), in which CLA production was a multiple-step reaction: 

firstly, linoleic acid was converted to 10-HOE, then dehydrated and double-bond isomerized 

to 10-oxo-trans-11-octadecenoic acid, followed by rehydration and converted to CLA as the 

end product.

In the present study, MCRA was amplified and confirmed as fatty acid hydratase and played 

a role in linoleic acid hydration to 10-HOE. The latter two genes, dh and dc, were also 

expressed in E. coli. With the mixture of MCRA and DH recombinants, both 10-HOE and 

10-oxo-cis-12-octadecenoic acid were converted, while the two recombinants were mixed 

with DC recombinant, all 10-HOE, 10-oxo-cis-12-octadecenoic acid, 10-oxo-trans-11-

octadecenoic acid and c9, t11-CLA were produced. The present results were highly in 

agreement with a newest result (Kishino et al. 2013), in which cla-hy, cla-dh and cla-dc 

from Lact. plantarum AKU1009a were the genes in charge of linoleic acid bioconversion to 

CLA. Those results indicated that the mechanism for CLA production might be shared by 

different Lactobacillus species. The lactobacilli strain consisting the mcra, dh and dc genes 

for multiple-component linoleate isomerase genome might have the ability for CLA 

production, which needs further investigation.
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Figure 1. 
GC-MS total ion chromatograms of the products from fatty acid profile of Lactobacillus 

plantarum ZS2058 grown in MRS plus 0·55 mg ml−1 linoleic acid. (a) Lact. plantarum 

ZS2058 at 0 h; (b) Lact. plantarum ZS2058 at 48 h; (c) CLA standard. (1) C17:0 (Internal 

standard); (2) linoleic acid; (3) c9, t11-CLA; (4) t10, c12-CLA; (5) t9, t11-CLA; (6) 10-oxo-

cis-12-octadecenoic acid; (7)10-oxo-trans-11-octadecenoic acid; and (8) 10-hydroxyl-

cis-12-octadecenoic acid.
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Figure 2. 
Mass fractions of the intermediate products. (a) Mass spectra of 10-HOE and its 

fragmentation pattern. (b) Mass spectra of 10-oxo-cis-12-octadecenoic acid and its 

fragmentation pattern. (c) Mass spectra of 10-oxo-trans-11-octadecenoic acid and its 

fragmentation pattern.
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Figure 3. 
SDS-PAGE and Western blot analyses of the recombinant proteins. (a) SDS-PAGE of 

control, MCRA, DH and DC; (b) Western blot of control, MCRA, DH and DC. Lane: M: 

Marker; Ctrl: E. coli/pET28a; MCRA; DH and DC.
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Figure 4. 
Fatty acid profile after reaction of recombinant E. coli suspension in various combinations. 

(a) E. coli/pET28a-mcra, E. coli/pET28a-dh and E. coli/pET28a-dc plus FAD and NADH 

without linoleic acid. (b) E. coli/pET28a-mcra plus FAD and NADH with linoleic acid. (c) 

E. coli/pET28a-mcra and E. coli/pET28a-dh plus FAD and NADH with linoleic acid. (d) E. 

coli/pET28a-mcra, E. coli/pET28a-dh and E. coli/pET28a-dc plus FAD and NADH with 

linoleic acid. IS: internal standard (C17:0); LA: linoleic acid; 10-HOE: 10-hydroxy-cis-12-

octadecenoic acid; 10-oxo-cis: 10-oxo-cis-12-octadecenoic acid; 10-oxo-trans: 10-oxo-

trans-11-octadecenoic acid; c9, t11: c9, t11-CLA.
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Table 2

Primers used in this study

Name Sequence (5′–3′)* Restriction site

mcra-F GTTCTCGAGAAAAGA-ATGGGGGCGTTATTTATG Xho I

mcra-R CGGCGGCCGCTTATCA-ATCAAACATCTTCTTAGTTGC Not I

dh-F CCGGAATTCATGAAAGATTTTAAAGATAAAGTTATGTTTATCACG EcoR I

dh-R CCCAAGCTTTTACATGATACCGTCCATGATGTGCA Hind III

dc-F CCGGAATTCATGGCAAGTTTTATTGCAAGTGATCA EcoR I

dc-R CCCAAGCTTCTAAATAATGTAAGTCGCTGCCTTGG Hind III

*
Restriction sites are underlined.
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