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Abstract

Kidney lesions are important extracolonic findings at computed tomographic colonography 

(CTC). However, kidney lesion detection on non-contrast CTC images poses significant 

challenges due to low image contrast with surrounding tissues. In this paper, we treat the kidney 

surface as manifolds in Riemannian space and present an intrinsic manifold diffusion approach to 

identify lesion-caused protrusion while simultaneously removing geometrical noise on the 

manifolds. Exophytic lesions (those that deform the kidney surface) are detected by searching for 

surface points with local maximum diffusion response and using the normalized cut algorithm to 

extract them. Moreover, multi-scale diffusion response is a discriminative feature descriptor for 

the subsequent classification to reduce false positives. We validated the proposed method and 

compared it with a baseline method using shape index on CTC datasets from 49 patients. Free-

response receiver operating characteristic analysis showed that at 7 false positives, the proposed 

method achieved 87% sensitivity while the baseline method achieved only 22% sensitivity. The 

proposed method showed far fewer false positives compared with the baseline method which 

makes it feasible for clinical practice.

Keywords

Kidney lesion detection; computed tomographic colonography; manifold diffusion; extracolonic 
finding; Riemannian manifold

1 Introduction

Extracolonic findings on CT colonography (CTC) increase the chance of early detection of 

high-risk lesions with economic benefits[12]. Kidney lesions are one important extracolonic 

finding, belonging to C-RADS E2-E4 types[18]. Existing kidney lesion detection 

methods[9] take advantage of contrast in the intensity values of lesions on contrast-enhanced 

CT images. For CTC, however, intravenous contrast material is not given since it is not 

necessary for colonic polyp detection. On non-contrast CTC images, the intensity values of 

kidneys, lesions, and adjacent organs are similar as shown in Fig. 1a. Lack of texture cues 

makes the task of kidney lesion detection substantially challenging in the image domain.
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Exophytic kidney lesions are located at kidney edges, and they appear as protuberances on 

the kidney surface in Fig. 1b. We thus resort to shape analysis approaches to identify lesion-

caused protuberances. Shape index[6] is a single-value measurement of local surface 

topology according to the principal curvature and widely applied to tumor detection in 

colon[17], breast[5], and bladder[8]. Fig. 1c shows the shape index distribution over the 

kidney model of Fig. 1b. Despite the fact that shape index values are large at lesion regions 

and small at flat or concave areas, almost all protrusion surfaces are in red in Fig. 1c, partly 

due to noise, which introduces many false positives. Geometric noises can be smoothed 

based on local curvatures[4]. However, over-smoothing easily causes lesion protuberances 

to vanish. To compensate for this issue, the heat kernel diffusion[14] is often used to extract 

global shape spectrums by treating models as manifolds in Riemanian space. Semantic 

geometry features are preserved by choosing small spectrums. Due to this beneficial 

property, Lai et al.[7] applied this approach to extract geometric features to perform supine 

and prone colon registration. Unfortunately, the high complexity of heat kernel smoothing 

makes it difficult to create simple feature descriptors for kidney lesion detection.

In this paper, we present a manifold diffusion method to create a compact, multi-scale heat 

kernel feature for detection and classification of exophytic kidney lesions. Fig. 1d illustrates 

our manifold diffusion response among the kidney surface. Note that the kidney lesion is 

located at the region with local maximum response (yellow) in comparison to its 

neighborhoods (green). In addition, diffusion response varies smoothly over the kidney 

surface, which is a desirable property to reduce false positives. Our kidney lesion detection 

framework is built on this diffusion process. Lesion candidates are extracted by the 

normalized cut algorithm on the vertex-weighted graph with the diffusion response as the 

weight. The multi-scale diffusion response is also discriminative to classify kidney lesions 

and reduce false positives. We validated our detection algorithm on CTC datasets from 49 

patients and free response receiver operating characteristic analysis showed that the 

proposed method significantly outperformed shape index approach with high detection 

accuracy and low false positive rate.

2 Methodology

Kidneys are segmented from CTC image using our earlier work[10]. The marching cubes 

algorithm[11] is then applied to extract the kidney surface, which usually contains 35000–

45000 vertices.

