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Abstract

Background—The accurate prediction of surgical risk is important to patients and physicians. 

Logistic regression (LR) models are typically used to estimate these risks. However, in the fields 

of data mining and machine-learning, many alternative classification and prediction algorithms 

have been developed. This study aimed to compare the performance of LR to several data mining 

algorithms for predicting 30-day surgical morbidity in children.

Methods—We used the 2012 National Surgical Quality Improvement Program-Pediatric dataset 

to compare the performance of 1) a LR model that assumed linearity and additivity (simple LR 

model) 2) a LR model incorporating restricted cubic splines and interactions (flexible LR model) 

3) a support vector machine, 4) a random forest and 5) boosted classification trees for predicting 

surgical morbidity.

Results—The ensemble-based methods showed significantly higher accuracy, sensitivity, 

specificity, PPV, and NPV than the simple LR model. However, none of the models performed 

better than the flexible LR model in terms of the aforementioned measures or in model calibration 

or discrimination.

Conclusion—Support vector machines, random forests, and boosted classification trees do not 

show better performance than LR for predicting pediatric surgical morbidity. After further 
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validation, the flexible LR model derived in this study could be used to assist with clinical 

decision-making based on patient-specific surgical risks.
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INTRODUCTION

Data mining algorithms, sometimes called machine learning or statistical learning 

algorithms, have been increasingly used in biomedical research in recent years. Data mining 

is broadly defined as the process of selecting, exploring, and modeling large amounts of data 

to discover unknown and useful patterns or relationships.[1, 2] Data mining algorithms arose 

from the fields of statistics and computer science, and are widely used in marketing, 

banking, engineering, and bioinformatics. Their application to clinical research, however, 

has been limited.

In clinical research, logistic regression models are by far the most commonly used algorithm 

for predicting the probability of occurrence of an event. While these models can provide 

unbiased estimates of the associations between predictors and the outcome, they have some 

limitations. First, they assume a particular parametric form of the relationships between the 

predictors and the outcome; namely, the assumption is made that the logit of the outcome is 

equal to a linear combination of the independent variables.[3] These models also assume 

additivity of the predictors’ effects on the outcome. These assumptions are usually incorrect, 

though the extent to which they are incorrect varies. Furthermore, in small datasets, these 

assumptions may be necessary to avoid overfitting. In larger datasets, these assumptions can 

be circumvented by using transformations or splines to model continuous predictors and by 

including interactions between variables. These techniques can improve model fit, but they 

are infrequently used, partly because they tend to reduce model interpretability.[4] Another 

limitation of regression models is that they do not always provide optimal predictive 

accuracy. In clinical research, these models are typically built to describe the nature of the 

relationship between specific covariates and the outcome.[2] While estimating such 

relationships is clearly important in biomedical research, accurate prediction is also very 

important. In fact, in certain situations in which the primary aim is to achieve optimal 

predictive accuracy, a reduction in clinical interpretability may be acceptable.

One area of biomedical research in which data mining may be particularly useful is in 

outcome prediction using large clinical databases, such as the American College of 

Surgeons’ National Surgical Quality Improvement Program (ACS NSQIP) database.[2] Of 

the few studies investigating the performance of data mining algorithms for predicting 

surgical morbidity or mortality, most have been small (several hundred or several thousand 

patients)[5–10], though a few larger studies have been reported.[11–17] These studies have 

been inconsistent in their findings, in that some have shown data mining algorithms to 

perform better than traditional logistic regression in terms of overall accuracy[13, 14, 16, 

18], discrimination[13, 14, 16], or calibration[11], whereas some have reported similar 
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performance according to these measures.[11, 18–20] Data from the ACS NSQIP has been 

used to create risk calculators to predict post-operative outcomes for adult surgery patients 

overall [21] and for patients undergoing specific procedures.[22–25] Several of these 

calculators are freely available online, and their use by both physicians and patients has the 

potential to improve shared decision making and informed consent.[21–25] All of these 

calculators are based on logistic regression models that are reported to have good 

discrimination and calibration. However, none of the studies in which these prediction 

models were derived reported investigating whether other statistical algorithms might 

perform as well as or better than logistic regression, and none included pediatric patients. 

