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Abstract

In this work we formulate vessel segmentation on contrast-enhanced CT angiogram images as a 

Bayesian tracking problem. To obtain posterior probability estimation of vessel location, we 

employ sequential Monte Carlo tracking and propose a new vessel segmentation method by fusing 

multiple cues extracted from CT images. These cues include intensity, vesselness, organ detection, 

and bridge information for poorly enhanced segments from global path minimization. By fusing 

local and global information for vessel tracking, we achieved high accuracy and robustness, with 

significantly improved precision compared to a traditional segmentation method (p=0.0002). Our 

method was applied to the segmentation of the marginal artery of the colon, a small bore vessel of 

potential importance for colon segmentation and CT colonography. Experimental results indicate 

the effectiveness of the proposed method.
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1 Introduction

The marginal artery is a small blood vessel located within the abdominal mesentery which 

travels parallel to the colon, and communicates between the inferior and superior mesenteric 

arteries (IMA and SMA). Segmentation of the marginal artery can improve supine-prone 

colonic polyp registration and help connect collapsed colonic segments in CT colonography 

(CTC). The purpose of this pilot study is to automatically detect the marginal artery on high-

resolution abdominal CT angiograms (CTA) using a sequential Monte Carlo (SMC) tracking 

method.

Vessel enhancement filtering, region-growing, active contours, centerline extraction, and 

stochastic framework are five major approaches to 3D vessel segmentation [1]. Among these 

methods, SMC tracking, or particle filtering (PF), has been widely used for its accuracy, 

robustness, and computational feasibility. Florin et al. proposed a PF-based approach for 

segmentation of coronary arteries [2]. In their model, state variables include position, 

orientation, shape, and vessel appearance. Later, Schaap et al. presented a Bayesian tracking 
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framework for tubular structures such as vessels [3]. The key contribution of their work is a 

novel observation model designed for tube-like objects. Lacoste et al. employed Markov 

marked point processes for segmentation of coronary arteries on 2D angiograms [4]. More 

recently, Friman proposed a multiple hypothesis template tracking scheme for small 3D 

vessel structures [5].

SMC has also been used in computer vision to handle athlete or vehicle tracking in video 

sequences. The collection and utilization of more target and background information will 

typically improve accuracy and robustness for a given noise level. In recent years, 

incorporating multiple cues in the Bayesian tracking framework has been a major research 

direction. Wu and Huang proposed a factorized graphical model to integrate multiple cues 

for Bayesian tracking [6]. Brasnett et al. proposed visual cues including color, edge, and 

texture for object tracking in video sequences [7]. The work of Moreno-Noguer et al. [8] 

focused on integrating dependent multiple cues for robust tracking.

In this work, we propose a new Bayesian vessel segmentation method by fusing multiple 

cues extracted from CT images to automatically detect the marginal artery on high-

resolution abdominal CT angiograms. The remainder of this paper is organized as follows: 

in Sec. 2 we introduce our SMC tracking framework with multiple cues; in Sec. 3 we show 

experimental results on a CTA dataset of 7 patients. We conclude our findings in Sec. 4 with 

a short discussion.

2 Sequential Monte Carlo Tracking by Multiple Cue Fusion

2.1 Bayesian Tracking Framework

First we will introduce the SMC tracking framework and notation. Observations {yt; t ∈ N}, 

yt ∈Rmy are typically captured in a sequential order. Each observation has an associated 

hidden variable {xt; t ∈ N}, xt ∈ Rmx which generally corresponds to the location of the 

target and speed at time point t. For each t, the observation yt is only conditionally 

dependent on xt, i.e. p(yt|y1:t−1, x1:t) = p(yt|xt), where y1:t−1 represents all observations from 

time point 1 to time point t−1 and xt represents all hidden variables from time point 1 to time 

point t. We also assume that the time sequence xt, t=1,2,… T has a Markov property of order 

one: p(xt|x1:t−1) = p(xt|xt−1). The dynamics of the Markov chain can be described by the 

following two steps:

1. Prediction step:

(1)

2. Update step:

(2)
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In our implementation, the state variable x was composed by x = (x, x′, y, y′, z, z′), 

corresponding to the current location and moving speed of the vessel during the dynamic 

tracking process.

2.2 Mixture Dynamic Model Combined with Vector Field

Considering that the majority of vessel segments are smooth in 3D space and exhibit a tube 

structure, we chose a constant velocity model to capture translational motion:

(3)

where matrix F controls the speed at which the target (vessel segmentation) can proceed 

during the tracking process. dt follows a zero-mean Gaussian distribution whose covariance 

matrix was determined empirically based on the training set.

