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Abstract

Cerebellar development is shaped by the interplay of genetic and numerous environmental factors. 

Recent evidence suggests that cerebellar maturation is acutely sensitive to drugs with abuse 

liability including alcohol, opioids, and nicotine. Assuming substance abuse disrupts cerebellar 

maturation, a central question is to what are the basic mechanisms underlying potential drug-

induced developmental defects. Evidence reviewed herein suggests that the maturation of granule 

neurons and their progeny are intrinsically affected by several classes of substances with abuse 

liability. Although drug abuse is also likely to target directly other cerebellar neuron and glial 

types, such as Purkinje cells and Bergmann glia, findings in isolated granule neurons suggest that 

they are often the principle target for drug actions. Developmental events that are selectively 

disrupted by drug abuse in granule neurons and/or their neuroblast precursors include 

proliferation, migration, differentiation (including neurite elaboration and synapse formation), and 

programmed cell death. Moreover, different classes of drugs act through distinct molecular 

mechanisms thereby disrupting unique aspects of development. For example, drug-induced 

perturbations in (i) neurotransmitter biogenesis, (ii) ligand and ion-gated receptor function and 

their coupling to intracellular effectors, (iii) neurotrophic factor biogenesis and signaling, and (iv) 

intercellular adhesion are all likely to have significant effects in shaping developmental outcome. 

In addition to identifying therapeutic strategies for drug abuse intervention, understanding the 
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mechanisms by which drugs affect cellular maturation is likely to provide a better understanding 

of the neurochemical events that normally shape central nervous system development.
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acetylcholinergic receptors; opioid receptors; heroin; nicotine

Introduction

A variety of classes of drugs with abuse liability affect cerebellar structure and function in 

adults.1 Recent evidence suggests that many of these drugs can have profound affects on 

cerebellar development. This includes opiates, nicotine, and alcohol, but may additionally 

include stimulants such as cocaine and methamphetamine, as well as the non-equilibrium N-

methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP),1 which are known to effect 

cerebellar function in adults. Neurotransmitter systems regulate many aspects of normal 

development. Although the mechanisms by which individual drugs of abuse affect neural 

maturation are not fully understood, it is assumed that many drugs act by mimicking or 

interfering with normal endogenous neurotransmitter-receptor interactions during 

maturation. The inference is that drug abuse alters neurodevelopment by disrupting the 

timing and sequence of developmental actions regulated by endogenous neurotransmitter 

systems. In this review, we focus on opioids and nicotine, and to a lesser extent alcohol 

(which has been more extensively reviewed elsewhere). Alcohol, opioids, and nicotine are 

reported to effect directly the maturation of granule cell precursors and their progeny. 

Stimulants such as cocaine or methamphetamine are more likely to affect neurochemical 

systems (e.g., norepinephrine and dopamine reuptake) that directly influence Purkinje cell 

maturation. Understanding how cerebellar development is perturbed will provide 

increasingly rationale approaches toward intervention in drug-exposed offspring, and should 

additionally provide insight into how neurochemical systems normally influence brain 

development.

The cerebellum is an important model system for understanding CNS development. The 

cerebellum is highly compartmentalized and the extremely ordered and stereotypic 

cytoarchitecture results from a tightly orchestrated production of neurons and glia during 

development.2,2-16 Cerebellar development proceeds with such precision that it is a useful 

model for identifying perturbations in CNS maturation.

A hallmark of cerebellar development is the enormous production of granule cells or 

neurons, which outnumber neurons in other brain regions.17 Granule neurons are relatively 

small in comparison to other neurons, with three-to-seven dendrites. Their axon runs 

vertically from the granule layer into the molecular layer, where it bifurcates as a parallel 

fiber and forms contacts with hundreds of Purkinje cells 13. The huge increase in the number 

of granule neurons during development arises from the proliferative expansion of neuroblast 

precursors, which occurs in several steps. Initially, neuroblast precursors originating from 

the rhombic lips proliferate and migrate tangentially along the surface of the incipient 

cerebellum to form the external granular (or germinal) layer (EGL).2,18-21 Cells within the 
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rhombic lip express math1 and are largely committed to a granule neuron fate before they 

migrate to the EGL.22-24 Second, EGL neuroblasts undergo a sustained period of 

proliferation. Recent evidence suggests that the EGL exclusively gives rise to granule 