The objective of this study was to compare the performance of five different statistical 

algorithms for predicting surgical morbidity in pediatric surgical patients. The algorithms 

evaluated were chosen because of their infrequent use in the clinical research literature and 

their straightforward implementation in freely available software and included 1) a logistic 

regression model that assumed linearity and additivity (simple logistic regression model) 2) 

a logistic regression model incorporating restricted cubic splines and interactions (flexible 

logistic regression model) 3) a support vector machine, 4) a random forest and 5) boosted 

classification trees.

METHODS

This study used the 2012 NSQIP Pediatric (NSQIP-Peds) Participant Use Data File, which 

contains patient-level data on 51,008 pediatric surgery cases submitted in 2012 by 50 US 

and Canadian children’s hospitals. The NSQIP-Peds program is a multi-specialty program 

with cases sampled from pediatric general/thoracic surgery, pediatric otolaryngology, 

pediatric orthopedic surgery, pediatric urology, pediatric neurosurgery, and pediatric plastic 

surgery. Launched in October 2008 with 4 sites, NSQIP-Peds has since expanded, with 50 

institutions participating in 2012. The program provides peer-reviewed, risk-adjusted 30-day 

postoperative outcomes to participating institutions, for the purposes of benchmarking and 

quality improvement.[26–28] Included cases are selected based on Current Procedural 

Terminology codes using NSQIP 8-day cycle-based systematic sampling of 35 procedures 

per cycle. One hundred and twenty-nine variables are collected from the medical records 

and the patients and their families, including information on demographics, surgical profile, 

preoperative and intraoperative variables, and postoperative occurrences.[26–28] The 

conduct of this study was approved by Nationwide Children’s Hospital Institutional 

Research Board with a waiver of informed consent.

In this study, we considered the question of which model most accurately predicts the 

occurrence of surgical morbidity within 30 days of surgery. Neonates were excluded, 

because of the known differences in risk of surgical morbidity between neonates and non-

neonates and because of the relatively small number of neonates (N=2919) and larger 

amount of missing data in neonates compared to non-neonates (N=48089) in the 2012 

NSQIP-Peds sample. The 49 preoperative variables in pediatric patients considered for 

inclusion in each model are shown in Table 1. This list consists of all preoperative patient 

characteristics available in the database, though some rare characteristics were eliminated or 

grouped with other similar characteristics. Of note, procedures that occurred concurrently 

with the principal operative procedure were not considered as predictors because whether 
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these additional procedures would be performed was not necessarily known preoperatively. 

In addition, 60 individual procedures (designated by CPT codes) that were performed in the 

total cohort at least 200 times were also included as indicator variables in the models, 

resulting in a total of 109 predictor variables. A frequency of 200 times was chosen to 

maximize the external validity of the models by enabling the risk of surgical morbidity 

associated with each procedure to be estimated accurately in the training dataset. Many of 

the procedures performed less frequently had no associated cases of surgical morbidity in 

the sample, whereas all procedures performed 200 or more times were associated with at 

least one case of surgical morbidity. No observations were removed from the analyses due to 

the use of this criterion as each type of procedure included as a predictor was treated as an 

individual binary variable. The outcome variable was the occurrence of intra-operative or 

post-operative morbidity within 30 days of the surgery, which was defined as any of the 

following events: SSI (superficial, deep, or organ/space without open wound), wound 

disruption, pneumonia without preoperative pneumonia, unplanned intubation, pulmonary 

embolism, renal insufficiency or failure without preoperative renal failure or dialysis, 

urinary tract infection, central line associated bloodstream infection, coma > 24 hours 

without preoperative coma, seizure, nerve injury, any cerebral intra-ventricular hemorrhage, 

CVA/stroke or intracranial hemorrhage, cardiac arrest requiring CPR, venous thrombosis 

requiring therapy, bleeding/transfusion, graft/prosthesis/flap failure, or the development or 

worsening of sepsis.[26, 29] Patients who died within 30 days of their surgery (0.1%) were 

included in all analyses because the outcome under examination, surgical morbidity, could 

occur either intraoperatively or postoperatively.