Some vessel segments change direction abruptly and cannot be captured by the translational 

motion model, especially at vessel bifurcation points. To track this movement we employed 

a vector field model for motion prediction. A vector field was produced by eigenvector 

decomposition of the Hessian matrix. The eigenvector associated with the lowest magnitude 

eigenvalue indicates the direction of least curvature, corresponding to the direction of vessel 

flow. The algorithm switches from translational motion model to vector field motion model 

in the presence of a strong vector signal. Such utilization of Hessian eigenvectors for motion 

prediction is novel to the medical image analysis field. Fig. 1 shows the vector field on a 

short segment of the artery.

2.3 Likelihood Models Combined with Multiple Cues

In previous particle filtering vessel segmentation work on CT [2, 3], intensity is used as the 

dominant information. Upon inspection of CT images for vessel segmentation, radiologists 

not only check intensity information, but also utilize anatomical information such as organ 

location, regional vesselness, and fat and muscle tissue. Thus human vision combines 

multiple cues during vessel tracking. Inspired by radiologists, we propose a new likelihood 

model for vessel segmentation by fusing multiple cues. Fig. 2 shows four tracking domains 

used to produce cues on an axial slice CT image.

Intensity Cue—As with traditional vessel segmentation methods, intensity is the most 

important information for vessel tracking on CT. For a particle  at time point t, i =1,…, N, 

where N is the total number of particles, we extracted a spherical search region and summed 

the intensities of all voxels within the sphere as our intensity cue for tracking. The single 

voxel particle intensity was used as an additional cue.

Vesselness Cue—Because the majority of vessel segments exhibit tube structure, a 

vesselness cue is essential to differentiate true vessels from noisy, bright, blob-like areas. 

We employed Li’s multiscale vessel enhancement filtering [9] to provide this vesselness 

cue. Spatial scale standard deviations from 0.5 voxels to 2 voxels with 0.25 voxel 

incremental steps were used for multi-scale analysis. Three vesselness cues were utilized: 

single voxel particle vesselness, vesselness sum within the spherical search region, and a 
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binary vessel mask produced by thresholding vesselness response and applying ray casting 

and connected component analysis post-processing.

Organ Cue by Ray Casting—Nearby organs are a major source of false positives, 

including the bowel, liver, and kidneys. Tracking paths can be attracted to organ boundaries 

having line or curve character. To avoid these particle tracks, a ray casting technique was 

applied at each particle. Rays are casted in 26 spatial directions, and halt at either low 

intensity or a maximum distance, both determined heuristically.

Maximum Intensity Projection Cue—Maximum intensity projection (MIP) provides a 

method to amplify intensity signal in a selected direction. This is an informative cue for 

noisy data and thin, peripheral vessel segments with poor contrast enhancement. MIP was 

applied in pre-processing to the volumetric data based on several pre-selected directions. We 

then project the 2D detections back to 3D space to create a binary mask.

Missing Vessel Cue—Vessel enhancement is generally not uniform on abdominal CT 

angiograms. Due to non-uniform blood flow or vessel constriction, some segments may 

have particularly low enhancement. Thus, some segments are not well distinguished by 

intensity and vesselness cues alone, which necessitates global context information to track 

these difficult areas. We employed a minimum spanning tree to connect segments with very 

high vesselness response, and generated a missing vessel cue mask prior to tracking. The use 

of a minimum spanning tree as a tracking cue is also novel to the medical image analysis 

field. We used a binary variable B for each voxel to indicate whether the voxel lies on a path 

connecting two curves in the 3D CT image with high vesselness response.

Fusing of Multiple Cues—The eight tracking cues are fused as a product of likelihoods:

(4)

where the five likelihood functions correspond to intensity, vesselness, organ, MIP and 

bridge cues. In the fusion process, each cue is treated independently and uniformly regarding 

its weight. Cues were taken to be independent, which is a common assumption used in 

computer vision for a Naïve Bayes methodology [7, 8]. For each cue, a kernel density 

estimator (KDE) was leveraged to learn the target distribution based on a 10 patient training 

set. During tracking, cue observations for each particle were weighted probabilistically using 

the respective KDE’s to update the vessel location. Fig. 3 shows the kernel density 

estimation for each cue. The intensity and vesselness cues above contain 2 and 3 

independent sub-cues, respectively.

2.4 Automatic Bifurcation Detection

The marginal artery is composed of several large loops that frequently bifurcate into 

anastomoses, presenting a challenge to a local tracking method. To solve this, we 

implemented a robust automatic bifurcation detection system using a spherical shell search 

region. At each step, the shell was checked for high intensity voxels in the enhanced vessel 

range. A single vessel entering and leaving the shell produced two high intensity patches, 
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but at a bifurcation the shell identified three patches indicating three paths leaving the 

sphere. In this case, multiple parallel paths were initialized to complete the vessel tree.