neuron progenitors, rather than other molecular layer interneurons (stellate and basket cells) 

as previously thought.25 Finally, postmitotic granule neurons migrate radially through the 

cerebellum, bypassing outwardly migrating Purkinje cells and settling in the internal granule 

layer (IGL).26,27 The EGL disappears when neurogenesis is complete.2,3

The period of granule neurogenesis coincides with critical periods of sensitivity to several 

drugs of abuse. This corresponds approximately to the first three postnatal weeks in rats and 

mice 4,12, and the third trimester of gestation until 1.5 years in humans.14 Superimposed on 

the rapid period of proliferation are significant amounts of programmed cell death.28 The 

intense rate of granule neurogenesis is tightly regulated and coordinated with the maturation 

of the entire organism. The net production of granule cells is determined by proliferation and 

cell death and is modified by a variety of external cues (Fig. 1). Protracted neurogenesis, 

combined with a high degree of sensitivity to extrinsic factors, makes developing granule 

cells especially vulnerable to drug abuse.

Besides granule neurons, Purkinje neurons are a potential target for many abused substances 

during development (Table 1). Purkinje cells are generated before granule neurons and 

undergo a prolonged period of differentiation that is in part dependent on trophic support 

provided by granule neuron afferent synapses.13,18,29-31 The profound trophic 

interdependence between Purkinje and granule neurons presents challenges toward sorting 

causal developmental relationships.32 Despite this challenge, with recent cellular and genetic 

approaches, it is possible to identify key intercellular events influencing the development of 

each cell type. For this reason and others, we have made extensive use of in vitro methods to 

study how drugs intrinsically affect the maturation of granule cell precursors. However, the 

inherent trade-off for gaining experimental control in vitro is the loss of relevance resulting 

from a reductionist approach. A partial compromise has been to use organotypic culture, 

which retains some of the cell-to-cell interactions and three-dimensional organization 

inherent in the cerebellum.33,34 Nevertheless, it is important to validate in vitro findings in 

vivo.

Alcohol

Alcohol has profound effects on the development of cerebellar granule neurons and their 

progeny. Cerebellar actions have been extensively studied as part of the global effects seen 

with fetal alcohol syndrome (FAS) and only briefly discussed here. One only has to attempt 

to “walk a straight line” following excess consumption to understand ataxia and appreciate 

the preferential effects of alcohol on cerebellar function as an adult. The effects of alcohol 

on the developing cerebellum are likely to be even more profound when alterations in neural 

function appear to contribute to lasting changes in the cytoarchitecture and synaptic 

circuitry. Alcohol perturbs all aspects of granule cell development; but is especially 

damaging to postmitotic cells, altering events such as neuronal migration and survival.
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Studies by Li et al. demonstrate that the kinetics of the cell cycle is disrupted by exposure to 

ethanol. Alcohol downregulates the expression of cdk2, cyclin A and cyclin D causing a 

delay in the cell cycle and promoting apoptosis, which leads to an overall decrease in the 

cell number of granule neurons.35 Faulty migration with ectopic positioning of cerebral 

cortical as well as other neuronal populations seems to be a major consequence of FAS.36,37 

How migration is affected is uncertain, but may relate to ethanol-induced disruptions in 

intracellular Ca2+ signaling,38,39 or cell adhesion,40,41 either of which might be important 

for granule cell migration.42,43 Alcohol has been shown to modulate the activity of cell 

adhesion molecules important in cell-cell and cell-matrix interactions. Physiological 

concentrations of ethanol impair and in some cases inhibit the function of L1, a cell 

adhesion molecule responsible for mediating neurite outgrowth and perhaps the migration of 

granule cells.40,41,44

Another important target is granule neuron survival, which is modulated by ethanol in vitro 

and in vivo.45-51 Alcohol exposure and withdrawal disrupts the function of 

NMDA38,45,52-54, AMPA/kainate55,56, and GABA 57-59 receptor-effector 

coupling,53,55-57,60-63 as well as voltage-dependent Ca2+ channel function.57 Ligand- and 

voltage-dependent channels are important regulators of neuroontogeny and survival.38,64 In 

addition to ion homeostasis and mitochondrial function,65 ethanol disrupts trophic factor 

biogenesis and neuronal responsiveness to trophic support. Pituitary adenylate cyclase-