Statistical Analysis

In order to avoid overfitting, which occurs when a model has excellent fit to the data used in 

model fitting but poor fit to external data, [4, 30] the 2012 NSQIP-Peds PUF dataset was 

split into training and validation datasets. Seventy percent of the observations were chosen 

randomly for use as the training dataset, and the other 30% were used as the test (validation) 

dataset. Each algorithm incorporated all 109 pre-operative variables of interest. The 5 

statistical algorithms compared were: 1) a logistic regression model that assumed a linear 

relationship between each covariate and the log-odds of morbidity, with no interaction terms 

(simple logistic regression model), 2) a logistic regression model fit with the relationship 

between continuous variables and the log-odds of morbidity expressed using restricted cubic 

splines with decile knots and with interactions between any two predictors included if 

statistically significant at p<0.01 in stepwise selection when added to the model containing 

all main effects (flexible logistic regression model), 3) a support vector machine (SVM), 4) 

a random forest (RF) and 5) boosted classification trees.[4, 30]

The relative performance of the 5 models in the validation dataset was first assessed by 

examining overall accuracy, sensitivity, specificity, negative predictive value (NPV), and 

positive predictive value (PPV). In the logistic regression models, a cutoff outcome 

probability of 50% was used for classification. The McNemar test was used to compare 

accuracy, sensitivity, and specificity between each of the machine learning algorithms and 

the logistic regression models. Marginal logistic regression models were used to compare 

NPV and PPV between the machine learning algorithms and the logistic regression models.
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[31] This method is analogous to McNemar’s test but for the problem of comparing 

predictive values, which condition on the test outcome. Because the predictive algorithms do 

not necessarily all predict the same outcome for a given patient, some patients may 

contribute zero, one, or two observations to the comparisons, thus the variance estimator for 

the difference in PPVs and NPVs between algorithms is not straightforward. Marginal 

regression models provide a natural test statistic to assess these differences. The 

discriminative ability of the algorithms was determined using the area under the receiver 

operating characteristic curve (AUROC).[3] The nonparametric test of DeLong et al. was 

used to compare the AUROC between the machine learning algorithms and the logistic 

regression models.[32] The calibration of each model was assessed by first comparing the 

mean predicted probability of morbidity to the observed probability of morbidity in the 

validation sample. This provides a measure of the calibration intercept, also known as 

calibration-in-the-large.[33] Secondly, the calibration slope was calculated; this slope 

assesses deviation between observed and expected probabilities of surgical morbidity across 

the entire range of predicted risk; it equals one if the model is perfectly calibrated. Lastly, a 

lowess scatterplot smoother was used to graphically describe the relationship between 

observed and predicted morbidity in the validation sample. Deviation of this curve from a 

diagonal line with unit slope is indicative of poor calibration.[33] Logistic regression 

modeling was performed using the logistic procedure in SAS v9.3 (SAS Institute Inc., Cary, 

NC) and the glm function in the stats package in the R statistical environment (R Foundation 

for Statistical Computing, Vienna, Austria). SVM models were fit using the svm function in 

the e1071 package in R.[34] Random forest models were fit using the randomForest 

function in the randomForest package in R.[35] Boosted classification tree models were 

built using the gbm function in the gbm package in R.[36] AUROC was calculated and 

compared between models using the roc.test function in the pROC package in R.[37] 

Assessment of model calibration was performed using the val.prob function in the rms 

package in R.[38]

Logistic Regression Models

Logistic regression is the most common statistical algorithm employed in clinical research 

studies to assess associations between patient characteristics and binary outcomes. These 

models are a type of generalized linear model, and are fit using maximum likelihood 

estimation. In generalized linear models, the expected value of the outcome is a function of a 

linear combination of the predictors; in logistic regression the logit function is used.[3] 

Logistic regression models yield odds ratios for the associations between the dependent and 

independent variables. They also generate a risk score, or an estimated probability of the 

outcome, that can be used for classification and prediction.