3 Dataset and Experimental Results

Our dataset contained 17 patients with high-resolution contrast-enhanced CT angiograms, 10 

for KDE training and 7 for validation. Data acquisition and analysis were conducted under 

an Institutional Review Board (IRB) approved protocol. CT scans were acquired following 

oral administration of 3 bottles Volumen and intravenous administration of 130 ml 

Isovue-300 with 5 ml/sec injection rate and 30 second delay. The scanning parameters were 

section collimation 1.0-mm, reconstruction interval 0.5 mm, 512x512 matrix and in-plane 

pixel dimensions of 0.82 mm to 0.94 mm depending on the participant’s body size. A major 

inclusion criterion for the testing set was high levels of visceral fat content for good spatial 

separation of the artery.

The proposed method was evaluated on the two largest and typically best enhanced 

segments of the marginal artery, which run parallel to the transverse and descending colon. 

A manual seed point was designated at the bifurcation point between these two segments, 

and the algorithm was allowed to track in the three initial vessel directions. The tracking 

algorithm required a runtime of approximately one hour per patient. Fig. 4 shows the 

segmentation result on these branches for one patient. Fig. 5 shows the recall and precision 

rates for each testing patient. Compared to the traditional baseline Hessian analysis method 

for vessel segmentation [9], our SMC multiple cue fusion algorithm achieved an average 

recall of 88.5% while improving the average segmentation precision to 32.2%. Baseline 

average recall and precision rates were 91.4% and 7.9%, respectively. Recall was defined as 

the fraction of ground truth voxels detected by the algorithm, and precision was defined as 

the fraction of detected voxels that were true detections. Paired student t-test comparison 

between our algorithm and the baseline method showed a p value of 0.639 for recall, and a 

precision p value of 0.0002, indicating significance in the precision improvement.

4 Conclusion and Discussion

We have proposed a novel Bayesian tracking framework using SMC and multiple cue fusion 

to automatically track and segment the marginal artery of the colon on contrast-enhanced CT 

angiograms. Such an algorithm was novel to medical image analysis, and advantageous 

compared to other vessel tracking methods by incorporating more information for tracking 

robustness. Utilizing this fusion of local and global information, we achieved high recall and 

a significant increase of precision by a factor of 4 compared to the baseline method. It is 

important to note that the vast majority of false positive detection occurred on other 

segments of the marginal artery and abdominal vasculature due to frequent anastomosis and 

our robust bifurcation detector. Thus, an extended study evaluating the algorithm on the 

complete marginal artery or abdominal vessel tree would likely further increase precision 

results.
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Fig. 1. 
3D vector field plot obtained from Hessian analysis and eigenvector decomposition. 

Eigenvectors with the lowest magnitude eigenvalue correspond to the direction of smallest 

curvature and thus point in the direction of vessel flow. Vectors were used to create accurate 

prediction steps for particle filtering.
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Fig. 2. 
Four particle filtering domains used to generate vessel tracking cues. A) Vesselness response 

from Hessian analysis, with a mask generated by thresholding and post-processing. B) A 

minimum spanning tree algorithm was applied to intensity and vesselness features to 

connect thin, low contrast segments of the artery. C) A MIP mask was used to amplify 

vessel signal in thin, low contrast segments. D) Global, unthresholded vesselness response to 

Hessian analysis.
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Fig. 3. 
Kernel density estimation from training set for each cue. A) Intensity sum in spherical 

search region. B) Single voxel intensity. C) Hessian vesselness sum in spherical search 

region. D) Single voxel Hessian vesselness response. E) Number of positive voxels from 

binary thresholded vessel mask with post-processing. F) Number of positive voxels from 

MIP mask. G) Single voxel ray casting score to identify organ. H) Number of positive 

voxels from binary minimum spanning tree mask.
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Fig. 4. 
3D segmentation of the marginal artery with pelvis and spine for reference. The artery was 

tracked following the transverse and descending colon. The portion shown communicates 

between the SMA and IMA. Ground truth is labeled in green, and SMC detection is labeled 

in red. Detection shown has recall of 94.9% and precision of 58.3%.
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Fig. 5. 
Experimental results comparison between the SMC multiple cue fusion method and baseline 

Hessian vessel analysis. The SMC cue fusion average recall for the 7 testing patients was 

88.5%, compared to the baseline average recall of 91.4%. Average precision for SMC cue 

fusion was 32.2% compared to the baseline average precision of 7.9%.
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