2.1 Manifold Diffusion

The kidney surface can be treated as a three-dimensional complete Riemannian sub-

manifold M of ℝ3. A diffusion process on M is governed by the heat equation,

(1)

where ΔM is the Laplace-Beltrami operator[16]. If M has boundaries and f(0, x) = δx : M → 

ℝ denotes an initial heat distribution on M, the solution u(x, t) is called the heat distribution 
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at a point x at time t and limt→0 u(x, t) = f. Here, δx is the Dirac delta function. For any M, 

there exists a function kt(x, y) : ℝ+ × ℝ3 × ℝ3 → ℝ, which leads to

(2)

kt(x, y) is called the heat kernel and measures the amounts of the heat transferred from x to y 

at time t. According to graph spectral theory[3], kt(x, y) can be decomposed as

(3)

Here, λi and ϕi are, respectively, the ith eigenvalue and the ith eigenfunction of the Laplace-

Beltrami operator. The parameter t takes the scale role in the shape analysis as adjusting it 

can produce a family of kt(x, y). However, local geometrical descriptor using kt(x, y) is very 

complex because it involves both spatial and temporal variables. Instead, in this work, we 

set x = y and create a compact manifold diffusion process by collecting a set of auto-

diffusivity functions {kt(x, x)}t>0, where kt(x, x) means the remaining heat at a point x after 

time t. Fig. 2 illustrates our manifold diffusion response at different temporal scales. Fine 

scale response is maximized at the location of the small lesion protrusion (A) in Fig. 2a. The 

kidney surface with local maximum scale response is gradually shifted to large protrusions 

at lesions (B) and (C) in Fig. 2a, and eventually stops at two kidney tips because they are the 

most stable protrusions shown in Fig. 2d. Therefore, our manifold diffusion process at small 

temporal scales is a good fit for kidney lesion detection.

Manifold diffusion response is also useful to create semantic shape descriptors for kidney 

lesion classification. First, the Laplace-Beltrami operator is intrinsically defined on the 

manifold M, and our feature descriptor established on this operator for lesion classification 

is thus invariant under isometric transformation. In other words, our feature descriptor is 

insensitive to the variability among kidney lesions. Second, it is a compact shape descriptor 

that can densely measure shape variance on the kidney surface. Third, the feature descriptor 

is very informative, as it keeps all information about the intrinsic geometry of the 

manifold[16]. Lastly, in contrast to conventional surface smoothing algorithms[4] that cause 

lesions to fade, the feature descriptor from manifold diffusion is built on the kidney surfaces 

with original resolutions.

2.2 Kidney Lesion Detection and Classification

After manifold diffusion is established, we exploit scale response to assign the vertex weight 

of the kidney surface graph. Because kidney lesions are highlighted at small temporal scales 

in Fig. 2, we choose a sequence of fine scale responses to allow for our framework to 

identify lesions with different sizes. In our implementation, we choose t ∈ {0.1, 0.3, 0.5, 0.8, 

1.0, 1.2, 1.5} in Eq. 3. The kidney graph is then partitioned to search for sub-graphs with 

local maximum scale response, as kidney lesions typically stay in these regions. Fig. ?? 
summarizes the process of our kidney lesion detection, which consists of four main steps.
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Step 1: Seed point determination—This step aims to find a sequence of vertices with 

local maximum diffusion response at each temporal scale level to facilitate graph 

partitioning. A seed point vs is determined if it fulfills kt(vs, vs) = arg maxv∈ring(3)(kt(v, v)), 

where ring means the neighbors of v on the graph[4]. The detected seed points are illustrated 

as green points in Fig. 3a.

Step 2: Graph partitioning—Because the kidney surface is represented as a graph, the 

normalized cut algorithm[15] is used to partition it. Let G = (E, V) be the graph with the 

edge set E and the vertex set V. The edge weight is assigned with the sum of scale response 

difference across a sequence of temporal scales.

(4)

A cut is to find a set of edges cut(A, B) = Σv1∈A,v2∈B d(v1, v2) to separate G into two disjoint 

sets A and B with similar scale response values. Normalized cut is computed as

(5)

where assoc(A, V) = Σv1∈A,v2∈V d(v1, v2) and assoc(B, V) is similarly defined. Normalized 

cut is iteratively performed until no graph partitions contain two seed points. Fig. 3b shows 

the partition results where each sub-graph is represented as a color band.

Step 3: Candidate selection—A partition is regarded as a lesion candidate if its scale 

response is the local maximum and its area is less than a experimentally determined 

threshold, α = 400mm2, because the partition includes parts of the lesion surface and the size 

of a lesion is limited. Fig. 3c illustrates the lesion candidates in red regions.

Step 4: Lesion detection and classification—We mapped the center point of the 

lesion candidates to the original CT image. A 10 × 10 × 10 sub-image centered at the 

mapped point is constructed for computing appearance features. Mean and standard 

deviation of intensity values as well as speeded up robust feature (SURF) descriptor[1] are 

used to describe the lesion appearance. Multi-scale manifold diffusion response is used to 

characterize lesion shape. We combine appearance and shape information to formulate the 

final feature vector and train the support vector machine classifier[2] using Gaussian radial 

basis function as the kernel. The final detection is shown in Fig. 3d. Here, red spheres 

represent true detections and green ones false positives.