Support Vector Machine

The idea behind SVMs is the construction of an optimal separating hyperplane between two 

classes.[4, 39, 40] Each observation is treated as a point in high-dimensional feature 

(predictor) space, with the dimension of this space determined by the number of predictors. 

The SVM model uses mathematical functions (kernels) to project the original data into 

higher-dimensional space in order to improve the separability of the two classes. The SVM 

model also uses a ‘soft margin’ around the separating hyperplane, the size of which is 
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chosen using cross-validation. This margin allows some observations to violate the 

separating hyperplane in order to achieve better overall performance.[4, 40] Radial kernels 

often deliver excellent results in high dimensional problems[4], and these were used in this 

study. SVMs with radial kernels require the specification of two parameters: C, which 

controls the overfitting of the model, and γ, which controls the degree of non-linearity of the 

model.[30] To optimize these parameters, 10-fold cross-validation of the training data was 

performed; the C and γ values that minimized the overall misclassification rate were chosen 

using a grid search in the intervals [1; 1000] and [0.001; 100] respectively. Finally, the 

output values of the SVM were converted into probabilities using the sigmoid function as 

described by Lin et. al.[41]

Random Forest

A random forest is a collection, or “ensemble”, of classification trees[42] with the 

predictions from all trees combined to make the overall prediction by “majority vote”.[43] A 

series of classification trees is built, with each tree being fit using a random bootstrap 

sample of the original training dataset and a random subset of the predictors that maximize 

the classification criterion at each node. An estimate of the misclassification rate is obtained 

without cross-validation by using each classification tree to predict the outcome of the 

observations not in the bootstrap sample used to grow that particular tree (“out-of-bag” 

observations), then taking a majority vote of the out-of-the-bag predictions from the 

collection of trees. Random forests typically have substantially greater predictive accuracy 

than single classification trees, which have very high variance.[43, 44] Random forests 

require just two parameters to be defined: the number of random trees in the forest, and the 

number of predictive variables randomly selected for consideration at each node.[43] In this 

study, these parameters were optimized by a grid search in the intervals [400; 1000] and [6; 

16] respectively; the parameters yielding the lowest out-of-bag misclassification rate were 

selected for the final models.

Boosted classification trees

Similar to the random forest algorithm, boosting involves the combining of predictions from 

a large number of ‘weak’ classifiers, each with error rates only slightly better than random 

guessing, to produce a final more accurate prediction.[4] Boosting can be applied with any 

base algorithm, but is most often used with classification and regression trees. Unlike 

random forests, boosted classification trees are grown sequentially using information from 

previously grown trees. Boosting does not involve bootstrap sampling or the random 

selection of predictors to be considered at each node. Rather, the boosted classification tree 

algorithm fits a small tree to a sequence of reweighted versions of the data. In the building 

of each new tree, patients whose outcomes were incorrectly classified by the previous tree 

are weighted more heavily than patients who were correctly classified. In this study, we will 

fit a gradient boosted model with binomial deviance loss function as this algorithm is 

particularly robust to overlapping class distributions.[4, 45] Boosted classification trees fit 

with the gradient boosting algorithm and incorporating regularization through shrinkage 

require the defining of three parameters: the number of component trees (M), the shrinkage 

parameter (ν), and the maximum interaction depth or number of terminal nodes of each tree.

[45] To optimize the first two of these parameters, 10-fold cross-validation of the training 
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data was performed; M and ν values that minimized the overall misclassification rate were 

chosen using a grid search in the intervals [1; 10000] and [0.001; 0.1] respectively. Although 

there is no consensus on the optimal tree depth, interaction depths between 3 and 7 are often 

found to yield similar results, with cross-validation error rates being relatively insensitive to 

particular choices in this range.[4] We chose to use classification trees of depth 4.