activating polypeptide66, insulin-like growth factor67,68, brain-derived neurotrophic 

factor 69-72, nerve growth factor and basic fibroblastic growth factor73 all attenuate ethanol-

induced granule neuron death. Because ethanol seemingly influences all aspects of granule 

neuron maturation, suggests that the mechanisms by which alcohol acts are complex and 

likely affect multiple systems. The ability of ethanol to perturb ion homeostasis, 

neurotransmitter or trophic factor biogenesis and/or receptor-effector coupling,52,74-80, cell 

adhesion, as well as glial development and function81,82 (however see 83,84), are all likely to 

profoundly impact granule neurogenesis. As noted, excellent articles and reviews on alcohol 

and cerebellar development exist (Table 1).46,57,76,85,86

Opioids

The involvement of opioids in cerebellar growth regulation has been revealed by 

experimentally perturbing the endogenous opioid system.33,34,87-93 In this review, “opiate” 

refers to substances that are derived from the opium poppy such as heroin or morphine, 

while “opioid” refers to endogenously expressed neuropeptides and receptors.94 Heroin’s 

action in the CNS results in large part from its conversion to morphine. Endogenous opioid 

peptides and receptors are widely expressed by developing cerebellar cells.95-103 Although 

heroin and morphine preferentially activate μ opioid receptors, at high concentrations they 

can activate δ and κ receptors.104 Continuous opioid receptor blockade accelerates cerebellar 

growth in postnatal rats,88,93,105,106 while over-stimulating opioid receptors , as occurs with 

opiate drugs,107-112 retards cerebellar growth [review 88,91,93,105,106,113]. This suggests that 

endogenous opioids are present during cerebellar development and tonically inhibit growth.

In the cerebellum, acute opioid exposure (≤ 72 h) typically inhibits the proliferation of 

cerebellar neuroblasts and astroglia,88,93,105,105,106,109,114-119 and can affect cell 
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differentiation33,88,105 and survival.33 Opioid actions are complex and affect each cerebellar 

cell type differently.120 For example, unlike neuroblasts and astroglia in which morphine 

inhibits cell replication, morphine is mitogenic to immature oligodendrocytes.121 In another 

example, cell death is not seen with high concentrations of morphine (>1 μM) in cultured 

mouse granule cells33,92 or astrocytes (unpublished, see also 33,122,123), but cell death is 

evident in cultured Purkinje cells with more chronic exposure (~7 days).33 The mechanism 

underlying Purkinje cell death is uncertain, but may result from morphine-induced 

reductions in parallel fiber afferents from granule cells.33 Purkinje cell losses have been 

reported in chronic heroin abusers who are HIV-seronegative.124

Toxic heroin leukoencephalopathy

Recently a heroin induced spongiform leukoencephalopathy has been described that effects 

predominately the posterior fossa structures including the cerebellum.125,126 Ultrastructural 

studies show vacuolar changes in the myelin. Recent identification of this entity, most likely 

reflects the increased popularity of the practice of "dragon chasing”.127 In this mode of 

heroin abuse, powdered heroin is placed on a piece of aluminum foil and heated from below 

with a flame. The oil content allows the heroin to liquefy and vaporize, producing a plume 

that is inhaled through the mouth with a straw or aluminum foil tube. This practice is distinct 

from smoking or sniffing heroin. Heroin chasers tend to be younger than heroin injectors, 

and this route of administration seems to appeal to users trying to avoid intravenous heroin 

use.128 As drug users explore modes of administration that avoid the risk of HIV exposure, 

they may resort to heroin inhalation. This condition has never been reported in persons using 

heroin by other means, such as injection or snorting, which suggests that the extreme 

toxicity arises from the formation of one or more toxic byproducts during heroin 

volatilization or from the unusual pharmacodynamics of heroin exposure through this unique 

route of administration. The toxin in heroin-induced leukoencephalopathy is unknown, but 

progression in this condition might be due to coasting, or, alternatively, to persistent 

metabolic changes in the affected white matter such as ongoing oxidative damage initiated 

by a toxin. The illness is extremely grave, with no known treatment and progression to 

akinetic mutism and death in approximately 20% of reported cases.129

Opioid receptor and peptide expression in the cerebellum

There is considerable discrepancy between opioid peptide and receptor expression in 

immature and adult granule cells.92,95-98,130,131 Immature cells within the EGL display 

proenkephalin mRNA and/or peptide products, which are lost with maturation.96,97,130 