2.3 Validation Datasets and Methods

The framework for kidney lesion detection was validated on non-contrast CTC images from 

49 patients. The slice thickness was 1mm. 25 patients have at least one kidney lesion, and 

the total number of lesions is 50. 46 of them are situated on the kidney surface. All lesions 

are marked by an experienced radiologist as the groundtruth. 19 lesions are located in the 

left kidney, and the remaining 31 are in the right kidney. Their size range is 3.2–40.5mm. 
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Retrospective analyses of these images were approved by our Office of Human Subjects 

Research. To better understand our approach, shape index is chosen as the baseline method 

for its popularity in tumor detection[5, 17, 8]. We follow the same detection strategy 

described above to find lesion candidates at graph regions with shape index value larger than 

0.9.

3 Experimental Results

Our training dataset contains 15 patients and the testing set 34 patients. There were 14 true 

kidney lesions in the training set and 36 true kidney lesions in the test set. For the proposed 

method, there were 18 true detections (TP) (from 13 unique kidney lesions) and 128 false 

positives (FP) in the training set; 33 TP (31 unique) and 277 FP in the test set. For the 

baseline method based on shape index, there were 16 TP (7 unique) and 354 FP in the 

training set; 76 TP (18 unique) and 1080 FP in the test set. The proposed method generated 

8 false positives per patient and the shape index generated 32 false positives per patient. 

Shape index also missed many lesions because the areas of their graph partitions are large 

than α at step 3 in the section 2.2.

In Fig. 4, we show the free-response receiver operating characteristic (FROC) curves on the 

test set with and without anatomical guidance. Fig. 4 shows that at 7 FPs, the sensitivity of 

the proposed method is 87% and the baseline method based on shape index is only 22%. 

These promising results demonstrated that our algorithm can accurately detect kidney 

lesions from non-contrast CTC images. Note that there were five true kidney lesions missed 

by the proposed method due to their locations (inside the kidney, not on the surface).

Fig. 5 illustrates kidney lesion detection on images of four patients with kidney lesions. In 

Fig. 5a, a kidney lesion was located in the left kidney. Our detection strategy identified it 

with two FPs. FP (B) stayed at the tip of kidney, similar to the lesion (F) in Fig. 5c. FP (C) 

was close to the renal vein, which was one of the main sources of false positives. Fig. 5b 

shows a challenging case as the left kidney was improperly segmented. However, our 

algorithm can still find lesion (D) with only two FPs. FP (E) was caused by the incorrect 

kidney segmentation. The patient in Fig. 5c has four lesions. Three of them were located in 

the left kidney, and the remaining one in the right kidney. Our detection algorithm 

accurately found all of them. There were two lesions in Fig. 5d. Our algorithm detected the 

one on the right kidney surface, while missed the Lesion (G) indicated by the red arrow 

internal to the left kidney because of no shape variance on the kidney surface. There were 

several FPs caused by the renal vein, such as (H). Nevertheless, experimental results 

demonstrated that our detection algorithm can accurately identify exophytic kidney lesions 

with a few FPs due to the renal vein, inaccurate kidney segmentation, and kidney tips.

4 Conclusion and Future Work

In this work, we developed a novel manifold diffusion method and showed its application to 

detect exophytic kidney lesions. It treated kidney surfaces as manifolds in the Riemannian 

space and generated a heat diffusion process on the manifolds by only considering temporal 

scale changes. Therefore, our manifold diffusion was a compact process, which can assist in 
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kidney lesion detection and classification. The experiments demonstrated that our algorithm 

outperformed shape index with high detection accuracy and low false positive rate.

In the future, we will be investigating the renal vein atlas to reduce false positives as well as 

identifying texture and shape characteristics of internal kidney lesions. We are also 

developing an automatic scale selection metric for manifold diffusion instead of fixing a set 

of scales. Moreover, we are comparing our method with other shape descriptors, such as 

shape-DNA[13] and heat kernel smoothing[14].
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Fig. 1. 
Kidney lesion detection on the non-contrast CT. (a) An exophytic lesion is located in the left 

kidney. (b) The lesion presents as a protuberance on the kidney surface. (c) Shape index fails 

to identify the lesion because it is noisily distributed on the kidney surface. Blue to red 

represents small to large values. (d) Manifold diffusion can accurately identify shape 

changes at the lesion location.
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Fig. 2. 
Manifold diffusion response at different temporal scales. Here, three kidney lesions marked 

as A, B, and C are used to illustrate multi-scale diffusion response on their detection.

Liu et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Process of kidney lesion detection contains four main steps. (a) Seed point determination, 

(b) graph partition, (c) kidney lesion candidate selection, and (d) lesion detection and 

classification.
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Fig. 4. 
Comparison of FROC curves of the proposed method and the baseline detection method 

based on shape index.
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Fig. 5. 
Exophytic kidney lesion detection on four patient images. True detections are labeled in red 

and false detections in green. Sub-images are also extracted from the original CT to illustrate 

the detection. In Fig. 5b, inaccurate kidney segmentation contains part of liver (triangular 

object), and the inferior vena cava (round blob).
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