RESULTS

Description of study sample

Comparisons of pre-operative characteristics between patients with and without surgical 

morbidity in both the training and validation datasets are shown in Table 1. Forty-six of the 

49 evaluated pre-operative characteristics differed significantly between patients with and 

without surgical morbidity in both datasets, and these differences were fairly consistent 

across the two datasets. Substantial heterogeneity was found across procedures in the rates 

of surgical morbidity. The 10 most common procedures in the study cohort are shown in 

Table 2. Spinal fusion (arthrodesis) procedures had much higher rates of surgical morbidity 

than other common procedures.

Patients in the training and validation samples had similar characteristics, with only a few 

exceptions. Children in the validation sample were slightly more likely to be of Hispanic 

ethnicity (12.8 vs. 12.0%, p=0.02) and to have had SIRS, sepsis, or septic shock within 48 

hours before surgery (5.5 vs. 4.9%, p=0.007), and they were slightly less likely to have an 

open wound at the time of surgery (0.9 vs. 1.1%, p=0.02). The proportions of patients who 

had each procedure were similar in the two samples when considering procedures performed 

in at least 200 cases in the overall cohort. The proportion of patients who experienced 

surgical morbidity was also similar in the two samples (Table 3).

Comparison of accuracy of classification of the models

The classification accuracy, sensitivity, specificity, PPV, and NPV of the different models 

fit to the training sample and evaluated in the validation sample are shown in Table 4. 

Accuracy was highest in the flexible logistic regression model. This model incorporated 

restricted cubic regression splines for the two continuous pre-operative variables and also 

included eight statistically significant interactions between preoperative variables. The 

included interactions were those between surgical specialty and age at surgery, inpatient 

status, blood transfusion within 48 hours before surgery, and wound classification, as well as 

those between baseline patient characteristics and particular procedures; namely, between 

spinal fusion of 7–12 vertebral segments and the presence of a structural central nervous 

system abnormality, palatoplasty for cleft palate and inpatient status, laminectomy with the 

release of a tethered spinal cord and inpatient status, and adjacent tissue transfer of 10 cm2 

or less and steroid use in the 30 days preceding surgery (p<.01 for all). Importantly, the 

accuracies of the ensemble tree-based algorithms, random forests and boosted classification 

trees were not statistically significantly different from that of the flexible logistic regression 

model, and all models had accuracies within 0.5% of each other. Sensitivity was poor but 

varied substantially across the models, with the flexible logistic regression model 

performing best. Specificity was excellent and varied by less than 1% across all models. 
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PPV was lower in the simple logistic regression model compared to all other models. NPV 

differed by less than 1% among all models but was highest in the flexible logistic regression 

model. The flexible logistic regression model performed at least as well as or better than the 

other models on all classification accuracy criteria except specificity, for which the support 

vector machine and random forest were slightly superior.

Comparison of predictive ability of the models

All models showed good discrimination, with areas under the receiver operating 

characteristic curve (c-statistics) ranging from 0.818 for the support vector machine to 0.880 

for the boosted classification trees. The flexible logistic regression model and boosted 

classification trees had statistically equivalent c-statistics. The calibration of each model is 

described in Table 6 and Figure 1. The support vector machine demonstrated the worst 

calibration, and the logistic regression models demonstrated the best calibration of all 

models. Boosted classification trees also showed good calibration but tended to slightly 

underestimate the probability of surgical morbidity.

Important predictors of surgical morbidity

Figure 2 shows marginal odds ratios from the flexible logistic regression model for several 

important predictors. The marginal effects of predictors that were considered to be both 

clinically important and either statistically significant at p<.001 or involved in interactions 

statistically significant at p<.001 are shown. The predictors with the highest estimated odds 

ratios were two particular procedures, namely spinal fusions and craniectomy. As expected, 

many individual procedures were found to be significant independent predictors of surgical 

morbidity. Other factors strongly associated with an increased risk of surgical morbidity in 

the overall study cohort included higher ASA class, which is a measure of a patient’s 

preoperative physical state, and having a procedure as an inpatient, which is the setting in 

which higher risk procedures are typically performed. In addition, particular gastrointestinal, 

nutritional, or oncologic comorbidities were associated with an increased risk of surgical 