Ontogenetic changes in proenkephalin expression within individual cells are manifest as 

dynamic spatiotemporal gradients in opioid neuropeptide levels throughout the entire 

cerebellum.96

Interestingly, high-levels of opioid receptor binding coincide with the transient appearance 

of the EGL.98,130,132 Immature EGL cells from postnatal mouse cerebellum display 

immunocytochemical and functional evidence of μ and δ, but not κ, opioid receptor 

expression in vitro.92 EGL cells express a putative ζ opioid receptor with high affinity for 

Met-enkephalin.98,131 Initial reports identifying opioid receptors in the immature cerebellum 

were viewed with some skepticism, because the adult cerebellum in rats and mice has been 
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traditionally described as being largely devoid of opioid receptors. More recently, low levels 

of δ receptor expression have been reported in mature granule cells in rodents,133,134 while μ 

receptors are reported absent. In contrast, in the human cerebellum, high affinity opioid 

binding sites are associated with the EGL130 and μ opioid receptors are widely expressed in 

adult granule cells,135,136 indicating species differences in the types opioid receptors 

present. The transient and coordinated expression of the opioid peptides and receptors in the 

developing cerebellum infers that they are functionally related to growth, and suggests 

granule cells are important in opioid-dependent maturation in the cerebellum.

Opioids and granule cell precursor maturation.

Preliminary evidence implicating endogenous opioids in neural development came from 

findings that heroin, morphine (much of heroin’s actions in the CNS result from its 

conversion to morphine), or other preferential μ opioid receptor agonists inhibited the 

growth of the brain including the cerebellum.118,137-139,139 We tested whether opiates 

intrinsically affect the growth of granule cell precursors by studying the response of mouse 

precursors to morphine in vitro. Morphine (1 μM) exposure caused significant reductions in 

DNA synthesis at 24 h with subsequent reductions in DNA content at 48 h.92 Importantly, 

because morphine does not increase EGL cell death, suggests that morphine reduces granule 

neuron numbers by inhibiting neuroblast proliferation. Lastly, the antiproliferative effects of 

morphine appear to be mediated by μ opioid receptors, since granule cell precursor 

proliferation was unaffected by δ opioid receptor agonists and κ receptors are not expressed 

by these cells (Fig. 2).92

Opioids can modulate dendritic growth and/or potentially retraction.34,88,92 In immature 

cerebellar granule cells, δ2 receptor agonists, but not μ receptor agonists, preferentially 

inhibit neurite elaboration. Proenkephalin gene-derived products have been noted in mossy 

fibers in a variety of species.140,141 In another model system, Met-enkephalin, acting 

through δ receptors, significantly increases the phosphorylation of the Src kinase substrate 

cortactin and vinculin at focal adhesion sites,112 suggesting one possible mechanism for 

opioid-induced changes in neurites. Prenatal exposure to morphine alters catecholamine 

levels in the cerebellum via a sexually dimorphic mechanism and might affect other 

neurotransmitters.142

Opioids act through multiple pathways and downstream effectors, including MAP kinase 

and/or focal adhesion kinase.92,112,143-148 Opioids can also affect cell growth through 

pathways more traditionally ascribed to opioids, such as by augmenting phosphatidylinositol 

(PI) turnover, or by increasing PI-3-kinase and/or Ca2+-mobilization.145,149-152 The ability 

to stimulate multiple signaling cascades may explain how opioids can have varied effects on 

cell growth.120,121,153,154

Little is known whether opiates modulate development by altering key trophic factors and/or 

their receptors. We have found that heparin-binding epidermal growth factor (Hb-EGF) 

negates the antiproliferative actions of morphine in isolated mouse EGL cells.155 

Conversely, opiates can modify EGFR function through convergent signaling events.148 