morbidity. These comorbidities included esophageal, gastric, or intestinal disease, history of 

or current malignancy, hematologic disorders, and structural central nervous system 

abnormalities, all of which, in addition to being potential indications for high risk 

procedures, are often present in high risk complex patients who are at increased risk for 

postoperative bleeding and infections. Patients who required preoperative nutritional or 

inotropic support, which are often required to keep complex and critically ill patients stable, 

were also at greater risk for surgical morbidity. Being younger was also associated with an 

increased risk of surgical morbidity, as these patients are more likely to undergo high risk 

procedures for serious congenital anomalies or conditions related to prematurity than older 

patients; however, the effect of age was mainly evident when comparing children older vs. 

younger than 2 years of age.

DISCUSSION

This study compared five different statistical algorithms for the prediction of surgical 

morbidity in pediatric patients. The primary finding was that a flexible logistic regression 

model that incorporated restricted cubic regression splines and statistically significant and 
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clinically meaningful interactions had the highest out-of-sample accuracy and sensitivity of 

all algorithms examined. This model also had excellent discrimination and calibration. 

Given the large number of patients and hospitals included in both the training and validation 

samples, as well as the highly standardized and validated method of data collection used in 

NSQIP-Peds, the model derived in this study is likely to be applicable to the general 

population of pediatric surgery patients. However, as with any statistical model, this model 

may not extrapolate well to populations not included in its derivation. For example, patients 

having cardiac, ophthalmologic, obstetric, or transplantation procedures, and patients with 

traumatic injuries are excluded from the NSQIP-Peds program, and thus the derived models 

in this study would not apply to these patients.[26]

Given the large number and variety of data mining algorithms that have been developed for 

classification and prediction in the fields of statistics and computer science [2], it may seem 

somewhat surprising that logistic regression, which has been used for clinical prediction 

modeling for decades, would perform as well or better than the more recently developed 

data mining techniques. In fact, the flexible logistic regression model performed better than 

or equivalently to the data mining algorithms on all model fit criteria except specificity, 

though the differences in some criteria were very small. There are several reasons for these 

findings. Firstly, no statistical or data mining algorithm will perform best in all settings. 

Secondly, the performance of various algorithms depends not only on the population and 

outcome under examination, but also on the availability and dimensionality of predictors 

[46] as well as the criteria chosen to evaluate each method’s performance.[47] Numerous 

studies have compared logistic regression models to data mining algorithms for the 

prediction of surgical outcomes, and their findings have been heterogeneous. Several studies 

have compared logistic regression models to artificial neural networks (ANN), which are 

nonlinear statistical models that extract linear combinations of the input variables as derived 

features then model the outcome as a nonlinear function of these features.[11, 13, 14, 16, 48] 

Most of these studies reported that ANNs had superior performance for predicting surgical 

outcomes, such as mortality after surgery for heart disease, traumatic brain injury, or 

ascending aortic dissection.[13, 14, 48] A recent study that examined the performance of 

logistic regression, classification tree, random forest, and SVM models for predicting 

sentinel lymph node status in patients with cutaneous melanoma found that all four 

algorithms had similar predictive accuracy.[18] Another study that compared the accuracy 

and discrimination of nine different statistical and data mining algorithms, including logistic 

regression, to that of the TNM staging system for predicting survival in colorectal cancer 

patients, found that all nine algorithms had similar and slightly better performance than the 

TNM staging system, but that differences among all algorithms were small.[20] More often 

than not, studies comparing “new” computational algorithms to older techniques claim that 

the new method performs better than the older method.[49] Many of these claims have come 

from small studies of fewer than 1,000 patients, a sample size far too small to both develop 

and validate a model in which dozens of predictor variables are evaluated.[48] Thus, random 

variation certainly explains some of the heterogeneity in findings across studies. In addition, 

many comparative studies provide insufficient detail on the method used for choosing 

parameters to train the algorithm, and many compare models’ performance using only 

classification accuracy or the area under the receiver operator characteristic curve. There are 
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in fact a number of other characteristics that should be considered when comparing methods, 