Similarly, different classes of opioid receptors can transactivate one another156-158 and 

interact directly with important non-opioid signaling pathways affecting growth.159 
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Interactions between opiates and other trophic regulators, such as sonic hedgehog (Shh)-

patched2 and/or EGF-erbB receptor interactions between Purkinje and granule neurons have 

not been fully explored in the developing cerebellum. Assuming Shh-patched2 and/or EGF-

erbB receptor interactions drive the near-exponential increases in granule neurogenesis, how 

might opioids interact with these potent trophic factors? We propose that opioids are 

strategically positioned to finely tune and coordinate developmental details, and are likely to 

function at later stages during development, after trophic factors such as EGF or hedgehog 

have served their main functions. In addition, as noted, opioid and growth factor signaling 

pathways can overlap intracellularly. Because opioid peptides and receptors are widely 

expressed by developing neurons, astroglia, and oligodendroglia suggest that opioids are 

strategically positioned to coordinate the proliferation and differentiation of neurons and 

glia.92,160,161 This might include the regulation of neuronal and glial numbers, or physical or 

functional interactions among cells.120 Irrespective of a particular mechanism, current 

evidence suggests that opioids affect cerebellar maturation by interfering directly with 

granule cell development.

Nicotine

AChR and transmitter expression in the developing cerebellum

The abundance of cholinergic synthetic enzymes and receptors in the developing cerebellum 

suggests that acetylcholine might potentially influence postnatal maturation in this 

region.162-165 The maturation of cholinergic systems164,166-168 coincides with critical 

periods of granule neurogenesis in rodents.4,12,169 During this time, choline 

acetyltransferase levels are generally higher than levels of the degradative enzyme for 

acetylcholine, acetylcholinesterase.163,164,170 Granule neurons receive cholinergic mossy 

fiber innervation from dorsal pontine brainstem nuclei late during development,168 

suggesting that acetylcholine affects synaptogenesis and neuromodulation.171 Choline itself, 

which is plentiful during development, may activate α7 nicotinic AChRs and act as a partial 

agonist for α3 nicotinic AChRs.172-174

Both muscarinic and nicotinic AChR subtypes are present in perinatal rat175-177 and human 

brains.167,178 Nicotinic AChRs are expressed in the EGL in humans167 and in granule and/or 

Purkinje neurons in rodents165,175,179,180 and can precede the ingrowth of cholinergic 

axons,181 suggesting that nicotinic agonists could act directly on granule neuron precursors. 

Our immunocytochemical findings show α3, but not α4, nicotinic AChRs in cultured EGL 

cells prior to the formation of neurites.180 Interestingly, transcripts of multiple nicotinic 

AChR subtypes, including α3, α4, α5, α7, β2, and β4, have been detected in more mature 

cultured rat granule neurons that have formed axons and dendrites.182 Similarly, α4β2 

and/or α3β4 nicotinic AChR subunits are expressed by granule neurons in cerebellar slices 

from 5 to 14 day-old rats,183 suggesting that nicotinic AChR subunit composition is 

developmentally regulated and that non-α3 subtypes might be more important for neurite 

outgrowth and synapse formation. Additional support for this is prompted by the finding that 

α7 subunits are segregated to the dendrites, but not cell bodies of granule cells, suggesting 

α7 subunits are preferentially involved in differentiation, synaptogenesis, and/or 

postsynaptic function.184 In contrast, α3 nicotinic AChR subunits are localized on the cell 
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bodies of neuroblasts long-before neurites are formed.180 In 5-to-10 day old rats, nicotine 

significantly enhances synaptic activity of the Purkinje cells via presynaptic nicotinic 

receptors on the excitatory and inhibitory interneurons, while in older rats such an effect is 

barely noticeable.185

Nicotine and granule cell precursor maturation

Together, these findings suggest that the cholinergic system is important in cerebellar 

maturation, at least in part, by directly influencing the proliferation and survival of granule 

cell precursors. Nicotine administration has been reported to decrease DNA synthesis in 

several rat brain regions including the cerebellum,186-188 although a recent report shows 

increased numbers of mitotic neural cells in rat embryos exposed to nicotine in vitro.189 

However, similar to opioids, nicotinic AChR activation has potent systemic effects, which 

include alterations in cardiovascular, respiratory, and endocrine function that are likely to 

influence neurogenesis. Activation of presynaptic nicotinic AChRs might modulate the 

release of other neurotransmitters. Recently, abnormalities in nicotinic AChR subunit levels 

have been reported in autism.190

To understand better the intrinsic effects of nicotine on the development of granule cell 

precursors, we examined the effect of nicotine on EGL cells isolated in vitro. We found that 

nicotine caused concentration-dependent increases in DNA content and synthesis in EGL 

neuroblasts implying increases in cell proliferation. Pretreatment of cultures with the 

nicotinic AChR antagonist dihydro-β-erythroidine (DHBE) significantly attenuated nicotine-

induced increases in cell replication. To further determine whether α3 or α4 subunits are 

preferentially involved in neural proliferation, EGL cultures were continuously exposed for 

7 days to selective α3/α4 (epibatidine) or α4 (cytisine) agonists or partial agonists, and 

DNA content and synthesis were examined.180 Epibatidine, but not cytisine, caused 

concentration-dependent increases in DNA synthesis and DNA levels in EGL cells 

indicating that α3 nicotinic AChR activation is mitogenic. Moreover, significant effects 

were seen with a 1 pM concentration of epibatidine, and were markedly attenuated by 

concurrent administration of DHBE suggesting the involvement of specific nicotinic 

AChRs. In summary, these data provide novel evidence that nicotinic AChRs directly affect 

the development of granule cell precursors and further suggest that the effects are mediated 

through α3 nicotinic AChR subtypes. It is interesting to speculate that other nicotinic AChR 

subtypes also regulate unique aspects of development.

Cell Death

Granule neuron death occurs during normal cerebellar development in vivo28 and in vitro.191 

Nicotinic AChR activation can have paradoxical proapoptotic or neuroprotective effects 

depending on cell type and developmental stage, pharmacodynamics of drug exposure, and 

the particular nicotinic AChR subtype affected. Chronic nicotine exposure is neuroprotective 

in organotypic cultures of the hippocampus by upregulating calbindin expression, which 

buffers toxic increases in intracellular Ca2+.192 In hippocampal neurons, neurotoxicity is 

associated with the activation of α7 nicotinic AChR subtypes, which permit Ca2+ influx and 

α7 antagonists can be neuroprotective.193,194 In contrast, there are numerous examples in 

which nicotine is neurotoxic. Nicotine promotes death in some cell types, e.g., embryonic rat 
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neural cells189 and in vascular cells.195 Nicotine is neurotoxic at high concentrations in 

whole rat embryos,189 and causes apoptosis in cultured hippocampal neurons.193

We found that EGL cell viability was enhanced following chronic nicotine treatment for 7 

days in vitro (DIV), but not 4 DIV.180 Importantly, the neuroprotective effects of nicotine 

were completely blocked by the nicotinic AChR antagonist DHBE and mimicked by α3, but 

not α4, selective agonists. Chronic exposure may be neuroprotective by causing adaptive 

responses within cells.192 Alternatively, the background rate of cell death was greater in our 

7 DIV cultures and this might better reveal nicotine neuroprotection.

Collectively, the cell proliferation and survival data suggest that nicotine has both mitogenic 

and neuroprotective effects in EGL cells, and these effects are mediated through α3 

nicotinic AChR subunits (Fig. 2). Interestingly, Yan and coworkers196 reported that 

acetylcholine prevented apoptosis in cultured granule neurons via an interaction with 

muscarinic AChRs. It is conceivable that activation of both nicotinic AChR and muscarinic 

AChRs regulate the maturation of cerebellar granule neurons as has been suggested in 

retinal ganglion cells.197 Alternatively, nicotinic AChR stimulation might also induce 

acetylcholine release.

Despite findings suggesting that nicotinic AChR activation directly affects neuroblast 

development, the mechanisms by which this occurs are not understood. Recent reports 

suggest that nicotine can regulate the synthesis and/or degradation of trophic factors, 

including platelet derived growth factor, tumor necrosis factor-α, and transforming growth 

factor-β , which can enhance or impede cell growth in transformed cell lines.198,199 

Alternatively, nicotinic AChRs may directly couple to mitogenic signaling events as shown 

in cell lines, as well as in primary retinal and hippocampal neurons.200-202 Irrespective of 

the mechanisms involved, it appears that nicotine per se can directly modulate cerebellar 

development by affecting granule cell maturation. For this reason, recent suggestions that 

nicotine replacement therapy be used during pregnancy as a substitute for cigarette smoking, 

should be judiciously approached.203 While this seems a prudent measure because the 

myriad products in cigarette smoke besides nicotine are likely to be far more adverse than 

nicotine alone, it might only a partial solution assuming nicotine itself effects neural 

maturation.