such as the method’s handling of missing data, noise, and highly correlated predictors, 

variable selection, computational cost, and the generalizability and interpretability of the 

model. For example, in the present study, the amount of missing data was small and missing 

values occurred in categorical variables only; thus, a category for patients with unknown 

values of these variables was simply created and could be easily accommodated by all 

algorithms. However, in general, logistic regression and SVM models cannot accommodate 

missing values unless imputation is first performed, whereas the tree-based methods can 

accommodate missingness through the process of surrogate splitting. [4] The present 

analysis did not contend with highly correlated predictors or perform variable selection, but 

regarding computational cost, the data mining methods were more computationally costly to 

fit than the logistic regression models. This cost would limit the utility of the data mining 

algorithms in a clinical setting.

Importantly, in predictive modeling, there is always a tradeoff between achieving high 

accuracy, which is accomplished by constructing a model that is as flexible as necessary 

without overfitting, and interpretability, which is achieved by constructing a model with 

parameters that describe the relationships between predictors and the outcome in an 

understandable way.[4] In the present study, we focused on achieving optimal prediction of 

the outcome of 30-day surgical morbidity rather than on describing the nature of the 

relationships between patient and procedure characteristics and surgical morbidity. While 

the latter task is clearly important in surgical outcomes research, accurate prediction is also 

critical. By incorporating many characteristics into a global risk prediction score, some of 

the subjectivity that results from physician overreliance on one or a few patient 

characteristics can be eliminated. In addition, risk prediction that takes into account all 

available, relevant preoperative information can assist both surgeons and patients in 

deciding between different types of procedures and in determining what precautionary 

measures might be important to take for a patient at high risk of a poor outcome. On the 

other hand, when interpretability is a primary goal, a single classification tree or a logistic 

regression model with only linear terms might be the best option, provided that its predictive 

accuracy and discrimination are sufficiently high. It should be pointed out, however, that 

although a simple logistic regression model or classification tree may be most easily 

interpretable, the importance of individual predictors can be evaluated in SVM, random 

forest, and boosted classification tree models as well. These measures can be derived via 

recursive feature elimination for SVM [46] and via the sum of the improvements in the split-

criterion over all trees for random forests and boosted classification trees [42] The former 

technique is also useful for feature selection in SVM; however, we chose not to perform 

feature selection for any models in the present study because of the large sample size 

available for analyses and also because all preoperative variables were chosen for inclusion 

in the NSQIP-Peds database by surgeon experts due to their clinical importance.

This study had several limitations. First, we evaluated only a small sample of existing data 

mining algorithms, focusing on algorithms that have been infrequently used in the clinical 

research literature and that could easily be implemented in freely available software. Many 

other predictive algorithms that have been more frequently explored by clinical researchers 

or that involve more parameters and thus greater complexity than the algorithms chosen for 
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this study are available, such as individual classification trees, bagging of classification 

trees, artificial neural networks, Bayesian networks, and the recently developed 

“superlearner” ensemble machine learning algorithm.[4, 50] It is possible that one of these 

algorithms would have performed better than the flexible logistic regression model derived 

in the present study. Second, we cannot guarantee that globally optimal parameter values 

were found for all of the data mining algorithms explored. For example, in the boosting 

model, we explored only trees of depth 4 since previous studies indicate that interaction 

depths between 3 and 7 typically yield similar results. For all parameters used to train the 

other data mining algorithms, we used a grid search method, but we did not perform an 

exhaustive search of all values within the grids. Third, because only one year of NSQIP-

Peds data was available for this study, many surgical procedures were performed in few 

cases; this prevented us from including every procedure as an indicator variable in the 

models. Once a larger, multi-year dataset is available, it will be possible to more effectively 

model the heterogeneity in the risk of surgical morbidity across all types of surgical 

procedures. However, despite the limited size of the NSQIP-Peds dataset for the number of 

procedures included, one of its strengths is the variety of standardized and validated 

preoperative, operative, and postoperative variables it contains. This allowed for higher 

accuracy and refinement of the statistical models examined compared to those that would be 

possible using administrative data. Despite the high accuracy of all models explored in this 

study, all models also unfortunately showed poor sensitivity. This is not an uncommon 

problem when outcome data are highly imbalanced, and in such cases overall classification 

accuracy may not be the ideal metric by which to evaluate algorithm performance.[47, 51] 