Conclusions

Despite findings that opiate drugs and/or nicotine can intrinsically affect the maturation and 

survival of isolated EGL cells in culture, caution should be used before generalizing these 

results to effects in the whole organism. In the absence of the complex cues normally 

present within the microenvironment of the developing brain, it is premature to speculate 

whether granule cells might respond similarly in vivo, or whether the untimely exposure to 

opiate drugs or nicotine during maturation might have similar influences on human 

cerebellar development. Moreover, pharmacodynamic differences in drug exposure make it 

challenging to generalize experimental findings from in vivo or in vitro animal models to 

human development.
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An underlying assumption is that drug abuse impacts cerebellar maturation by modulating 

the degree and timing of ongoing developmental events. In addition to the potential for 

additive and synergistic interactions, pharmacodynamic differences in drug exposure (versus 

the neurochemical systems they mimic) potentially activate novel signaling events and 

genes. The response of a cell to a single drug such as heroin likely reflects the synergistic 

effect of heroin’s actions through multiple signaling cascades and downstream effectors. 

Future studies are beginning to tackle this complexity using gene microarrays, proteomics, 

and new means of combinatorial analysis of complex data sets. The cerebellum, in general, 

and granule cells, in particular, which display highly delineated spatial and temporal patterns 

of development, will continue to provide an excellent model system to elucidate how drug 

abuse disrupts the CNS maturation.
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Figure 1. Summary of the principal effects of various substances on the production of granule 
neurons.
The number of granule neurons in the cerebellum is determined by two key developmental 

events— cell proliferation and programmed cell death. Drug abuse can independently affect 

each event.101 Evidence suggests that alcohol, opiate drugs (heroin and morphine), and 

nicotine disrupt granule neuron numbers through differing mechanisms that modulate cell 

proliferation and/or death.
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Figure 2. Summary: Opioid and nicotine actions during granule cell development.
Cerebellar granule neuron proliferation occurs in the external granular layer (EGL), a 

transient layer of proliferating cells that disappears in the adult. After cell division is 

completed, the neurons migrate past the molecular (MOL) and Purkinje cell (PC) layers to 

their adult positions in the internal granule layer (IGL) where they differentiate forming 

dendrites and synapses. Programmed cell death (apoptosis) can occur (perhaps by 

independent processes) in both the EGL and the IGL. Opiate drugs of abuse, such as heroin, 

inhibit cell replication through direct actions on μ opioid receptors, while δ2 opioid receptor 

agonists inhibit differentiation. Nicotine directly increases granule neuron numbers by 

independently increasing granule cell proliferation, while attenuating cell death. Both the 

mitogenic and antiapoptotic effects are likely mediated by α3 nicotinic AChR subunits. In 

contrast, α7 and α4 nAChR subunits (α4 & α7 nAChRs) are expressed later and potentially 

affect the maturation of more mature granule neurons, although there is no direct evidence 

for this at present.
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Table 1

Effects of alcohol, opiates, and nicotine on granule and Purkinje cell development in the cerebellum

Substance Target Cell Population Effect (References)

Alcohol Granule Neurons Proliferation (↓ or no effect)35,204

Differentiation* (Δ)40 / Migration (Δ)40,41,44

Death (↑)38,45-50,54,66-69,73,204-206

Purkinje Cells Proliferation (?)

Differentiation (↓)207

Death (↑) (or reduced cell numbers)74,208,209

Opioids Granule Neurons Proliferation (↓)90,92,155

Differentiation (Δ)34,88,92

Death (no effect)92,155

Purkinje Cells Proliferation (?)

Differentiation (↓)33,88,106

Death (↑)33,210

Nicotine Granule Cells Proliferation (↑)180

Differentiation (?) (Δ synaptic function)168,182,184,211,212

Death (↓)180

Purkinje Cells Proliferation (?)

Differentiation (?) (Δ synaptic function)185,213-217

Death (?)

Alcohol and drug effects on Purkinje cell maturation are noted because the profound interdependence of granule and Purkinje neurons during 
development.

*
Differentiation is defined specifically as an alteration in the growth or complexity of axons and/or dendrites. Key: ↑ = increased; ↓ = decreased; 

A = changed or disrupted; ? = uncertain
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