Finally, in contrast to the ACS NSQIP surgical risk calculator developed to predict surgical 

morbidity in adult surgery patients [21], the flexible logistic regression model derived in the 

present study could not account for the clustering of patients within hospitals due to the 

absence of a site indicator in the available dataset. However, our model included flexible 

effects, namely splines and interaction effects, which were not reported to have been 

evaluated in deriving the adult NSQIP surgical risk calculator. In addition, the area under the 

curve of our model was slightly larger than that reported for the adult NSQIP surgical risk 

calculator (0.877 vs. 0.816) [21], indicating that model discrimination was likely not 

substantively worsened by the nonuse of hierarchical logistic regression modeling in this 

study.

In conclusion, support vector machine, random forest, and boosted classification tree models 

do not provide superior prediction of 30-day surgical morbidity in pediatric patients 

compared to logistic regression. A flexible logistic regression model that includes regression 

splines for continuous variables and statistically significant and clinically meaningful 

interactions offers improved accuracy, sensitivity, specificity, negative and positive 

predictive value, and discrimination for predicting surgical morbidity in children compared 

to a simpler logistic regression model that assumes linearity and additivity. After further 

validation, the flexible logistic regression model derived in this study could be used to assist 

with clinical decision-making based on patient-specific surgical risks in pediatric patients.
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Highlights

• We aimed to predict pediatric surgical morbidity using preoperative 

characteristics

• We compared logistic regression models to data mining algorithms

• The data mining algorithms performed as well as a simple logistic regression 

model

• A flexible logistic regression model performed best on most model fit criteria
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Figure 1. 
Calibration plots of all prediction models: a) simple logistic regression model b) flexible 

logistic regression model c) support vector machine d) random forest e) boosted 

classification trees
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Figure 2. 
Relationships between key predictors and the odds of surgical morbidity in the flexible 

logistic regression model. Marginal odds ratios and 95% Wald confidence intervals are 

shown for all predictors that either had main effects significant at p<.001 or were included in 

interactions significant at p<.001. ASA=American Society of Anesthesiologists, 

CSF=cerebrospinal fluid.
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Table 3

Thirty day surgical morbidity

Training Sample (N=33662) Validation Sample (N=14427)

Outcome N (%) N (%)

Any surgical morbidity 3013(9.0) 1218 (8.4)

Central nervous system

 Coma (>24 hours) 3(0.0) 2 (0.0)

 Cardiac arrest requiring CPR 39(0.1) 14 (0.1)

 Cerebral Vascular Accident/Stroke or intracranial hemorrhage 20(0.1) 5 (0.0)

 Seizure 45(0.1) 29 (0.2)

 Nerve injury 23(0.1) 10 (0.1)

Pulmonary

 Pneumonia 130(0.4) 49 (0.3)

 Unplanned intubations 142(0.4) 54 (0.4)

 Pulmonary embolism 3(0.0) 0 (0.0)

Renal

 Renal insufficiency 15(0.0) 5 (0.0)

 Renal failure 9(0.0) 4 (0.0)

 Urinary tract infection 189(0.6) 78 (0.5)

Infection/other

 Sepsis 169(0.5) 49 (0.3)

 Superficial incisional surgical site infection (SSI) 353(1.0) 123 (0.9)

 Deep incisional SSI 85(0.3) 38 (0.3)

 Organ/space SSI 233(0.7) 118 (0.8)

 Central line associated blood infections (CLABSI) 40(0.1) 7 (0.0)

 Wound disruption 177(0.5) 71 (0.5)

 Bleeding or transfusion 1850(5.5) 748 (5.2)

 Graft/prosthesis/flap failure 14(0.0) 7 (0.0)

 Venous thrombosis 37(0.1) 14 (0.1)
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